Type 1 Diabetes Mellitus: Epidemiology, Genetics, Pathogenesis, and Clinical Manifestations

  • Omar AliEmail author
Reference work entry


Type 1 diabetes (type 1 DM) is characterized by an absolute deficiency of insulin secretion, a relatively rapid onset, and dependence on exogenous insulin at the time of diagnosis. Patients with type 1 DM are also prone to ketosis [1].

Insulin deficiency in type 1a diabetes is caused by immune-mediated destruction of beta cells and is associated with evidence of autoimmunity. A smaller group of type 1 diabetic patients exhibit no evidence of autoimmunity and the cause of insulin deficiency remains undefined. These cases are categorized as type 1b diabetes or idiopathic type 1 diabetes and are relatively more common in African and Asian populations [2]. This category is heterogeneous, may be caused by different mechanisms in different populations, and remains poorly understood at this time. This chapter focuses on autoimmune type 1a diabetes unless otherwise specified.


Type 1 diabetes Autoimmunity Beta cells HLA Hyperglycemia GAD65 Insulin Islet-cell Glucose Epidemiology 


  1. 1.
    American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care. 2016;39 Suppl 1:S13–22. doi:10.2337/dc16-S005. Review. PMID: 26696675.Google Scholar
  2. 2.
    Abiru N, Kawasaki E, Eguch K. Current knowledge of Japanese type 1 diabetic syndrome. Diabetes Metab Res Rev. 2002;18:357–66.PubMedCrossRefGoogle Scholar
  3. 3.
    Diabetes in the Young in International Diabetes Federation. IDF diabetes atlas. Brussels: International Diabetes Federation; 2011.Google Scholar
  4. 4.
    Casu A, Pascutto C, Bernardinelli L, et al. Type 1 diabetes among Sardinian children is increasing: the Sardinian diabetes register for children aged 0–14 years (1989–1999). Diabetes Care. 2004;27:1623–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Borchers AT, Uibo R, Gershwin ME. The geoepidemiology of type 1 diabetes. Autoimmun Rev. 2010;9(5):A355–65. doi:10.1016/j.autrev.2009.12.003. PMID: 19969107, Epub 2009 Dec 5. Review.PubMedCrossRefGoogle Scholar
  6. 6.
    Stanescu DE, Lord K, Lipman TH. The epidemiology of type 1 diabetes in children. Endocrinol Metab Clin North Am. 2012;41(4):679–94. doi:10.1016/j.ecl.2012.08.001. PMID: 23099264, Epub 2012 Sep 27. Review.PubMedCrossRefGoogle Scholar
  7. 7.
    Pundziute-Lycka A, Dahlquist G, Nystrom L, et al. Type I diabetes in the 0–34 years group in Sweden. Diabetologia. 2002;45:783–91.PubMedCrossRefGoogle Scholar
  8. 8.
    Svensson J, Carstensen B, Molbak A, et al. Increased risk of childhood type 1 diabetes in children born after 1985. Diabetes Care. 2002;25:2197–201.PubMedCrossRefGoogle Scholar
  9. 9.
    Mohr SB, Garland CF, Gorham ED, Garland FC. The association between ultraviolet B irradiance, vitamin D status and incidence rates of type 1 diabetes in 51 regions worldwide. Diabetologia. 2008;51(8):1391–8. Epub 2008 Jun 12.PubMedCrossRefGoogle Scholar
  10. 10.
    Diamond Project Group. Incidence and trends of childhood type 1 diabetes worldwide 1990–1999. Diabet Med. 2006;23:857–66.CrossRefGoogle Scholar
  11. 11.
    Rytkönen M, Moltchanova E, Ranta J, Taskinen O, Tuomilehto J, Karvonen M, SPAT Study Group, Finnish Childhood Diabetes Registry Group. The incidence of type 1 diabetes among children in Finland – rural–urban difference. Health Place. 2003;9(4):315–25.PubMedCrossRefGoogle Scholar
  12. 12.
    Holmqvist BM, Lofman O, Samuelsson U. A low incidence of type 1 diabetes between 1977 and 2001 in south-eastern Sweden in areas with high population density and which are more deprived. Diabet Med. 2008;25(3):255–60. Epub 2008 Jan 14.PubMedCrossRefGoogle Scholar
  13. 13.
    Staines A, Bodansky HJ, McKinney PA, et al. Small area variation in the incidence of childhood insulin-dependent diabetes mellitus in Yorkshire, UK: links with overcrowding and population density. Int J Epidemiol. 1997;6:1307–13.CrossRefGoogle Scholar
  14. 14.
    Patterson CC, Carson DJ, Hadden DR. Epidemiology of childhood IDDM in Northern Ireland 1989–1994: low incidence in areas with highest population density and most household crowding. Northern Ireland Diabetes Study Group. Diabetologia. 1996;9:1063–9.CrossRefGoogle Scholar
  15. 15.
    Cherubini V, Carle F, Gesuita R, et al. Large incidence variation of type 1 diabetes in central-southern Italy 1990–1995: lower risk in rural areas. Diabetologia. 1999;7:789–92.CrossRefGoogle Scholar
  16. 16.
    Pundziute-Lycka A, Urbonaite B, Ostrauskas R, Zalinkevicius R, Dahlquist GG. Incidence of type 1 diabetes in Lithuanians aged 0–39 years varies by the urban–rural setting, and the time change differs for men and women during 1991–2000. Diabetes Care. 2003;3:671–6.CrossRefGoogle Scholar
  17. 17.
    Schober E, Rami B, Waldhoer T, Austrian Diabetes Incidence Study Group. Steep increase of incidence of childhood diabetes since 1999 in Austria. Time trend analysis 1979–2005. A nationwide study. Eur J Pediatr. 2008;167(3):293–7. Epub 2007 Apr.PubMedCrossRefGoogle Scholar
  18. 18.
