Advanced Glycation Endproducts (AGEs) and Chronic Complications in Diabetes

  • Helen VlassaraEmail author
  • Gary E. Striker
Reference work entry


This review presents insights on the suppression of specific factors of host defense mechanisms with an emphasis on the effects of exogenous AGEs. The data are derived from studies of humans and mice. We propose that the loss of these defenses is the driving force behind the increased oxidative stress and the pathogenesis of both T1DM and T2DM and their complications. Two components of a complex and powerful homeostasis system that provide cell-protective liaisons between cellular AGE receptors (AGER1) and the NAD + -dependent deacetylase sirtuin 1 (SIRT1) are highlighted. An imbalance between host defenses and increased oxidant challenges from the environment appear to form the basis of cell injury that underlies diabetes mellitus. We introduce the concept that reduced levels of AGEs, either by restriction in the diet or by the use of agents block the action(s) of uptake of AGEs as novel cost-efficient strategies in the prevention and treatment of the current diabetes epidemic.


AGEs Oxidative stress Inflammation Food preparation Oral drugs 


  1. 1.
    Ward RA, McLeish KR. Methylglyoxal: a stimulus to neutrophil oxygen radical production in chronic renal failure? Nephrol Dial Transplant. 2004;19(7):1702–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Kim KM, Kim YS, Jung DH, Lee J, Kim JS. Increased glyoxalase I levels inhibit accumulation of oxidative stress and an advanced glycation end product in mouse mesangial cells cultured in high glucose. Exp Cell Res. 2012;318(2):152–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Vlassara H, Cai W, Goodman S, Pyzik R, Yong A, Chen X, Zhu L, Neade T, Beeri M, Silverman JM, Ferrucci L, Tansman L, Striker GE, Uribarri J. Protection against loss of innate defenses in adulthood by low advanced glycation end products (AGE) intake: role of the antiinflammatory AGE receptor-1. J Clin Endocrinol Metab. 2009;94(11):4483–91.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Vlassara H, Cai W, Crandall J, Goldberg T, Oberstein R, Dardaine V, Peppa M, Rayfield EJ. Inflammatory mediators are induced by dietary glycotoxins, a major risk factor for diabetic angiopathy. Proc Natl Acad Sci U S A. 2002;99(24):15596–601.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Koschinsky T, He CJ, Mitsuhashi T, Bucala R, Liu C, Buenting C, Heitmann K, Vlassara H. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci U S A. 1997;94(12):6474–9.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    He C, Sabol J, Mitsuhashi T, Vlassara H. Dietary glycotoxins: inhibition of reactive products by aminoguanidine facilitates renal clearance and reduces tissue sequestration. Diabetes. 1999;48(6):1308–15.CrossRefPubMedGoogle Scholar
  7. 7.
    Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.CrossRefPubMedGoogle Scholar
  8. 8.
    Vlassara H, Brownlee M, Cerami A. Nonenzymatic glycosylation: role in the pathogenesis of diabetic complications. Clin Chem. 1986;32(10 Suppl):B37–41.PubMedGoogle Scholar
  9. 9.
    Cai W, He JC, Zhu L, Chen X, Zheng F, Striker GE, Vlassara H. Oral glycotoxins determine the effects of calorie restriction on oxidant stress, age-related diseases, and lifespan. Am J Pathol. 2008;173(2):327–36.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lind M, Garcia-Rodriguez LA, Booth GL, Cea-Soriano L, Shah BR, Ekeroth G, Lipscombe LL. Mortality trends in patients with and without diabetes in Ontario, Canada and the UK from 1996 to 2009: a population-based study. Diabetologia. 2013;56:2601–8.Google Scholar
  11. 11.