    Stipancic G, La Grasta Sabolic L, Malenica M, Radica A, Skrabic V, Tiljak MK. Incidence and trends of childhood type 1 diabetes in Croatia from 1995 to 2003. Diabetes Res Clin Pract. 2008;80(1):122–7. Epub 2007 Dec.PubMedCrossRefGoogle Scholar
  19. 19.
    Barat P, Valade A, Brosselin P, Alberti C, Maurice-Tison S, Lévy-Marchal C. The growing incidence of type 1 diabetes in children: the 17-year French experience in Aquitaine. Diabet Metab. 2008;34(6 Pt 1):601–5. Epub 2008 Oct 25.CrossRefGoogle Scholar
  20. 20.
    Ehehalt S, Blumenstock G, Willasch AM, Hub R, Ranke MB, Neu A, DIARY-Study Group Baden-Württemberg. Continuous rise in incidence of childhood type 1 diabetes in Germany. Diabet Med. 2008;25(6):755–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Harjutsalo V, Sjöberg L, Tuomilehto J. Time trends in the incidence of type 1 diabetes in Finnish children: a cohort study. Lancet. 2008;371(9626):1777–82.PubMedCrossRefGoogle Scholar
  22. 22.
    Newhook LA, Grant M, Sloka S, et al. Very high and increasing incidence of type 1 diabetes mellitus in Newfoundland and Labrador, Canada. Pediatr Diabetes. 2008;9((3 Pt 2)):62–8. Epub 2008 Jan.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang H, Xia W, Yu Q, et al. Increasing incidence of type 1 diabetes in children aged 0–14 years in Harbin, China (1990–2000). Prim Care Diabetes. 2008;2(3):121–6. Epub 2008 Jul 16.PubMedCrossRefGoogle Scholar
  24. 24.
    Harjutsalo V, Sund R, Knip M, Groop PH. Incidence of type 1 diabetes in Finland. JAMA. 2013;310:427–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Cinek O, Kulich M, Sumnik Z. The incidence of type 1 diabetes in young Czech children stopped rising. Pediatr Diabetes. 2012;13(7):559–63. doi:10.1111/j.1399-5448.2012.00858.x. PMID: 22487027, Epub 2012 Apr 5.PubMedCrossRefGoogle Scholar
  26. 26.
    Patterson C. Behalf of the EURODIAB collaboration of childhood type 1 diabetes registers. 15 year trends in the incidence of type 1 diabetes in Europe. Pediatr Diabetes. 2007;8 Suppl 7:7.Google Scholar
  27. 27.
    Chobot A, Polanska J, Deja G, Jarosz-Chobot P. Incidence of type 1 diabetes among Polish children ages 0-14 years from 1989 to 2012. Acta Diabetol. 2015;52(3):483–8. doi:10.1007/s00592-014-0682-z. PMID: 25381194, Epub 2014 Nov 8.PubMedCrossRefGoogle Scholar
  28. 28.
    Jansson SP, Andersson DK, Svärdsudd K. Prevalence and incidence rate of diabetes mellitus in a Swedish community during 30 years of follow-up. Diabetologia. 2007;50(4):703–10. Epub 2007 Feb 1.PubMedCrossRefGoogle Scholar
  29. 29.
    Skrivarhaug T, Stene LC, Drivvoll AK, Strøm H, Joner G, Norwegian Childhood Diabetes Study Group. Incidence of type 1 diabetes in Norway among children aged 0–14 years between 1989 and 2012: has the incidence stopped rising? Results from the Norwegian Childhood Diabetes Registry. Diabetologia. 2014;57(1):57–62. doi:10.1007/s00125-013-3090-y. PMID: 24149838, Epub 2013 Oct 23.PubMedCrossRefGoogle Scholar
  30. 30.
    Raymond NT, Jones JR, Swift PG, et al. Comparative incidence of type 1 diabetes in children aged under 15 years from South Asian and white or other ethnic backgrounds in Leicestershire, UK, 1989 to 1998. Diabetologia. 2001;44 Suppl 3:B32–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Gillespie KM, Bain SC, Barnett AH, et al. The rising incidence of childhood type 1 diabetes and reduced contributions of high-risk HLA haplotypes. Lancet. 2004;364:1699–700.PubMedCrossRefGoogle Scholar
  32. 32.
    Muntoni S, Fonte MT, Stoduto S, et al. Incidence of insulin-dependent diabetes mellitus among Sardinian-heritage children born in Lazio region, Italy. Lancet. 1997;349(9046):160–2.PubMedCrossRefGoogle Scholar
  33. 33.
    Haller MJ, Atkinson MA, Schatz D. Type 1 diabetes mellitus: etiology, presentation, and management. Pediatr Clin North Am. 2005;52(6):1553–78.PubMedCrossRefGoogle Scholar
  34. 34.
    Rewers M, Stone RA, LaPorte RE, et al. Poisson regression modeling of temporal variation in incidence of childhood insulin-dependent diabetes mellitus in Allegheny County, Pennsylvania, and Wielkopolska, Poland, 1970–1985. Am J Epidemiol. 1989;129:569–81.PubMedCrossRefGoogle Scholar
  35. 35.
    Siemiatycki J, Colle E, Campbell S, Dewar RA, Belmonte MM. Case–control study of IDDM. Diabetes Care. 1989;12:209–16.PubMedCrossRefGoogle Scholar
  36. 36.
    Larenas G, Montecinos A, Manosalva M, et al. Incidence of insulin-dependent diabetes mellitus in the IX region of Chile: ethnic differences. Diabetes Res Clin Pract. 1996;34:S147–51.PubMedCrossRefGoogle Scholar
  37. 37.
    Koton S, Israel IDDM Registry Study Group – IIRSG. Incidence of type 1 diabetes mellitus in the 0- to 17-yr-old Israel population, 1997–2003. Pediatr Diabetes. 2007;8(2):60–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Kondrashova A, Viskari H, Kulmala P, et al. Signs of beta-cell autoimmunity in nondiabetic schoolchildren: a comparison between Russian Karelia with a low incidence of type 1 diabetes and Finland with a high incidence rate. Diabetes Care. 2007;30(1):95–100.PubMedCrossRefGoogle Scholar
  39. 39.
    Willis JA, Scott RS, Darlow BA, Lewy H, Ashkenazi I, Laron Z. Seasonality of birth and onset of clinical disease in children and adolescents (0–19 years) with type 1 diabetes mellitus in Canterbury, New Zealand. J Pediatr Endocrinol Metab. 2002;15(5):645–7.PubMedGoogle Scholar
  40. 40.
    Levy-Marchal C, Patterson C, Green A. Variation by age group and seasonality at diagnosis of childhood IDDM in Europe. The EURODIAB ACE Study Group. Diabetologia. 1995;38:823–30.PubMedCrossRefGoogle Scholar
  41. 41.
    Green A, Patterson CC. Trends in the incidence of childhood-onset diabetes in Europe 1989–1998. Diabetologia. 2001;44 Suppl 3:B3–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Svensson J, Lyngaae-Jørgensen A, Carstensen B, Simonsen LB, Mortensen HB. Long-term trends in the incidence of type 1 diabetes in Denmark: the seasonal variation changes over time. Pediatr Diabetes. 2008;10(4):248–54.PubMedCrossRefGoogle Scholar
  43. 43.
    Ye J, Chen RG, Ashkenazi I, Laron Z. Lack of seasonality in the month of onset of childhood IDDM (0.7–15 years) in Shanghai, China. J Pediatr Endocrinol Metab. 1998;11:461–4.PubMedCrossRefGoogle Scholar
  44. 44.
    Kida K, Mimura G, Ito T, Murakami K, Ashkenazi I, Laron Z. Incidence of type 1 diabetes mellitus in children aged 0–14 in Japan, 1986–1990, including an analysis for seasonality of onset and month of birth: JDS study. The Data Committee for Childhood Diabetes of the Japan Diabetes Society (JDS). Diabet Med. 2000;17:59–63.PubMedCrossRefGoogle Scholar
  45. 45.
    Laron Z, Lewy H, Wilderman I, et al. Seasonality of month of birth of children and adolescents with type 1 diabetes mellitus in homogenous and heterogeneous populations. Isr Med Assoc J. 2005;7(6):381–4.PubMedGoogle Scholar
  46. 46.
    Laron Z. Interplay between heredity and environment in the recent explosion of type 1 childhood diabetes mellitus. Am J Med Genet. 2002;115(1):4–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Gale EA, Gillespie KM. Diabetes and gender. Diabetologia. 2001;44:3–15.PubMedCrossRefGoogle Scholar
  48. 48.
    Karvonen M, Pitkäniemi M, Pitkäniemi J, Kohtamäki K, Tajima N, Tuomilehto J. Sex difference in the incidence of insulin-dependent diabetes mellitus: an analysis of the recent epidemiological data. World Health Organization DIAMOND Project Group. Diabetes Metab Rev. 1997;13(4):275–91. Review.PubMedCrossRefGoogle Scholar
  49. 49.
    Kawasaki E, Matsuura N, Eguchi K. Type 1 diabetes in Japan. Diabetologia. 2006;49(5):828–36. Epub 2006 Mar 28.PubMedCrossRefGoogle Scholar
  50. 50.
    Kalk WJ, Huddle KR, Raal FJ. The age of onset and sex distribution of insulin-dependent diabetes mellitus in Africans in South Africa. Postgrad Med J. 1993;69(813):552–6.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Heinonen MT, Moulder R, Lahesmaa R. New Insights and biomarkers for type 1 diabetes: review for Scandinavian Journal of Immunology. Scand J Immunol. 2015;82(3):244–53. doi:10.1111/sji.12338.PubMedCrossRefGoogle Scholar
  52. 52.
    Hämäläinen AM, Knip M. Autoimmunity and familial risk of type 1 diabetes. Curr Diab Rep. 2002;2(4):347–53.PubMedCrossRefGoogle Scholar
  53. 53.
    Redondo MJ, Eisenbarth GS. Genetic control of autoimmunity in type I diabetes and associated disorders. Diabetologia. 2002;45:605–22.PubMedCrossRefGoogle Scholar
  54. 54.
    Warram JH, Krolewski AS, Gottlieb MS, Ronald Kahn C. Differences in risk of insulin-dependent diabetes in offspring of diabetic mothers and diabetic fathers. N Engl J Med. 1984;311:149–52. doi:10.1056/NEJM198407193110304.PubMedCrossRefGoogle Scholar
  55. 55.
    Harjutsalo V, Lammi N, Karvonen M, Groop PH. Age at onset of type 1 diabetes in parents and recurrence risk in offspring. Diabetes. 2010;59(1):210–4. doi:10.2337/db09-0344. Epub 2009 Oct 15.PubMedCrossRefGoogle Scholar
  56. 56.
    Kyvik KO, Green A, Beck-Nielsen H. Concordance rates of insulin dependent diabetes mellitus: a population based study of young Danish twins. BMJ. 1995;311(7010):913–7.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Redondo MJ, Jeffrey J, Fain PR, Eisenbarth GS, Orban T. Concordance for islet autoimmunity among monozygotic twins. N Engl J Med. 2008;359(26):2849–50.PubMedCrossRefGoogle Scholar
  58. 58.
    Tait BD. The ever-expanding list of HLA alleles: changing HLA nomenclature and its relevance to clinical transplantation. Transplant Rev (Orlando). 2011;25(1):1–8. doi:10.1016/j.trre.2010.08.001. Epub 2010 Oct 27.CrossRefGoogle Scholar
  59. 59.