    Linder BL, Fradkin JE, Rodgers GP. The TODAY study: an NIH perspective on its implications for research. Diabetes Care. 2013;36(6):1775–6.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Vlassara H, Striker GE. AGE restriction in diabetes mellitus: a paradigm shift. Nat Rev Endocrinol. 2011;7(9):526–39.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhao Z, Zhao C, Zhang XH, Zheng F, Cai W, Vlassara H, Ma ZA. Advanced glycation end products inhibit glucose-stimulated insulin secretion through nitric oxide-dependent inhibition of cytochrome c oxidase and adenosine triphosphate synthesis. Endocrinology. 2009;150(6):2569–76.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zimmerman GA, Meistrell 3rd M, Bloom O, Cockroft KM, Bianchi M, Risucci D, Broome J, Farmer P, Cerami A, Vlassara H, et al. Neurotoxicity of advanced glycation endproducts during focal stroke and neuroprotective effects of aminoguanidine. Proc Natl Acad Sci U S A. 1995;92(9):3744–8.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Uribarri J, Cai W, Ramdas M, Goodman S, Pyzik R, Chen X, Zhu L, Striker GE, Vlassara H. Restriction of advanced glycation end products improves insulin resistance in human type 2 diabetes: potential role of AGER1 and SIRT1. Diabetes Care. 2011;34(7):1610–6.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Peppa M, Brem H, Cai W, Zhang JG, Basgen J, Li Z, Vlassara H, Uribarri J. Prevention and reversal of diabetic nephropathy in db/db mice treated with alagebrium (ALT-711). Am J Nephrol. 2006;26(5):430–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NM, de Vos WM, Cani PD. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110(22):9066–71.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ, Fagerberg B, Nielsen J, Backhed F. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99–103.CrossRefPubMedGoogle Scholar
  19. 19.
    Cai W, He JC, Zhu L, Peppa M, Lu C, Uribarri J, Vlassara H. High levels of dietary advanced glycation end products transform low-density lipoprotein into a potent redox-sensitive mitogen-activated protein kinase stimulant in diabetic patients. Circulation. 2004;110(3):285–91.CrossRefPubMedGoogle Scholar
  20. 20.
    Staprans I, Pan XM, Rapp JH, Feingold KR. Oxidized cholesterol in the diet is a source of oxidized lipoproteins in human serum. J Lipid Res. 2003;44(4):705–15.CrossRefPubMedGoogle Scholar
  21. 21.
    Vlassara H, Brownlee M, Cerami A. Accumulation of diabetic rat peripheral nerve myelin by macrophages increases with the presence of advanced glycosylation endproducts. J Exp Med. 1984;160(1):197–207.CrossRefPubMedGoogle Scholar
  22. 22.
    Hodgkinson CP, Laxton RC, Patel K, Ye S. Advanced glycation end-product of low density lipoprotein activates the toll-like 4 receptor pathway implications for diabetic atherosclerosis. Arterioscler Thromb Vasc Biol. 2008;28(12):2275–81.CrossRefPubMedGoogle Scholar
  23. 23.
    Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116(11):3015–25.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Thornalley PJ. Glyoxalase I­­structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans. 2003;31(Pt 6):1343–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Vlassara H. The AGE-receptor in the pathogenesis of diabetic complications. Diabetes Metab Res Rev. 2001;17(6):436–43.CrossRefPubMedGoogle Scholar
  26. 26.
    Makita Z, Bucala R, Rayfield EJ, Friedman EA, Kaufman AM, Korbet SM, Barth RH, Winston JA, Fuh H, Manogue KR, et al. Reactive glycosylation endproducts in diabetic uraemia and treatment of renal failure. Lancet. 1994;343(8912):1519–22.CrossRefPubMedGoogle Scholar
  27. 27.
    Makita Z, Radoff S, Rayfield EJ, Yang Z, Skolnik E, Delaney V, Friedman EA, Cerami A, Vlassara H. Advanced glycosylation end products in patients with diabetic nephropathy. N Engl J Med. 1991;325(12):836–42.CrossRefPubMedGoogle Scholar
  28. 28.
    Schmidt AM, Stern DM. Receptor for age (RAGE) is a gene within the major histocompatibility class III region: implications for host response mechanisms in homeostasis and chronic disease. Front Biosci. 2001;6:D1151–60.PubMedGoogle Scholar
  29. 29.
    Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 1988;318(20):1315–21.CrossRefPubMedGoogle Scholar
  30. 30.
    Bucala R, Makita Z, Koschinsky T, Cerami A, Vlassara H. Lipid advanced glycosylation: pathway for lipid oxidation in vivo. Proc Natl Acad Sci U S A. 1993;90(14):6434–8.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes. 1999;48(1):1–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Fu MX, Requena JR, Jenkins AJ, Lyons TJ, Baynes JW, Thorpe SR. The advanced glycation end product, Nepsilon-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions. J Biol Chem. 1996;271(17):9982–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Monnier VM, Bautista O, Kenny D, Sell DR, Fogarty J, Dahms W, Cleary PA, Lachin J, Genuth S. Skin collagen glycation, glycoxidation, and crosslinking are lower in subjects with long-term intensive versus conventional therapy of type 1 diabetes: relevance of glycated collagen products versus HbA1c as markers of diabetic complications. DCCT Skin Collagen Ancillary Study Group. Diabetes Control and Complications Trial. Diabetes. 1999;48(4):870–80.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Finot PA. The absorption and metabolism of modified amino acids in processed foods. J AOAC Int. 2005;88(3):894–903.PubMedGoogle Scholar
  35. 35.