    Milius RP, Mack SJ, Hollenbach JA, Pollack J, Heuer ML, Gragert L, Spellman S, Guethlein LA, Trachtenberg EA, Cooley S, Bochtler W, Mueller CR, Robinson J, Marsh SG, Maiers M. Genotype List String: a grammar for describing HLA and KIR genotyping results in a text string. Tissue Antigens. 2013;82(2):106–12. doi:10.1111/tan.12150.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Gragert L, Madbouly A, Freeman J, Maiers M. Six-locus high resolution HLA haplotype frequencies derived from mixed-resolution DNA typing for the entire US donor registry. Hum Immunol. 2013;74(10):1313–20. doi:10.1016/j.humimm.2013.06.025. Epub 2013 Jun 24.PubMedCrossRefGoogle Scholar
  61. 61.
    Noble JA. Immunogenetics of type 1 diabetes: a comprehensive review. J Autoimmun. 2015;64:101–12. doi:10.1016/j.jaut.2015.07.014. Epub 2015 Aug 10. Review.PubMedCrossRefGoogle Scholar
  62. 62.
    Aly TA, Ide A, Jahromi MM, et al. Extreme genetic risk for type 1A diabetes. Proc Natl Acad Sci U S A. 2006;103(38):14074–9. Epub 2006 Sept 11.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Erlich H, Valdes AM, Noble J, et al. HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families. Diabetes. 2008;57:1084–92.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Redondo MJ, Fain PR, Eisenbarth GS. Genetics of type 1A diabetes. Recent Prog Horm Res. 2001;56:69–89.PubMedCrossRefGoogle Scholar
  65. 65.
    Todd JA, Bell JI, McDevitt HO. HLA-DQβ gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature. 1987;329:599–604.PubMedCrossRefGoogle Scholar
  66. 66.
    Morel PA, Dorman JS, Todd JA, McDevitt HO, Trucco M. Aspartic acid at position 57 of the HLA-DQ beta chain protects against type I diabetes: a family study. Proc Natl Acad Sci U S A. 1988;85(21):8111–5.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Kwok WW, Domeier ME, Johnson ML, Nepom GT, Koelle DM. HLA-DQB1 codon 57 is critical for peptide binding and recognition. J Exp Med. 1996;183(3):1253–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Lee HC, Ikegami H, Fujisawa T, et al. Role of HLA class II alleles in Korean patients with IDDM. Diabetes Res Clin Pract. 1996;31(1–3):9–15.PubMedCrossRefGoogle Scholar
  69. 69.
    Awata T, Kuzuya T, Matsuda A, et al. High frequency of aspartic acid at position 57 of HLA-DQ B-chain in Japanese IDDM patients and nondiabetic subjects. Diabetes. 1990;39(2):266–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Nejentsev S, Howson JM, Walker NM, et al. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature. 2007;450(7171):887–92. Epub 2007 Nov 14.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Park Y. Why is type 1 diabetes uncommon in Asia? Ann N Y Acad Sci. 2006;1079:31–40.PubMedCrossRefGoogle Scholar
  72. 72.
    Bennett ST, Todd JA. Human type 1 diabetes and the insulin gene: principles of mapping polygenes. Annu Rev Genet. 1996;30:343–70.PubMedCrossRefGoogle Scholar
  73. 73.
    Bell GI, Selby MJ, Rutter WJ. The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences. Nature. 1982;295(5844):31–5.PubMedCrossRefGoogle Scholar
  74. 74.
    Stead JD, Hurles ME, Jeffreys AJ. Global haplotype diversity in the human insulin gene region. Genome Res. 2003;13:2101–11.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Pugliese A, Zeller M, Fernandez Jr A, et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet. 1997;15(3):293–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Vafiadis P, Grabs R, Goodyer CG, Colle E, Polychronakos C. A functional analysis of the role of IGF2 in IDDM2-encoded susceptibility to type 1 diabetes. Diabetes. 1998;47(5):831–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Bottini N, Musumeci L, Alonso A, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet. 2004;36:337–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Bottini N, Vang T, Cucca F, Mustelin T. Role of PTPN22 in type 1 diabetes and other autoimmune diseases. Semin Immunol. 2006;18(4):207–13. Epub 2006 May 11.PubMedCrossRefGoogle Scholar
  79. 79.
    Rieck M, Arechiga A, Onengut-Gumuscu S, Greenbaum C, Concannon P, Buckner JH. Genetic variation in PTPN22 corresponds to altered function of T and B lymphocytes. J Immunol. 2007;179:4704–10.PubMedCrossRefGoogle Scholar
  80. 80.
    Nisticò L, Buzzetti R, Pritchard LE, et al. The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Belgian Diabetes Registry. Hum Mol Genet. 1996;5(7):1075–80.PubMedCrossRefGoogle Scholar
  81. 81.
    Chistiakov DA, Turakulov RI. CTLA-4 and its role in autoimmune thyroid disease. J Mol Endocrinol. 2003;31(1):21–36. Review.PubMedCrossRefGoogle Scholar
  82. 82.
    Lowe CE, Cooper JD, Brusko T, et al. Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nat Genet. 2007;39(9):1074–82.PubMedCrossRefGoogle Scholar
  83. 83.
    Smyth DJ, Cooper JD, Bailey R, et al. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet. 2006;38(6):617–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Kato H, Takeuchi O, Sato S, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006;441(7089):101–5. Epub 2006 Apr 9.PubMedCrossRefGoogle Scholar
  85. 85.
    Bailey R, Cooper JD, Zeitels L, et al. Association of the vitamin D metabolism gene CYP27B1 with type 1 diabetes. Diabetes. 2007;56(10):2616–21. Epub 2007 Jul 2.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Todd JA, Walker NM, Cooper JD, et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet. 2007;39(7):857–64. Epub 2007 Jun 6.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.CrossRefGoogle Scholar
  88. 88.
    Conrad B, Weissmahr RN, Böni J, Arcari R, Schüpbach J, Mach B. A human endogenous retroviral superantigen as candidate autoimmune gene in type 1 diabetes. Cell. 1997;90(2):303–13.PubMedCrossRefGoogle Scholar
  89. 89.
    Knerr I, Repp R, Dotsch J, et al. Quantitation of gene expression by real-time PCR disproves a “retroviral hypothesis” for childhood-onset diabetes mellitus. Pediatr Res. 1999;46(1):57–60.PubMedCrossRefGoogle Scholar
  90. 90.
    Stefan M, Zhang W, Concepcion E, Yi Z, Tomer Y. DNA methylation profiles in type 1 diabetes twins point to strong epigenetic effects on etiology. J Autoimmun. 2014;50:33–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Belot MP, Fradin D, Mai N, Le Fur S, Zelenika D, Kerr-Conte J, et al. CpG methylation changes within the IL2RA promoter in type 1 diabetes of childhood onset. PLoS One. 2013;8, e68093.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Bell CG, Teschendorff AE, Rakyan VK, Maxwell AP, Beck S, Savage DA. Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Med Genomics. 2010;3:33.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Wang Y, Zheng C, Hou L, Yang X, Li JL, et al. DNA methylation impairs TLR9 induced Foxp3 expression by attenuating IRF-7 binding activity in fulminant type 1 diabetes. J Autoimmun. 2013;41:50–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Nakhooda AF, Like AA, Chappel CI, et al. The spontaneously diabetic Wistar rat. Metabolic and morphologic studies. Diabetes. 1977;26:100–12.PubMedCrossRefGoogle Scholar
  95. 95.
    Rayfield EJ, Kelly KJ, Yoon JW. Rubella virus-induced diabetes in the hamster. Diabetes. 1986;35:1278–81.PubMedCrossRefGoogle Scholar
  96. 96.
    Tauriainen S, Salminen K, Hyoty H. Can enteroviruses cause type 1 diabetes? Ann N Y Acad Sci. 2003;1005:13–22.PubMedCrossRefGoogle Scholar
  97. 97.
    Yoon JW, Austin M, Onodera T, et al. Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med. 1979;300:1173–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Champsaur HF, Bottazzo GF, Bertrams J, et al. Virologic, immunologic, and genetic factors in insulin-dependent diabetes mellitus. J Pediatr. 1982;100:15–20.PubMedCrossRefGoogle Scholar
  99. 99.
    Harkonen T, Lankinen H, Davydova B, et al. Enterovirus infection can induce immune responses that cross-react with beta-cell autoantigen tyrosine phosphatase IA-2/IAR. J Med Virol. 2002;66:340–50.PubMedCrossRefGoogle Scholar
  100. 100.
    Horwitz MS, Bradley LM, Harbertson J, et al. Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat Med. 1998;4:781–5.PubMedCrossRefGoogle Scholar
  101. 101.
    Viskari H, Ludvigsson J, Uibo R, et al. Relationship between the incidence of type 1 diabetes and maternal enterovirus antibodies: time trends and geographical variation. Diabetologia. 2005;48:1280–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Menser MA, Forrest JM, Bransby RD. Rubella infection and diabetes-mellitus. Lancet. 1978;1:57–60.PubMedCrossRefGoogle Scholar
  103. 103.
    Helmke K, Otten A, Willems W. Islet cell antibodies in children with mumps infection. Lancet. 1980;2:211–2.PubMedCrossRefGoogle Scholar
  104. 104.
    Hyoty H, Leinikki P, Reunanen A, et al. Mumps infections in the etiology of type 1 (insulin-dependent) diabetes. Diabetes Res. 1988;9:111–6.PubMedGoogle Scholar
  105. 105.
    Altobelli E, Petrocelli R, Verrotti A, Valenti M. Infections and risk of type I diabetes in childhood: a population-based case–control study. Eur J Epidemiol. 2003;18(5):425–30.PubMedCrossRefGoogle Scholar
  106. 106.
    Coulson BS, Witterick PD, Tan Y, et al. Growth of rotaviruses in primary pancreatic cells. J Virol. 2002;76:9537–44.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Honeyman MC, Stone NL, Harrison LC. T-cell epitopes in type 1 diabetes autoantigen tyrosine phosphatase IA-2: potential for mimicry with rotavirus and other environmental agents. Mol Med. 1998;4:231–9.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Munakata Y, Kodera T, Saito T, et al. Rheumatoid arthritis, type 1 diabetes, and Graves’ disease after acute parvovirus B19 infection. Lancet. 2005;366:780.PubMedCrossRefGoogle Scholar
  109. 109.
    Jenson AB, Rosenberg HS, Notkins AL. Pancreatic islet-cell damage in children with fatal viral-infections. Lancet. 1980;2:354–8.PubMedGoogle Scholar
  110. 110.
    Pak CY, Cha CY, Rajotte RV, et al. Human pancreatic-islet cell specific 38 kilodalton autoantigen identified by cytomegalovirus-induced monoclonal islet cell autoantibody. Diabetologia. 1990;33:569–72.PubMedCrossRefGoogle Scholar
  111. 111.
    Graves PM, Barriga KJ, Norris JM, et al. Lack of association between early childhood immunizations and beta-cell autoimmunity. Diabetes Care. 1999;22:1694–7.PubMedCrossRefGoogle Scholar
  112. 112.
    EURODIAB Substudy 2 Study Group. Infections and vaccinations as risk factors for childhood type I (insulin-dependent) diabetes mellitus: a multicentre case–control investigation. Diabetologia. 2000;43:47–53.CrossRefGoogle Scholar
  113. 113.