    Brands CMJ, Alink G, van Boekel M, Jongen W. Mutagenicity of heated sugar-casein systems: effect of the maillard reaction. L Agric Food Chem. 2000;48:2271–5.CrossRefGoogle Scholar
  36. 36.
    Ahmed N, Thornalley PJ. Advanced glycation endproducts: what is their relevance to diabetic complications? Diabetes Obes Metab. 2007;9(3):233–45.CrossRefPubMedGoogle Scholar
  37. 37.
    Vlassara H. Advanced glycosylation in nephropathy of diabetes and aging. Adv Nephrol Necker Hosp. 1996;25:303–15.PubMedGoogle Scholar
  38. 38.
    Vlassara H, Brownlee M, Cerami A. High-affinity-receptor-mediated uptake and degradation of glucose-modified proteins: a potential mechanism for the removal of senescent macromolecules. Proc Natl Acad Sci U S A. 1985;82(17):5588–92.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Li G, Yan Q, Oen HO, Lennarz WJ. A specific segment of the transmembrane domain of Wbp1p is essential for its incorporation into the oligosaccharyl transferase complex. Biochemistry. 2003;42(37):11032–9.CrossRefPubMedGoogle Scholar
  40. 40.
    He C, Koschinsky T, Sabol J, Buenting C, Liu C, Vlassara H. Mononuclear (MN) cell AGE receptor-1 (AGE-R1) mRNA expression and its relationship to diabetic complications. Diabetes (Suppl). 1997;46:48A (Abstract).Google Scholar
  41. 41.
    Cai W, Torreggiani M, Zhu L, Chen X, He JC, Striker GE, Vlassara H. AGER1 regulates endothelial cell NADPH oxidase-dependent oxidant stress via PKC-delta: implications for vascular disease. Am J Physiol Cell Physiol. 2009;298(3):C624–34.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Cai W, He JC, Zhu L, Lu C, Vlassara H. Advanced glycation end product (AGE) receptor 1 suppresses cell oxidant stress and activation signaling via EGF receptor. Proc Natl Acad Sci U S A. 2006;103(37):13801–6.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Torreggiani M, Liu H, Wu J, Zheng F, Cai W, Striker G, Vlassara H. Advanced glycation end product receptor-1 transgenic mice are resistant to inflammation, oxidative stress, and post-injury intimal hyperplasia. Am J Pathol. 2009;175(4):1722–32.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cai W, Uribarri J, Zhu L, Chen X, Swamy S, Zhao Z, Grosjean F, Simonaro C, Kuchel GA, Schnaider-Beeri M, Woodward M, Striker GE, Vlassara H. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proc Natl Acad Sci U S A. 2014;111:4910–5.Google Scholar
  45. 45.
    Vlassara H, Striker GE. Advanced glycation endproducts in diabetes and diabetic complications. Endocrinol Metab Clin North Am. 2013;42(4):697–719.CrossRefPubMedGoogle Scholar
  46. 46.
    Schmidt AM, Hasu M, Popov D, Zhang JH, Chen J, Yan SD, Brett J, Cao R, Kuwabara K, Costache G, et al. Receptor for advanced glycation end products (AGEs) has a central role in vessel wall interactions and gene activation in response to circulating AGE proteins. Proc Natl Acad Sci U S A. 1994;91(19):8807–11.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Schmidt AM, Yan SD, Yan SF, Stern DM. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest. 2001;108(7):949–55.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Cai W, He JC, Zhu L, Chen X, Wallenstein S, Striker GE, Vlassara H. Reduced oxidant stress and extended lifespan in mice exposed to a low glycotoxin diet: association with increased AGER1 expression. Am J Pathol. 2007;170(6):1893–902.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Vlassara H, Li YM, Imani F, Wojciechowicz D, Yang Z, Liu FT, Cerami A. Identification of galectin-3 as a high-affinity binding protein for advanced glycation end products (AGE): a new member of the AGE-receptor complex. Mol Med. 1995;1(6):634–46.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Gale EA. The rise of childhood type 1 diabetes in the 20th century. Diabetes. 2002;51(12):3353–61.CrossRefPubMedGoogle Scholar
  51. 51.
    Beyan H, Riese H, Hawa MI, Beretta G, Davidson HW, Hutton JC, Burger H, Schlosser M, Snieder H, Boehm BO, Leslie RD. Glycotoxin and autoantibodies are additive environmentally determined predictors of type 1 diabetes: a twin and population study. Diabetes. 2012;61(5):1192–8.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Cai W, Ramdas M, Zhu L, Chen X, Striker GE, Vlassara H. Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1. Proc Natl Acad Sci U S A. 2012;109(39):15888–93.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Liang F, Kume S, Koya D. SIRT1 and insulin resistance. Nat Rev Endocrinol. 2009;5(7):367–73.CrossRefPubMedGoogle Scholar
  54. 54.
    Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72:219–46.CrossRefPubMedGoogle Scholar
  55. 55.
    Willette AA, Xu G, Johnson SC, Birdsill AC, Jonaitis EM, Sager MA, Hermann BP, La Rue A, Asthana S, Bendlin BB. Insulin resistance, brain atrophy, and cognitive performance in late middle-aged adults. Diabetes Care. 2013;36(2):443–9.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Vlassara H, Brownlee M, Cerami A. Excessive nonenzymatic glycosylation of peripheral and central nervous system myelin components in diabetic rats. Diabetes. 1983;32(7):670–4.CrossRefPubMedGoogle Scholar
  57. 57.
    Beeri MS, Moshier E, Schmeidler J, Godbold J, Uribarri J, Reddy S, Sano M, Grossman HT, Cai W, Vlassara H, Silverman JM. Serum concentration of an inflammatory glycotoxin, methylglyoxal, is associated with increased cognitive decline in elderly individuals. Mech Ageing Dev. 2011;132(11–12):583–7.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Belanger M, Yang J, Petit JM, Laroche T, Magistretti PJ, Allaman I. Role of the glyoxalase system in astrocyte-mediated neuroprotection. J Neurosci. 2011;31(50):18338–52.CrossRefPubMedGoogle Scholar
  59. 59.
    Tellez-Nagel I, Korthals JK, Vlassara HV, Cerami A. An ultrastructural study of chronic sodium cyanate-indiuced neuropathy. J Neuropathol Exp Neurol. 1977;36(2):352–63.CrossRefPubMedGoogle Scholar
  60. 60.
    Cai W, Uribarri J, Zhu L, Chen X, Swamy S, Zhao Z, Grosjean F, Simonaro C, Kuchel GA, Schnaider-Beeri M, Woodward M, Striker GE, Vlassara H. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proc Natl Acad Sci U S A. 2014;111(13):4940–5.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    West RK, Moshier E, Lubitz I, Schmeidler J, Godbold J, Cai W, Uribarri J, Vlassara H, Silverman JM, Beeri MS. Dietary advanced glycation end products are associated with decline in memory in young elderly. Mech Ageing Dev. 2014;140:10–2.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Bayer J, Rune G, Kutsche K, Schwarze U, Kalisch R, Buchel C, Sommer T. Estrogen and the male hippocampus: genetic variation in the aromatase gene predicting serum estrogen is associated with hippocampal gray matter volume in men. Hippocampus. 2013;23(2):117–21.CrossRefPubMedGoogle Scholar
  63. 63.
    Vlassara H, Uribarri J, Cai W, Goodman S, Pyzik R, Post J, Grosjean F, Woodward M, Striker GE. Effects of sevelamer on HbA1c, inflammation, and advanced glycation end products in diabetic kidney disease. Clin J Am Soc Nephrol. 2012;7(6):934–42.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Vlassara H, Cai W, Chen X, Serrano EJ, Shobha MS, Uribarri J, Woodward M, Striker GE. Managing chronic inflammation in the aging diabetic patient with CKD by diet or sevelamer carbonate: a modern paradigm shift. J Gerontol A Biol Sci Med Sci. 2012;67(12):1410–6.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Azcoitia I, Sierra A, Veiga S, Honda S, Harada N, Garcia-Segura LM. Brain aromatase is neuroprotective. J Neurobiol. 2001;47(4):318–29.CrossRefPubMedGoogle Scholar
  66. 66.
    Waheed S, Matsushita K, Astor BC, Hoogeveen RC, Ballantyne C, Coresh J. Combined association of creatinine, albuminuria, and cystatin C with all-cause mortality and cardiovascular and kidney outcomes. Clin J Am Soc Nephrol. 2013;8(3):434–42.CrossRefPubMedGoogle Scholar
  67. 67.