    DeStefano F, Mullooly JP, Okoro CA, et al. Childhood vaccinations, vaccination timing, and risk of type 1 diabetes mellitus. Pediatrics. 2001;108, E112.PubMedCrossRefGoogle Scholar
  114. 114.
    Cardwell CR, Carson DJ, Patterson CC. No association between routinely recorded infections in early life and subsequent risk of childhood-onset type 1 diabetes: a matched case–control study using the UK General Practice Research Database. Diabet Med. 2008;25(3):261–7. Epub 2008 Jan 14.PubMedCrossRefGoogle Scholar
  115. 115.
    Pundziute-Lyckå A, Urbonaite B, Dahlquist G. Infections and risk of type I (insulin-dependent) diabetes mellitus in Lithuanian children. Diabetologia. 2000;43(10):1229–34.PubMedCrossRefGoogle Scholar
  116. 116.
    Cooke A, Tonks P, Jones FM, et al. Infection with Schistosoma mansoni prevents insulin dependent diabetes mellitus in non-obese diabetic mice. Parasite Immunol. 1999;21:169–76.PubMedCrossRefGoogle Scholar
  117. 117.
    Bras A, Aguas AP. Diabetes-prone NOD mice are resistant to Mycobacterium avium and the infection prevents autoimmune disease. Immunology. 1996;89:20–5.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Saunders KA, Raine T, Cooke A, Lawrence CE. Inhibition of autoimmune type 1 diabetes by gastrointestinal helminth infection. Infect Immun. 2007;75:397–407.PubMedCrossRefGoogle Scholar
  119. 119.
    Rosenbauer J, Herzig P, Giani G. Early infant feeding and risk of type 1 diabetes mellitus – a nationwide population-based case–control study in pre-school children. Diabetes Metab Res Rev. 2008;24(3):211–22.PubMedCrossRefGoogle Scholar
  120. 120.
    Ziegler AG, Schmid S, Huber D, et al. Early infant feeding and risk of developing type 1 diabetes-associated autoantibodies. JAMA. 2003;290:1721–8.PubMedCrossRefGoogle Scholar
  121. 121.
    Norris JM, Barriga K, Klingensmith G, et al. Timing of initial cereal exposure in infancy and risk of islet autoimmunity. JAMA. 2003;290:1713–20.PubMedCrossRefGoogle Scholar
  122. 122.
    Goldfarb MF. Relation of time of introduction of cow milk protein to an infant and risk of type-1 diabetes mellitus. J Proteome Res. 2008;7(5):2165–7. Epub 2008 Apr 15.PubMedCrossRefGoogle Scholar
  123. 123.
    Karjalainen J, Martin JM, Knip M, et al. A bovine albumin peptide as a possible trigger of insulin-dependent diabetes mellitus [see comments]. N Engl J Med. 1992;327:302–7.PubMedCrossRefGoogle Scholar
  124. 124.
    Rayfield EJ, Ishimura K. Environmental factors and insulin dependent diabetes mellitus. Diabetes Metab Rev. 1987;3:925–57.PubMedCrossRefGoogle Scholar
  125. 125.
    Dahlquist GG, Blom LG, Persson L-Å, Sandström AIM, Wall SGI. Dietary factors and the risk of developing insulin dependent diabetes in childhood. Br Med J. 1990;300:1302–6.CrossRefGoogle Scholar
  126. 126.
    Winkler C, Mollenhauer U, Hummel S, Bonifacio E, Ziegler AG. Exposure to environmental factors in drinking water: risk of islet autoimmunity and type 1 diabetes – the BABYDIAB study. Horm Metab Res. 2008;40(8):566–71. Epub 2008 May 21.PubMedCrossRefGoogle Scholar
  127. 127.
    Karavanaki K, Tsoka E, Liacopoulou M, et al. Psychological stress as a factor potentially contributing to the pathogenesis of type 1 diabetes mellitus. J Endocrinol Invest. 2008;31(5):406–15.PubMedCrossRefGoogle Scholar
  128. 128.
    Wilkin TJ. The accelerator hypothesis: weight gain as the missing link between type I and type II diabetes. Diabetologia. 2001;44:914–22.PubMedCrossRefGoogle Scholar
  129. 129.
    Daneman D. Is the ‘accelerator hypothesis’ worthy of our attention? Diabet Med. 2005;22(2):115–7.PubMedCrossRefGoogle Scholar
  130. 130.
    Betts PR, Mulligan J, Ward P, Smith B, Wilkin T. Increasing body weight predicts the earlier onset of insulin-dependent diabetes in childhood: testing the ‘accelerator hypothesis’. Diabet Med. 2005;2:144–51.CrossRefGoogle Scholar
  131. 131.
    Mejía-León ME, Barca AM. Diet, microbiota and immune system in type 1 diabetes development and evolution. Nutrients. 2015;7(11):9171–84.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Zaccardi F, Webb DR, Yates T, Davies MJ. Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgrad Med J. 2015;pii: postgradmedj-2015-133281. doi:10.1136/postgradmedj-2015-133281. [Epub ahead of print] Review. PMID:26621825.Google Scholar
  133. 133.
    Ziegler AG, Hummel M, Schenker M, Bonifacio E. Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2-year analysis of the German BABYDIAB Study. Diabetes. 1999;48:460–8.PubMedCrossRefGoogle Scholar
  134. 134.
    Achenbach P, Bonifacio E, Koczwara K, Ziegler AG. Natural history of type 1 diabetes. Diabetes. 2005;54 Suppl 2:S25–31.PubMedCrossRefGoogle Scholar
  135. 135.
    Mallone R, van Endert P. T cells in the pathogenesis of type 1 diabetes. Curr Diabetes Rep. 2008;8(2):101–6.CrossRefGoogle Scholar
  136. 136.
    Gepts W, Lecompte PM. The pancreatic islets in diabetes. Am J Med. 1981;70:105–15.PubMedCrossRefGoogle Scholar
  137. 137.
    Hanninen A, Jalkanen S, Salmi M, et al. Macrophages, T cell receptor usage, and endothelial cell activation in the pancreas at the onset of insulin-dependent diabetes mellitus. J Clin Invest. 1992;90:1901–10.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    von Herrath M, Sanda S, Herold K. Type 1 diabetes as a relapsing–remitting disease? Nat Rev Immunol. 2007;7:988–94.CrossRefGoogle Scholar
  139. 139.
    Siljander HT, Veijola R, Reunanen A, Virtanen SM, Akerblom HK, Knip M. Prediction of type 1 diabetes among siblings of affected children and in the general population. Diabetologia. 2007;50(11):2272–5.PubMedCrossRefGoogle Scholar
  140. 140.
    Hummel M, Bonifacio E, Schmid S, Walter M, Knopff A, Ziegler AG. Brief communication: early appearance of islet autoantibodies predicts childhood type 1 diabetes in offspring of diabetic parents. Ann Intern Med. 2004;140(11):882–6.PubMedCrossRefGoogle Scholar
  141. 141.
    Gullstrand C, Wahlberg J, Ilonen J, Vaarala O, Ludvigsson J. Progression to type 1 diabetes and autoantibody positivity in relation to HLA-risk genotypes in children participating in the ABIS study. Pediatr Diabetes. 2008;9(3 Pt 1):182–90. Epub 2008 Mar 5.PubMedCrossRefGoogle Scholar
  142. 142.
    Knip M, Karjalainen J, Akerblom HK. Islet cell antibodies are less predictive of IDDM among unaffected children in the general population than in sibs of children with diabetes. The Childhood Diabetes in Finland Study Group. Diabetes Care. 1998;21(10):1670–3.PubMedCrossRefGoogle Scholar
  143. 143.
    Matveyenko AV, Butler PC. Relationship between beta-cell mass and diabetes onset. Diabetes Obes Metab. 2008;10 Suppl 4:23–31.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Sherry NA, Tsai EB, Herold KC. Natural history of beta-cell function in type 1 diabetes. Diabetes. 2005;54 Suppl 2:S32–9.PubMedCrossRefGoogle Scholar
  145. 145.
    Roche EF, Menon A, Gill D, Hoey H. Clinical presentation of type 1 diabetes. Pediatr Diabetes. 2005;6(2):75–8.PubMedCrossRefGoogle Scholar
  146. 146.
    Lévy-Marchal C, Patterson CC, Green A, EURODIAB ACE Study Group. Geographical variation of presentation at diagnosis of type I diabetes in children: the EURODIAB study (European and Diabetes). Diabetologia. 2001;44 Suppl 3:B75–80.PubMedCrossRefGoogle Scholar
  147. 147.
    Hekkala A, Knip M, Veijola R. Ketoacidosis at diagnosis of type 1 diabetes in children in northern Finland: temporal changes over 20 years. Diabetes Care. 2007;30(4):861–6.PubMedCrossRefGoogle Scholar
  148. 148.
    Dunger DB, Sperling MA, Acerini CL, et al. ESPE/LWPES consensus statement on diabetic ketoacidosis in children and adolescents. Arch Dis Child. 2004;89(2):188–94.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Hanafusa T, Imagawa A. Fulminant type 1 diabetes: a novel clinical entity requiring special attention by all medical practitioners. Nat Clin Pract Endocrinol Metab. 2007;3(1):36–45.PubMedCrossRefGoogle Scholar
  150. 150.
    Cho YM, Kim JT, Ko KS, et al. Fulminant type 1 diabetes in Korea: high prevalence among patients with adult-onset type 1 diabetes. Diabetologia. 2007;50(11):2276–9. Epub 2007 Aug 28.PubMedCrossRefGoogle Scholar
  151. 151.
    Endo T, Takizawa S, Tanaka S, et al. Amylase {alpha}-2A autoantibodies: novel marker of autoimmune pancreatitis and fulminant type 1 diabetes mellitus. Diabetes. 2008;58:732–7.PubMedCrossRefGoogle Scholar
  152. 152.
    Martin S, Pawlowski B, Greulich B, Zieglen A, Mandrup-Poulsen T, Mahan J. Natural course of remission in IDDM during 1st year after diagnosis. Diabetes Care. 1992;15:66–74.PubMedCrossRefGoogle Scholar
  153. 153.
    Wallensteen M, Dahlguiat G, Persson B, et al. Factors influencing the magnitude, duration and rate of fall of β cell function in type 1 (insulin-dependent) diabetic children followed for two years from their clinical diagnosis. Diabetologia. 1988;31:664–9.PubMedCrossRefGoogle Scholar
  154. 154.
    Dost A, Herbst A, Kintzel K, et al. Shorter remission period in young versus older children with diabetes mellitus type 1. Exp Clin Endocrinol Diabetes. 2007;115(1):33–7.PubMedCrossRefGoogle Scholar
  155. 155.
    Skrivarhaug T, Bangstad HJ, Stene LC, Sandvik L, Hanssen KF, Joner G. Long-term mortality in a nationwide cohort of childhood-onset type 1 diabetic patients in Norway. Diabetologia. 2006;49:298–305.PubMedCrossRefGoogle Scholar
  156. 156.
    Laing SP, Swerdlow AJ, Slater SD, et al. Mortality from heart disease in a cohort of 23,000 patients with insulin-treated diabetes. Diabetologia. 2003;46:760–5.PubMedCrossRefGoogle Scholar
  157. 157.
    Dahl-Jorgensen K, Larsen JR, Hanssen KF. Atherosclerosis in childhood and adolescent type 1 diabetes: early disease, early treatment? Diabetologia. 2005;48:1445–53.PubMedCrossRefGoogle Scholar
  158. 158.
    Krantz JS, Mack WJ, Hodis HN, Liu CR, Liu CH, Kaufman FR. Early onset of subclinical atherosclerosis in young persons with type 1 diabetes. J Pediatr. 2004;145:452–7.PubMedCrossRefGoogle Scholar
  159. 159.
    Libby P, Nathan DM, Abraham K, et al. Report of the National Heart, Lung, and Blood Institute-National Institute of Diabetes and Digestive and Kidney Diseases working group on cardiovascular complications of type 1 diabetes mellitus. Circulation. 2005;111:3489–93.PubMedCrossRefGoogle Scholar
  160. 160.
    Lorini R, D‘Annunzio G, Vitali L, Scaramuzza A. IDDM and autoimmune thyroid disease in the pediatric age group. J Pediatr Endocrinol Metab. 1996;9:89–94.PubMedGoogle Scholar
  161. 161.
    Kordonouri O, Klinghammer A, Lang EB, Grueters-kieslich A, Grabert M, Holl RW. Thyroid autoimmunity in children and adolescents with type 1 diabetes. Diabetes Care. 2002;25:1346–50.PubMedCrossRefGoogle Scholar
  162. 162.
    Sumnik Z, Cinek O, Bratanic N, et al. Thyroid autoimmunity in children with coexisting type 1 diabetes mellitus and celiac disease: a multicenter study. J Pediatr Endocrinol Metab. 2006;19:517–22.PubMedGoogle Scholar
  163. 163.
    Cronin C, Shanahan F. Insulin-dependent diabetes mellitus and coeliac disease. Lancet. 1997;349:1096–7.PubMedCrossRefGoogle Scholar
  164. 164.
    Crone J, Rami B, Huber WD, Granditsch G, Schober E. Prevalence of coeliac disease and follow-up of EMA in children and adolescents with type 1 diabetes mellitus. J Pediatr Gastroenterol Nutr. 2003;37:67–71.PubMedCrossRefGoogle Scholar
  165. 165.
    Freemark M, Levitsky LL. Screening for celiac disease in children with type 1 diabetes. Diabetes Care. 2003;26:1932–9.PubMedCrossRefGoogle Scholar
  166. 166.
    Fröhlich-Reiterer EE, Hofer S, Kaspers S, et al. Screening frequency for celiac disease and autoimmune thyroiditis in children and adolescents with type 1 diabetes mellitus – data from a German/Austrian multicentre survey. Pediatr Diabetes. 2008;9(6):546–53.PubMedCrossRefGoogle Scholar
  167. 167.
    TRIGR Study Group. Study design of the Trial to Reduce IDDM in the Genetically at Risk (TRIGR). Pediatr Diabetes. 2007;8(3):117–37.CrossRefGoogle Scholar
  168. 168.
    Schmid S, Buuck D, Knopff A, Bonifacio E, Ziegler AG. BABYDIET, a feasibility study to prevent the appearance of islet autoantibodies in relatives of patients with type 1 diabetes by delaying exposure to gluten. Diabetologia. 2004;47(6):1130–1.PubMedCrossRefGoogle Scholar
  169. 169.
    Stene LC, Joner G, Norwegian Childhood Diabetes Study Group. Use of cod liver oil during the first year of life is associated with lower risk of childhood-onset type 1 diabetes: a large, population-based, case–control study. Am J Clin Nutr. 2003;78(6):1128–34.PubMedGoogle Scholar
  170. 170.
    Gale EA, Bingley PJ, Emmett CL, Collier T, European Nicotinamide Diabetes Intervention Trial (ENDIT) Group. European Nicotinamide Diabetes Intervention Trial (ENDIT): a randomised controlled trial of intervention before the onset of type 1 diabetes. Lancet. 2004;363(9413):925–31.PubMedCrossRefGoogle Scholar
  171. 171.
    Diabetes Prevention Trial-Type 1 Study Group. Effects of insulin in relatives of patients with type 1 diabetes mellitus. N Engl J Med. 2002;346:1685–91.CrossRefGoogle Scholar
  172. 172.
    Näntö-Salonen K, Kupila A, Simell S, et al. Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial. Lancet. 2008;372:1746–55.PubMedCrossRefGoogle Scholar
  173. 173.
    Diabetes Prevention Trial-Type 1 Diabetes Study Group. Effects of oral insulin in relatives of patients with type 1 diabetes mellitus. Diabetes Care. 2005;28:1068–76.CrossRefGoogle Scholar
  174. 174.
    Mandrup-Poulsen TR, Mølvig JC, Andersen V, et al. Immunosuppression with cyclosporin induces clinical remission and improved beta cell function in patients with newly diagnosed insulin-dependent diabetes. A national and international multicenter study. Ugeskr Laeger. 1990;152(27):1963–9.PubMedGoogle Scholar
  175. 175.
    Herold KC, Hagopian W, Auger JA, et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med. 2002;346(22):1692–8.PubMedCrossRefGoogle Scholar
  176. 176.
    Li L, Yi Z, Tisch R, Wang B. Immunotherapy of type 1 diabetes. Arch Immunol Ther Exp (Warsz). 2008;56(4):227–36.CrossRefGoogle Scholar
  177. 177.
    Sadauskaite-Kuehne V, Ludvigsson J, Padaiga Z, Jasinskiene E, Samuelsson U. Longer breastfeeding is an independent protective factor against development of type 1 diabetes mellitus in childhood. Diabetes Metab Res Rev. 2004;20(2):150–7.PubMedCrossRefGoogle Scholar
  178. 178.
    Hägglöf B, Blom L, Dahlquist G, Lönnberg G, Sahlin B. The Swedish childhood diabetes study: indications of severe psychological stress as a risk factor for type 1 (insulin-dependent) diabetes mellitus in childhood. Diabetologia. 1991;34(8):579–83.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Medical College of WisconsinMilwaukeeUSA

Personalised recommendations