    Vlassara H, Striker LJ, Teichberg S, Fuh H, Li YM, Steffes M. Advanced glycation end products induce glomerular sclerosis and albuminuria in normal rats. Proc Natl Acad Sci U S A. 1994;91(24):11704–8.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Kato M, Dang V, Wang M, Park JT, Deshpande S, Kadam S, Mardiros A, Zhan Y, Oettgen P, Putta S, Yuan H, Lanting L, Natarajan R. TGF-beta induces acetylation of chromatin and of Ets-1 to alleviate repression of miR-192 in diabetic nephropathy. Sci Signal. 2013;6(278):ra43.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Donahue RP, Stranges S, Rejman K, Rafalson LB, Dmochowski J, Trevisan M. Elevated cystatin C concentration and progression to pre-diabetes: the Western New York study. Diabetes Care. 2007;30(7):1724–9.CrossRefPubMedGoogle Scholar
  70. 70.
    Yubero-Serrano EM, Woodward M, Poretsky L, Vlassara H, Striker GE. Effects of sevelamer carbonate on advanced glycation end products and antioxidant/pro-oxidant status in patients with diabetic kidney disease. Clin J Am Soc Nephrol CJASN. 2015;10(5):759–66.CrossRefPubMedGoogle Scholar
  71. 71.
    Zheng F, He C, Cai W, Hattori M, Steffes M, Vlassara H. Prevention of diabetic nephropathy in mice by a diet low in glycoxidation products. Diabetes Metab Res Rev. 2002;18(3):224–37.CrossRefPubMedGoogle Scholar
  72. 72.
    Wu J, Guan TJ, Zheng S, Grosjean F, Liu W, Xiong H, Gordon R, Vlassara H, Striker GE, Zheng F. Inhibition of inflammation by pentosan polysulfate impedes the development and progression of severe diabetic nephropathy in aging C57B6 mice. Lab Invest. 2011;91(10):1459–71.CrossRefPubMedGoogle Scholar
  73. 73.
    Beisswenger PJ, Howell SK, Russell GB, Miller ME, Rich SS, Mauer M. Early progression of diabetic nephropathy correlates with methylglyoxal-derived advanced glycation end products. Diabetes Care. 2013;36:3234–9.Google Scholar
  74. 74.
    Schwedler SB, Bobadilla N, Striker LJ, Vaamonde CA, Herrera-Acosta J, Striker GE. Pentosan polysulfate treatment reduces cyclosporine-induced nephropathy in salt-depleted rats. Transplantation. 1999;68(10):1583–8.CrossRefPubMedGoogle Scholar
  75. 75.
    Gohda T, Niewczas MA, Ficociello LH, Walker WH, Skupien J, Rosetti F, Cullere X, Johnson AC, Crabtree G, Smiles AM, Mayadas TN, Warram JH, Krolewski AS. Circulating TNF receptors 1 and 2 predict stage 3 CKD in type 1 diabetes. J Am Soc Nephrol. 2012;23(3):516–24.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Schwedler SB, Gilbert T, Moreau E, Striker LJ, Merlet-Benichou C, Striker GE. Nephrotoxin exposure in utero reduces glomerular number in sclerosis-prone but not sclerosis-resistant mice. Kidney Int. 1999;56(5):1683–90.CrossRefPubMedGoogle Scholar
  77. 77.
    Izumi Y, Yabe D, Taniguchi A, Fukushima M, Nakai Y, Hosokawa M, Okumura T, Nin K, Matsumoto K, Nishimura F, Nagasaka S, Seino Y. Circulating TNF receptor 2 is associated with the development of chronic kidney disease in non-obese Japanese patients with type 2 diabetes. Diabetes Res Clin Pract. 2013;99(2):145–50.CrossRefPubMedGoogle Scholar
  78. 78.
    Wu J, Zhang R, Torreggiani M, Ting A, Xiong H, Striker GE, Vlassara H, Zheng F. Induction of diabetes in aged C57B6 mice results in severe nephropathy: an association with oxidative stress, endoplasmic reticulum stress, and inflammation. Am J Pathol. 2010;176(5):2163–76.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Stinghen AE, Massy ZA, Vlassara H, Striker GE, Boullier A. Uremic toxicity of advanced glycation end products in CKD. J Am Soc Nephrol JASN. 2016;27:354–70.Google Scholar
  80. 80.
    Peppa M, Uribarri J, Cai W, Lu M, Vlassara H. Glycoxidation and inflammation in renal failure patients. Am J Kidney Dis. 2004;43(4):690–5.CrossRefPubMedGoogle Scholar
  81. 81.
    Uribarri J, Peppa M, Cai W, Goldberg T, Lu M, He C, Vlassara H. Restriction of dietary glycotoxins reduces excessive advanced glycation end products in renal failure patients. J Am Soc Nephrol JASN. 2003;14(3):728–31.CrossRefPubMedGoogle Scholar
  82. 82.
    Christiansen CF, Johansen MB, Christensen S, O’Brien JM, Tonnesen E, Sorensen HT. Type 2 diabetes and 1-year mortality in intensive care unit patients. Eur J Clin Invest. 2013;43(3):238–47.CrossRefPubMedGoogle Scholar
  83. 83.
    Striker GE, Klahr S. Clinical trials in progression of chronic renal failure. Adv Intern Med. 1997;42:555–95.PubMedGoogle Scholar
  84. 84.
    Jasuja GK, Travison TG, Davda M, Rose AJ, Zhang A, Kushnir MM, Rockwood AL, Meikle W, Coviello AD, D’Agostino R, Vasan RS, Bhasin S. Circulating estrone levels are associated prospectively with diabetes risk in men of the framingham heart study. Diabetes Care. 2013;36:2591–6.Google Scholar
  85. 85.
    Striker LJ, Striker GE. Administration of AGEs in vivo induces extracellular matrix gene expression. Nephrol Dial Transplant. 1996;11 Suppl 5:62–5.CrossRefPubMedGoogle Scholar
  86. 86.
    Miyashita T, Toyoda Y, Tsuneyama K, Fukami T, Nakajima M, Yokoi T. Hepatoprotective effect of tamoxifen on steatosis and non-alcoholic steatohepatitis in mouse models. J Toxicol Sci. 2012;37(5):931–42.CrossRefPubMedGoogle Scholar
  87. 87.
    Lupia E, Zheng F, Grosjean F, Tack I, Doublier S, Elliot SJ, Vlassara H, Striker GE. Pentosan polysulfate inhibits atherosclerosis in Watanabe heritable hyperlipidemic rabbits: differential modulation of metalloproteinase-2 and -9. Lab Invest. 2012;92(2):236–45.CrossRefPubMedGoogle Scholar
  88. 88.
    Florentino G, Cotrim HP, Florentino A, Padilha C, Medeiros-Neto M, Bragagnol G, Schwingel P. Hormone replacement therapy in menopausal women: risk factor or protection to nonalcoholic fatty liver disease? Ann Hepatol. 2012;11(1):147–9.PubMedGoogle Scholar
  89. 89.
    Mericq V, Piccardo C, Cai W, Chen X, Zhu L, Striker GE, Vlassara H, Uribarri J. Maternally transmitted and food-derived glycotoxins: a factor preconditioning the young to diabetes? Diabetes Care. 2010;33(10):2232–7.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Vlassara H, Striker G. Glycotoxins in the diet promote diabetes and diabetic complications. Curr Diab Rep. 2007;7(3):235–41.CrossRefPubMedGoogle Scholar
  91. 91.
    Chetyrkin SV, Zhang W, Hudson BG, Serianni AS, Voziyan PA. Pyridoxamine protects proteins from functional damage by 3-deoxyglucosone: mechanism of action of pyridoxamine. Biochemistry. 2008;47(3):997–1006.CrossRefPubMedGoogle Scholar
  92. 92.
    Negrean M, Stirban A, Stratmann B, Gawlowski T, Horstmann T, Gotting C, Kleesiek K, Mueller-Roesel M, Koschinsky T, Uribarri J, Vlassara H, Tschoepe D. Effects of low- and high-advanced glycation endproduct meals on macro- and microvascular endothelial function and oxidative stress in patients with type 2 diabetes mellitus. Am J Clin Nutr. 2007;85(5):1236–43.PubMedGoogle Scholar
  93. 93.
    Uribarri J, Stirban A, Sander D, Cai W, Negrean M, Buenting CE, Koschinsky T, Vlassara H. Single oral challenge by advanced glycation end products acutely impairs endothelial function in diabetic and nondiabetic subjects. Diabetes Care. 2007;30(10):2579–82.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Division of Experimental Diabetes and Aging, Division of GeriatricsIcahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.Division of Nephrology, Departments of Medicine and GeriatricsIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations