Advertisement

Rodent Models of Diabetes

  • Christine N. Metz
  • LaQueta K. Hudson
  • Valentin A. PavlovEmail author
Reference work entry

Abstract

Currently, diabetes affects approximately 29 million Americans (http://www.cdc.gov/diabetes/basics/index.html) and 380 million people worldwide (IDF Diabetes Atlas: www.idf.org/diabetesatlas). The significant progress in understanding diabetes and its clinical management is, in part, the result of research using rodent models of diabetes. Parallels between humans and rodents make these diabetes models practical tools for studying the characteristic features of diabetes and preclinical evaluation of potential treatments. This chapter describes major rodent models of type 1 and type 2 diabetes and highlights some of the latest developments based on selective genetic modifications in rodents. While these models allow providing further mechanistic insight into disease pathogenesis and testing novel diagnostic and treatment approaches, the strengths and limitations of each model should be considered when designing experiments and interpreting results.

Keywords

Diabetes Insulin sensitivity Insulin resistance Glucose intolerance Rodent models Genetically Modified mice Cre/LoxP system Pancreas Beta cells 

Notes

Acknowledgments

The authors would like to thank Kevin J. Tracey, Christoph Buettner, and Margot Puerta for critically reading the manuscript.

References

  1. 1.
    Roth J, Qureshi S, Whitford I, Vranic M, Kahn CR, Fantus IG, et al. Insulin's discovery: new insights on its ninetieth birthday. Diabetes Metab Res Rev. 2012;28:293–304.PubMedCrossRefGoogle Scholar
  2. 2.
    Van Belle TL, Coppieters KT, von Herrath MG. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev. 2011;91:79–118.PubMedCrossRefGoogle Scholar
  3. 3.
    Bakay M, Pandey R, Hakonarson H. Genes involved in type 1 diabetes: an update. Genes. 2013;4:499–521.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Mehers KL, Gillespie KM. The genetic basis for type 1 diabetes. Br Med Bull. 2008;88:115–29.PubMedCrossRefGoogle Scholar
  5. 5.
    Rakieten N, Rakieten ML, Nadkarni MV. Studies on the diabetogenic action of streptozotocin (NSC-37917). Cancer Chemother Rep. 1963;29:91–8.Google Scholar
  6. 6.
    Mansford KR, Opie L. Comparison of metabolic abnormalities in diabetes mellitus induced by streptozotocin or by alloxan. Lancet. 1968;1:670–1.PubMedCrossRefGoogle Scholar
  7. 7.
    Wang Z, Gleichmann H. GLUT2 in pancreatic islets: crucial target molecule in diabetes induced with multiple low doses of streptozotocin in mice. Diabetes. 1998;47:50–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Fozzard HA, Beeler Jr GW. The voltage clamp and cardiac electrophysiology. Circ Res. 1975;37:403–13.PubMedCrossRefGoogle Scholar
  9. 9.
    Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008;51:216–26.PubMedCrossRefGoogle Scholar
  10. 10.
    Like AA, Rossini AA. Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science. 1976;193:415–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Yamamoto H, Uchigata Y, Okamoto H. Streptozotocin and alloxan induce DNA strand breaks and poly(ADP-ribose) synthetase in pancreatic islets. Nature. 1981;294:284–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Deeds MC, Anderson JM, Armstrong AS, Gastineau DA, Hiddinga HJ, Jahangir A, et al. Single dose streptozotocin-induced diabetes: considerations for study design in islet transplantation models. Lab Anim. 2011;45:131–40.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Reddy S, Wu D, Elliott RB. Low dose streptozotocin causes diabetes in severe combined immunodeficient (SCID) mice without immune cell infiltration of the pancreatic islets. Autoimmunity. 1995;20:83–92.PubMedCrossRefGoogle Scholar
  14. 14.
    Dekel Y, Glucksam Y, Elron-Gross I, Margalit R. Insights into modeling streptozotocin-induced diabetes in ICR mice. Lab Anim. 2009;38:55–60.CrossRefGoogle Scholar
  15. 15.
    Lukic ML, Stosic-Grujicic S, Shahin A. Effector mechanisms in low-dose streptozotocin-induced diabetes. Dev Immunol. 1998;6:119–28.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Wei M, Ong L, Smith MT, Ross FB, Schmid K, Hoey AJ, et al. The streptozotocin-diabetic rat as a model of the chronic complications of human diabetes. Heart Lung Circ. 2003;12:44–50.PubMedCrossRefGoogle Scholar
  17. 17.
    Szkudelski T. Streptozotocin-nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Exp Biol Med. 2012;237:481–90.CrossRefGoogle Scholar
  18. 18.
    Dunn JS, Duffy E, Gilmour MK, Kirkpatrick J, McLetchie NG. Further observations on the effects of alloxan on the pancreatic islets. J Physiol. 1944;103:233–43.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Mrozikiewicz A, Kielczewska-Mrozikiewicz D, Lowicki Z, Chmara E, Korzeniowska K, Mrozikiewicz PM. Blood levels of alloxan in children with insulin-dependent diabetes mellitus. Acta Diabetol. 1994;31:236–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Hoftiezer V, Carpenter AM. Comparison of streptozotocin and alloxan-induced diabetes in the rat, including volumetric quantitation of the pancreatic islets. Diabetologia. 1973;9:178–84.PubMedCrossRefGoogle Scholar
  21. 21.
    Federiuk IF, Casey HM, Quinn MJ, Wood MD, Ward WK. Induction of type-1 diabetes mellitus in laboratory rats by use of alloxan: route of administration, pitfalls, and insulin treatment. Comp Med. 2004;54:252–7.PubMedGoogle Scholar
  22. 22.
    Coppieters KT, Boettler T, von Herrath M. Virus infections in type 1 diabetes. Cold Spring Harb Perspect Med. 2012;2:a007682.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    von Herrath M, Filippi C, Coppieters K. How viral infections enhance or prevent type 1 diabetes-from mouse to man. J Med Virol. 2011;83:1672.CrossRefGoogle Scholar
  24. 24.
    Schneider DA, von Herrath MG. Potential viral pathogenic mechanism in human type 1 diabetes. Diabetologia. 2014;57:2009–18.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Lonnrot M, Korpela K, Knip M, Ilonen J, Simell O, Korhonen S, et al. Enterovirus infection as a risk factor for beta-cell autoimmunity in a prospectively observed birth cohort: the Finnish Diabetes Prediction and Prevention Study. Diabetes. 2000;49:1314–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Dotta F, Censini S, van Halteren AG, Marselli L, Masini M, Dionisi S, et al. Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci U S A. 2007;104:5115–20.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Yoon JW, Onodera T, Notkins AL. Virus-induced diabetes mellitus. XV. Beta cell damage and insulin-dependent hyperglycemia in mice infected with coxsackie virus B4. J Exp Med. 1978;148:1068–80.PubMedCrossRefGoogle Scholar
  28. 28.
    Yoon JW, Austin M, Onodera T, Notkins AL. Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med. 1979;300:1173–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Clements GB, Galbraith DN, Taylor KW. Coxsackie B virus infection and onset of childhood diabetes. Lancet. 1995;346:221–3.PubMedCrossRefGoogle Scholar
  30. 30.
    Andreoletti L, Hober D, Hober-Vandenberghe C, Belaich S, Vantyghem MC, Lefebvre J, et al. Detection of coxsackie B virus RNA sequences in whole blood samples from adult patients at the onset of type I diabetes mellitus. J Med Virol. 1997;52:121–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Serreze DV, Ottendorfer EW, Ellis TM, Gauntt CJ, Atkinson MA. Acceleration of type 1 diabetes by a coxsackievirus infection requires a preexisting critical mass of autoreactive T-cells in pancreatic islets. Diabetes. 2000;49:708–11.PubMedCrossRefGoogle Scholar
  32. 32.
    Tracy S, Drescher KM, Chapman NM, Kim KS, Carson SD, Pirruccello S, et al. Toward testing the hypothesis that group B coxsackieviruses (CVB) trigger insulin-dependent diabetes: inoculating nonobese diabetic mice with CVB markedly lowers diabetes incidence. J Virol. 2002;76:12097–111.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Bason C, Lorini R, Lunardi C, Dolcino M, Giannattasio A, d’Annunzio G, et al. In type 1 diabetes a subset of anti-coxsackievirus B4 antibodies recognize autoantigens and induce apoptosis of pancreatic beta cells. PLoS One. 2013;8:e57729.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Craighead JE, McLane MF. Diabetes mellitus: induction in mice by encephalomyocarditis virus. Science. 1968;162:913–4.PubMedCrossRefGoogle Scholar
  35. 35.
    Hirasawa K, Jun HS, Maeda K, Kawaguchi Y, Itagaki S, Mikami T, et al. Possible role of macrophage-derived soluble mediators in the pathogenesis of encephalomyocarditis virus-induced diabetes in mice. J Virol. 1997;71:4024–31.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Kang Y, Yoon JW. A genetically determined host factor controlling susceptibility to encephalomyocarditis virus-induced diabetes in mice. J Gen Virol. 1993;74(Pt 6):1207–13.PubMedCrossRefGoogle Scholar
  37. 37.
    Baek HS, Yoon JW. Direct involvement of macrophages in destruction of beta-cells leading to development of diabetes in virus-infected mice. Diabetes. 1991;40:1586–97.PubMedCrossRefGoogle Scholar
  38. 38.
    Shimada A, Maruyama T. Encephalomyocarditis-virus-induced diabetes model resembles “fulminant” type 1 diabetes in humans. Diabetologia. 2004;47:1854–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Ellerman KE, Richards CA, Guberski DL, Shek WR, Like AA. Kilham rat triggers T-cell-dependent autoimmune diabetes in multiple strains of rat. Diabetes. 1996;45:557–62.PubMedCrossRefGoogle Scholar
  40. 40.
    Guberski DL, Thomas VA, Shek WR, Like AA, Handler ES, Rossini AA, et al. Induction of type I diabetes by Kilham’s rat virus in diabetes-resistant BB/Wor rats. Science. 1991;254:1010–3.PubMedCrossRefGoogle Scholar
  41. 41.
    Zipris D, Lien E, Xie JX, Greiner DL, Mordes JP, Rossini AA. TLR activation synergizes with Kilham rat virus infection to induce diabetes in BBDR rats. J Immunol. 2005;174:131–42.PubMedCrossRefGoogle Scholar
  42. 42.
    Alkanani AK, Hara N, Gianani R, Zipris D. Kilham Rat Virus-induced type 1 diabetes involves beta cell infection and intra-islet JAK-STAT activation prior to insulitis. Virology. 2014;468–470:19–27. doi:10.1016/j.virol.2014.07.041. Epub 16 Aug 2014.PubMedCrossRefGoogle Scholar
  43. 43.
    Tirabassi RS, Guberski DL, Blankenhorn EP, Leif JH, Woda BA, Liu Z, et al. Infection with viruses from several families triggers autoimmune diabetes in LEW*1WR1 rats: prevention of diabetes by maternal immunization. Diabetes. 2010;59:110–8.PubMedCrossRefGoogle Scholar
  44. 44.
    von Herrath MG, Homann D, Gairin JE, Oldstone MB. Pathogenesis and treatment of virus-induced autoimmune diabetes: novel insights gained from the RIP-LCMV transgenic mouse model. Biochem Soc Trans. 1997;25:630–5.CrossRefGoogle Scholar
  45. 45.
    Oldstone MB, Nerenberg M, Southern P, Price J, Lewicki H. Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell. 1991;65:319–31.PubMedCrossRefGoogle Scholar
  46. 46.
    Ohashi PS, Oehen S, Buerki K, Pircher H, Ohashi CT, Odermatt B, et al. Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell. 1991;65:305–17.PubMedCrossRefGoogle Scholar
  47. 47.
    Banting FG. An address on diabetes and insulin: being the nobel lecture delivered at Stockholm on september 15th, 1925. Can Med Assoc J. 1926;16:221–32.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Gordon CS, Serino AS, Krause MP, Campbell JE, Cafarelli E, Adegoke OA, et al. Impaired growth and force production in skeletal muscles of young partially pancreatectomized rats: a model of adolescent type 1 diabetic myopathy? PLoS One. 2010;5:e14032.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature. 2008;455:1109–13.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    King AJ. The use of animal models in diabetes research. Br J Pharmacol. 2012;166:877–94.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Makino S, Kunimoto K, Muraoka Y, Mizushima Y, Katagiri K, Tochino Y. Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu. 1980;29:1–13.PubMedGoogle Scholar
  52. 52.
    Thayer TC, Wilson SB, Mathews CE. Use of nonobese diabetic mice to understand human type 1 diabetes. Endocrinol Metab Clin North Am. 2010;39:541–61.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Wicker LS, Todd JA, Peterson LB. Genetic control of autoimmune diabetes in the NOD mouse. Annu Rev Immunol. 1995;13:179–200.PubMedCrossRefGoogle Scholar
  54. 54.
    Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature. 2003;423:506–11.PubMedCrossRefGoogle Scholar
  55. 55.
    Kristiansen OP, Larsen ZM, Pociot F. CTLA-4 in autoimmune diseases – a general susceptibility gene to autoimmunity? Genes Immun. 2000;1:170–84.PubMedCrossRefGoogle Scholar
  56. 56.
    Lundholm M, Motta V, Lofgren-Burstrom A, Duarte N, Bergman ML, Mayans S, et al. Defective induction of CTLA-4 in the NOD mouse is controlled by the NOD allele of Idd3/IL-2 and a novel locus (Ctex) telomeric on chromosome 1. Diabetes. 2006;55:538–44.PubMedCrossRefGoogle Scholar
  57. 57.
    King C, Sarvetnick N. The incidence of type-1 diabetes in NOD mice is modulated by restricted flora not germ-free conditions. PLoS One. 2011;6:e17049.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Driver JP, Serreze DV, Chen YG. Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease. Semin Immunopathol. 2011;33:67–87.PubMedCrossRefGoogle Scholar
  59. 59.
    Guberski DL. Diabetes-prone and diabetes-resistant BB rats: animal models of spontaneous and virally induced diabetes mellitus, lymphocytic thyroiditis, and collagen-induced arthritis. ILAR J. 1993;35:29–37.CrossRefGoogle Scholar
  60. 60.
    Poussier P, Ning T, Murphy T, Dabrowski D, Ramanathan S. Impaired post-thymic development of regulatory CD4 + 25+ T cells contributes to diabetes pathogenesis in BB rats. J Immunol. 2005;174:4081–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Poussier P, Nakhooda AF, Falk JA, Lee C, Marliss EB. Lymphopenia and abnormal lymphocyte subsets in the “BB” rat: relationship to the diabetic syndrome. Endocrinology. 1982;110:1825–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Wallis RH, Wang K, Marandi L, Hsieh E, Ning T, Chao GY, et al. Type 1 diabetes in the BB rat: a polygenic disease. Diabetes. 2009;58:1007–17.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Komeda K, Noda M, Terao K, Kuzuya N, Kanazawa M, Kanazawa Y. Establishment of two substrains, diabetes-prone and non-diabetic, from Long-Evans Tokushima Lean (LETL) rats. Endocr J. 1998;45:737–44.PubMedCrossRefGoogle Scholar
  64. 64.
    Yokoi N, Komeda K, Wang HY, Yano H, Kitada K, Saitoh Y, et al. Cblb is a major susceptibility gene for rat type 1 diabetes mellitus. Nat Genet. 2002;31:391–4.PubMedGoogle Scholar
  65. 65.
    Mordes JP, Guberski DL, Leif JH, Woda BA, Flanagan JF, Greiner DL, et al. LEW.1WR1 rats develop autoimmune diabetes spontaneously and in response to environmental perturbation. Diabetes. 2005;54:2727–33.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Lenzen S, Tiedge M, Elsner M, Lortz S, Weiss H, Jorns A, et al. The LEW.1AR1/Ztm-iddm rat: a new model of spontaneous insulin-dependent diabetes mellitus. Diabetologia. 2001;44:1189–96.PubMedCrossRefGoogle Scholar
  67. 67.
    Jorns A, Gunther A, Hedrich HJ, Wedekind D, Tiedge M, Lenzen S. Immune cell infiltration, cytokine expression, and beta-cell apoptosis during the development of type 1 diabetes in the spontaneously diabetic LEW.1AR1/Ztm-iddm rat. Diabetes. 2005;54:2041–52.PubMedCrossRefGoogle Scholar
  68. 68.
    Centers for Disease Control and Prevention (CDC). Awareness of prediabetes – United States, 2005–2010. MMWR Morb Mortal Wkly Rep. 2013;62:209–12.Google Scholar
  69. 69.
    Dickie MMLP. Plus letter to Roy Robinson 7/7/70. Mouse News Lett. 1957;17:52.Google Scholar
  70. 70.
    Bahary N, Siegel DA, Walsh J, Zhang Y, Leopold L, Leibel R, et al. Microdissection of proximal mouse chromosome 6: identification of RFLPs tightly linked to the ob mutation. Mamm Genome. 1993;4:511–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Friedman JM, Leibel RL, Siegel DS, Walsh J, Bahary N. Molecular mapping of the mouse ob mutation. Genomics. 1991;11:1054–62.PubMedCrossRefGoogle Scholar
  72. 72.
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32.PubMedCrossRefGoogle Scholar
  73. 73.
    Brennan AM, Mantzoros CS. Drug Insight: the role of leptin in human physiology and pathophysiology – emerging clinical applications. Nat Clin Pract Endocrinol Metab. 2006;2:318–27.PubMedCrossRefGoogle Scholar
  74. 74.
    Carlsson B, Lindell K, Gabrielsson B, Karlsson C, Bjarnason R, Westphal O, et al. Obese (ob) gene defects are rare in human obesity. Obes Res. 1997;5:30–5.PubMedCrossRefGoogle Scholar
  75. 75.
    Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395:763–70.PubMedCrossRefGoogle Scholar
  76. 76.
    Hummel KP, Coleman DL, Lane PW. The influence of genetic background on expression of mutations at the diabetes locus in the mouse. I. C57BL-KsJ and C57BL-6J strains. Biochem Genet. 1972;7:1–13.PubMedCrossRefGoogle Scholar
  77. 77.
    Lindstrom P. The physiology of obese-hyperglycemic mice [ob/ob mice]. Scientific World Journal. 2007;7:666–85.PubMedCrossRefGoogle Scholar
  78. 78.
    Coleman DL, Hummel KP. The influence of genetic background on the expression of the obese (Ob) gene in the mouse. Diabetologia. 1973;9:287–93.PubMedCrossRefGoogle Scholar
  79. 79.
    Chua Jr S, Liu SM, Li Q, Yang L, Thassanapaff VT, Fisher P. Differential beta cell responses to hyperglycaemia and insulin resistance in two novel congenic strains of diabetes (FVB- Lepr (db)) and obese (DBA- Lep (ob)) mice. Diabetologia. 2002;45:976–90.PubMedCrossRefGoogle Scholar
  80. 80.
    Chehab FF, Lim ME, Lu R. Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nat Genet. 1996;12:318–20.PubMedCrossRefGoogle Scholar
  81. 81.
    Mounzih K, Lu R, Chehab FF. Leptin treatment rescues the sterility of genetically obese ob/ob males. Endocrinology. 1997;138:1190–3.PubMedCrossRefGoogle Scholar
  82. 82.
    Hummel KP, Dickie MM, Coleman DL. Diabetes, a new mutation in the mouse. Science. 1966;153:1127–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Zucker L, Zucker T. Fatty, a new mutation in the rat. J Hered. 1961;52:275–8.Google Scholar
  84. 84.
    Peterson R, Shaw W, Neel MA, Little LA, Eichberg J. Zucker diabetic fatty rat as a model for non-insulin dependent diabetes mellitus. ILAR News. 1990;32:16–9.CrossRefGoogle Scholar
  85. 85.
    Phillips MS, Liu Q, Hammond HA, Dugan V, Hey PJ, Caskey CJ, et al. Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet. 1996;13:18–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Durham HA, Truett GE. Development of insulin resistance and hyperphagia in Zucker fatty rats. Am J Physiol Regul Integr Comp Physiol. 2006;290:R652–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Kava R, Greenwood M, Johnson P. Zucker (fa/fa) rat. ILAR J. 1990;32:4–8.CrossRefGoogle Scholar
  88. 88.
    Baynes J, Murray DB. Cardiac and renal function are progressively impaired with aging in Zucker diabetic fatty type II diabetic rats. Oxid Med Cell Longev. 2009;2:328–34.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Kim J, Sohn E, Kim CS, Kim JS. Renal podocyte apoptosis in Zucker diabetic fatty rats: involvement of methylglyoxal-induced oxidative DNA damage. J Comp Pathol. 2011;144:41–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Taketomi S, Tsuda M, Matsuo T, Iwatsuka H, Suzuoki Z. Alterations of hepatic enzyme activities in KK and yellow KK mice with various diabetic states. Horm Metab Res. 1973;5:333–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Ikeda H. KK mouse. Diabetes Res Clin Pract. 1994;24(Suppl):S313–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Srinivasan K, Ramarao P. Animal models in type 2 diabetes research: an overview. Indian J Med Res. 2007;125:451–72.PubMedGoogle Scholar
  93. 93.
    Miltenberger RJ, Mynatt RL, Wilkinson JE, Woychik RP. The role of the agouti gene in the yellow obese syndrome. J Nutr. 1997;127:1902S–7.PubMedGoogle Scholar
  94. 94.
    Roberts DW, Wolff GL, Campbell WL. Differential effects of the mottled yellow and pseudoagouti phenotypes on immunocompetence in Avy/a mice. Proc Natl Acad Sci U S A. 1984;81:2152–6.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Frigeri LG, Teguh C, Ling N, Wolff GL, Lewis UJ. Increased sensitivity of adipose tissue to insulin after in vivo treatment of yellow Avy/A obese mice with amino-terminal peptides of human growth hormone. Endocrinology. 1988;122:2940–5.PubMedCrossRefGoogle Scholar
  96. 96.
    Yen TT, Greenberg MM, Yu PL, Pearson DV. An analysis of the relationships among obesity, plasma insulin and hepatic lipogenic enzymes in “viable yellow obese” mice (Avy/a). Horm Metab Res. 1976;8:159–66.PubMedCrossRefGoogle Scholar
  97. 97.
    Yen TT, McKee MM, Stamm NB. Thermogenesis and weight control. Int J Obes. 1984;8 Suppl 1:65–78.PubMedGoogle Scholar
  98. 98.
    Bray GA, York DA. Hypothalamic and genetic obesity in experimental animals: an autonomic and endocrine hypothesis. Physiol Rev. 1979;59:719–809.PubMedGoogle Scholar
  99. 99.
    Yen TT, Gill AM, Frigeri LG, Barsh GS, Wolff GL. Obesity, diabetes, and neoplasia in yellow A(vy)/- mice: ectopic expression of the agouti gene. FASEB J. 1994;8:479–88.PubMedGoogle Scholar
  100. 100.
    Bielschowsky M, Bielschowsky F. A new strain of mice with hereditary obesity. Proc Univ Otago Med Sch. 1953;31:29–31.Google Scholar
  101. 101.
    Leiter EH, Reifsnyder PC. Differential levels of diabetogenic stress in two new mouse models of obesity and type 2 diabetes. Diabetes. 2004;53 Suppl 1:S4–11.PubMedCrossRefGoogle Scholar
  102. 102.
    Bray GA, York DA. Genetically transmitted obesity in rodents. Physiol Rev. 1971;51:598–646.PubMedGoogle Scholar
  103. 103.
    Ortlepp JR, Kluge R, Giesen K, Plum L, Radke P, Hanrath P, et al. A metabolic syndrome of hypertension, hyperinsulinaemia and hypercholesterolaemia in the New Zealand obese mouse. Eur J Clin Invest. 2000;30:195–202.PubMedCrossRefGoogle Scholar
  104. 104.
    Haskell BD, Flurkey K, Duffy TM, Sargent EE, Leiter EH. The diabetes-prone NZO/HlLt strain. I. Immunophenotypic comparison to the related NZB/BlNJ and NZW/LacJ strains. Lab Invest. 2002;82:833–42.PubMedCrossRefGoogle Scholar
  105. 105.
    Leiter EH, Reifsnyder PC, Flurkey K, Partke HJ, Junger E, Herberg L. NIDDM genes in mice: deleterious synergism by both parental genomes contributes to diabetogenic thresholds. Diabetes. 1998;47:1287–95.PubMedCrossRefGoogle Scholar
  106. 106.
    Junger E, Herberg L, Jeruschke K, Leiter EH. The diabetes-prone NZO/Hl strain. II. Pancreatic immunopathology. Lab Invest. 2002;82:843–53.PubMedCrossRefGoogle Scholar
  107. 107.
    Shibata M, Yasuda B. New experimental congenital diabetic mice (N.S.Y. mice). Tohoku J Exp Med. 1980;130:139–42.PubMedCrossRefGoogle Scholar
  108. 108.
    Ueda H, Ikegami H, Yamato E, Fu J, Fukuda M, Shen G, et al. The NSY mouse: a new animal model of spontaneous NIDDM with moderate obesity. Diabetologia. 1995;38:503–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Ikegami H, Fujisawa T, Ogihara T. Mouse models of type 1 and type 2 diabetes derived from the same closed colony: genetic susceptibility shared between two types of diabetes. ILAR J. 2004;45:268–77.PubMedCrossRefGoogle Scholar
  110. 110.
    Kim JH, Sen S, Avery CS, Simpson E, Chandler P, Nishina PM, et al. Genetic analysis of a new mouse model for non-insulin-dependent diabetes. Genomics. 2001;74:273–86.PubMedCrossRefGoogle Scholar
  111. 111.
    Kim JH, Stewart TP, Soltani-Bejnood M, Wang L, Fortuna JM, Mostafa OA, et al. Phenotypic characterization of polygenic type 2 diabetes in TALLYHO/JngJ mice. J Endocrinol. 2006;191:437–46.PubMedCrossRefGoogle Scholar
  112. 112.
    Nakamura N. Reduced aldehyde dehydrogenase activity and arginine vasopressin receptor 2 expression in the kidneys of male TALLYHO/JngJ mice of prediabetic age. Endocrine. 2011;40:379–85.PubMedCrossRefGoogle Scholar
  113. 113.
    Kim JH, Saxton AM. The TALLYHO mouse as a model of human type 2 diabetes. Methods Mol Biol. 2012;933:75–87. doi:10.1007/978-1-62703-068-7_6.:75-87.PubMedGoogle Scholar
  114. 114.
    Cho YR, Kim HJ, Park SY, Ko HJ, Hong EG, Higashimori T, et al. Hyperglycemia, maturity-onset obesity, and insulin resistance in NONcNZO10/LtJ males, a new mouse model of type 2 diabetes. Am J Physiol Endocrinol Metab. 2007;293:E327–36.PubMedCrossRefGoogle Scholar
  115. 115.
    Blaber SI, Diaz J, Blaber M. Accelerated healing in NONcNZO10/LtJ type 2 diabetic mice by FGF-1. Wound Repair Regen. 2015;23:538–49.PubMedCrossRefGoogle Scholar
  116. 116.
    Zhang S, Wang S, Puhl MD, Jiang X, Hyrc KL, Laciny E, et al. Global biochemical profiling identifies beta-hydroxypyruvate as a potential mediator of type 2 diabetes in mice and humans. Diabetes. 2015;64:1383–94.PubMedCrossRefGoogle Scholar
  117. 117.
    Kawano K, Hirashima T, Mori S, Natori T. OLETF (Otsuka Long-Evans Tokushima Fatty) rat: a new NIDDM rat strain. Diabetes Res Clin Pract. 1994;24(Suppl):S317–20.PubMedCrossRefGoogle Scholar
  118. 118.
    Moran TH. Unraveling the obesity of OLETF rats. Physiol Behav. 2008;94:71–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Nara Y, Gao M, Ikeda K, Sato T, Sawamura M, Kawano K, et al. Genetic analysis of non-insulin-dependent diabetes mellitus in the Otsuka Long-Evans Tokushima Fatty rat. Biochem Biophys Res Commun. 1997;241:200–4.PubMedCrossRefGoogle Scholar
  120. 120.
    Yamada T, Kose H, Ohta T, Matsumoto K. Genetic dissection of complex genetic factor involved in NIDDM of OLETF rat. Exp Diabetes Res. 2012;2012:582546. doi:10.1155/2012/582546. Epub 15 Oct 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Vaag A, Lund SS. Non-obese patients with type 2 diabetes and prediabetic subjects: distinct phenotypes requiring special diabetes treatment and (or) prevention? Appl Physiol Nutr Metab. 2007;32:912–20.PubMedCrossRefGoogle Scholar
  122. 122.
    Picarel-Blanchot F, Berthelier C, Bailbe D, Portha B. Impaired insulin secretion and excessive hepatic glucose production are both early events in the diabetic GK rat. Am J Physiol. 1996;271:E755–62.PubMedGoogle Scholar
  123. 123.
    Movassat J, Saulnier C, Serradas P, Portha B. Impaired development of pancreatic beta-cell mass is a primary event during the progression to diabetes in the GK rat. Diabetologia. 1997;40:916–25.PubMedCrossRefGoogle Scholar
  124. 124.
    Portha B, Giroix MH, Tourrel-Cuzin C, Le Stunff H, Movassat J. The GK rat: a prototype for the study of non-overweight type 2 diabetes. Methods Mol Biol. 2012;933:125–59. doi:10.1007/978-1-62703-068-7_9.:125-59.PubMedGoogle Scholar
  125. 125.
    Shinohara M, Masuyama T, Shoda T, Takahashi T, Katsuda Y, Komeda K, et al. A new spontaneously diabetic non-obese Torii rat strain with severe ocular complications. Int J Exp Diabetes Res. 2000;1:89–100.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Sasase T, Ohta T, Ogawa N, Miyajima K, Ito M, Yamamoto H, et al. Preventive effects of glycaemic control on ocular complications of Spontaneously Diabetic Torii rat. Diabetes Obes Metab. 2006;8:501–7.PubMedCrossRefGoogle Scholar
  127. 127.
    Masuyama T, Fuse M, Yokoi N, Shinohara M, Tsujii H, Kanazawa M, et al. Genetic analysis for diabetes in a new rat model of nonobese type 2 diabetes, Spontaneously Diabetic Torii rat. Biochem Biophys Res Commun. 2003;304:196–206.PubMedCrossRefGoogle Scholar
  128. 128.
    Matsui K, Ohta T, Oda T, Sasase T, Ueda N, Miyajima K, et al. Diabetes-associated complications in Spontaneously Diabetic Torii fatty rats. Exp Anim. 2008;57:111–21.PubMedCrossRefGoogle Scholar
  129. 129.
    Katsuda Y, Sasase T, Tadaki H, Mera Y, Motohashi Y, Kemmochi Y, et al. Contribution of hyperglycemia on diabetic complications in obese type 2 diabetic SDT fatty rats: effects of SGLT inhibitor phlorizin. Exp Anim. 2015;64:161–9.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Islam MS. Animal models of diabetic neuropathy: progress since 1960s. J Diabetes Res. 2013;2013 149452. doi:10.1155/2013/149452. Epub 29 July 2013.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Fujii H, Kono K, Nakai K, Goto S, Komaba H, Hamada Y, et al. Oxidative and nitrosative stress and progression of diabetic nephropathy in type 2 diabetes. Am J Nephrol. 2010;31:342–52.PubMedCrossRefGoogle Scholar
  132. 132.
    Barber AJ, Antonetti DA, Kern TS, Reiter CE, Soans RS, Krady JK, et al. The Ins2Akita mouse as a model of early retinal complications in diabetes. Invest Ophthalmol Vis Sci. 2005;46:2210–8.PubMedCrossRefGoogle Scholar
  133. 133.
    Mathews CE, Langley SH, Leiter EH. New mouse model to study islet transplantation in insulin-dependent diabetes mellitus. Transplantation. 2002;73:1333–6.PubMedCrossRefGoogle Scholar
  134. 134.
    Nemery B, Vanlommel S, Verbeken EK, Lauweryns JM, Demedts M. Lung injury induced by paraquat, hyperoxia and cobalt chloride: effects of ambroxol. Pulm Pharmacol. 1992;5:53–60.PubMedCrossRefGoogle Scholar
  135. 135.
    Yoshinaga T, Nakatome K, Nozaki J, Naitoh M, Hoseki J, Kubota H, et al. Proinsulin lacking the A7-B7 disulfide bond, Ins2Akita, tends to aggregate due to the exposed hydrophobic surface. Biol Chem. 2005;386:1077–85.PubMedCrossRefGoogle Scholar
  136. 136.
    Yoshioka M, Kayo T, Ikeda T, Koizumi A. A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes. 1997;46:887–94.PubMedCrossRefGoogle Scholar
  137. 137.
    Hong EG, Jung DY, Ko HJ, Zhang Z, Ma Z, Jun JY, et al. Nonobese, insulin-deficient Ins2Akita mice develop type 2 diabetes phenotypes including insulin resistance and cardiac remodeling. Am J Physiol Endocrinol Metab. 2007;293:E1687–96.PubMedCrossRefGoogle Scholar
  138. 138.
    Sato A, Kawano H, Notsu T, Ohta M, Nakakuki M, Mizuguchi K, et al. Antiobesity effect of eicosapentaenoic acid in high-fat/high-sucrose diet-induced obesity: importance of hepatic lipogenesis. Diabetes. 2010;59:2495–504.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Satapathy SK, Ochani M, Dancho M, Hudson LK, Rosas-Ballina M, Valdes-Ferrer SI, et al. Galantamine alleviates inflammation and other obesity-associated complications in high-fat diet-fed mice. Mol Med. 2011;17:599–606.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Speakman J, Hambly C, Mitchell S, Krol E. Animal models of obesity. Obes Rev. 2007;8 Suppl 1:55–61.PubMedCrossRefGoogle Scholar
  141. 141.
    Inui A. Obesity – a chronic health problem in cloned mice? Trends Pharmacol Sci. 2003;24:77–80.PubMedCrossRefGoogle Scholar
  142. 142.
    Diaz J, Warren L, Helfner L, Xue X, Chatterjee PK, Gupta M, et al. Obesity shifts house dust mite-induced airway cellular infiltration from eosinophils to macrophages: effects of glucocorticoid treatment. Immunol Res. 2015;63:197–208.PubMedCrossRefGoogle Scholar
  143. 143.
    Rossmeisl M, Rim JS, Koza RA, Kozak LP. Variation in type 2 diabetes – related traits in mouse strains susceptible to diet-induced obesity. Diabetes. 2003;52:1958–66.PubMedCrossRefGoogle Scholar
  144. 144.
    Wang CY, Liao JK. A mouse model of diet-induced obesity and insulin resistance. Methods Mol Biol. 2012;821:421–33. doi:10.1007/978-1-61779-430-8_27.:421-33.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Collins S, Martin TL, Surwit RS, Robidoux J. Genetic vulnerability to diet-induced obesity in the C57BL/6J mouse: physiological and molecular characteristics. Physiol Behav. 2004;81:243–8.PubMedCrossRefGoogle Scholar
  146. 146.
    Begin-Heick N. Of mice and women: the beta 3-adrenergic receptor leptin and obesity. Biochem Cell Biol. 1996;74:615–22.PubMedCrossRefGoogle Scholar
  147. 147.
    Pettersson US, Walden TB, Carlsson PO, Jansson L, Phillipson M. Female mice are protected against high-fat diet induced metabolic syndrome and increase the regulatory T cell population in adipose tissue. PLoS One. 2012;7:e46057.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Shi H, Clegg DJ. Sex differences in the regulation of body weight. Physiol Behav. 2009;97:199–204.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Saito K, Cao X, He Y, Xu Y. Progress in the molecular understanding of central regulation of body weight by estrogens. Obesity. 2015;23:919–26.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Rachon D, Teede H. Ovarian function and obesity – interrelationship, impact on women’s reproductive lifespan and treatment options. Mol Cell Endocrinol. 2010;316:172–9.PubMedCrossRefGoogle Scholar
  151. 151.
    Dahlman I, Vaxillaire M, Nilsson M, Lecoeur C, Gu HF, Cavalcanti-Proenca C, et al. Estrogen receptor alpha gene variants associate with type 2 diabetes and fasting plasma glucose. Pharmacogenet Genomics. 2008;18:967–75.PubMedCrossRefGoogle Scholar
  152. 152.
    Gonet AE, Stauffacher W, Pictet R, Renold AE. Obesity and diabetes mellitus with striking congenital hyperplasia of the islets of langerhans in spiny mice (Acomys cahirinus): I. Histological findings and preliminary metabolic observations. Diabetologia. 1966;1:162–71.PubMedCrossRefGoogle Scholar
  153. 153.
    Shafrir E, Ziv E, Kalman R. Nutritionally induced diabetes in desert rodents as models of type 2 diabetes: Acomys cahirinus (spiny mice) and Psammomys obesus (desert gerbil). ILAR J. 2006;47:212–24.PubMedCrossRefGoogle Scholar
  154. 154.
    Ziv E, Kalman R, Hershkop K, Barash V, Shafrir E, Bar-On H. Insulin resistance in the NIDDM model Psammomys obesus in the normoglycaemic, normoinsulinaemic state. Diabetologia. 1996;39:1269–75.PubMedCrossRefGoogle Scholar
  155. 155.
    Barnett M, Collier GR, Collier FM, Zimmet P, O’Dea K. A cross-sectional and short-term longitudinal characterisation of NIDDM in Psammomys obesus. Diabetologia. 1994;37:671–6.PubMedCrossRefGoogle Scholar
  156. 156.
    Walder KR, Fahey RP, Morton GJ, Zimmet PZ, Collier GR. Characterization of obesity phenotypes in Psammomys obesus (Israeli sand rats). Int J Exp Diabetes Res. 2000;1:177–84.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Kanety H, Moshe S, Shafrir E, Lunenfeld B, Karasik A. Hyperinsulinemia induces a reversible impairment in insulin receptor function leading to diabetes in the sand rat model of non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A. 1994;91:1853–7.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Shafrir E, Ziv E. Cellular mechanism of nutritionally induced insulin resistance: the desert rodent Psammomys obesus and other animals in which insulin resistance leads to detrimental outcome. J Basic Clin Physiol Pharmacol. 1998;9:347–85.PubMedCrossRefGoogle Scholar
  159. 159.
    Refinetti R. The Nile grass rat as a laboratory animal. Lab Anim. 2004;33:54–7.CrossRefGoogle Scholar
  160. 160.
    Blanchong JA, McElhinny TL, Mahoney MM, Smale L. Nocturnal and diurnal rhythms in the unstriped Nile rat, Arvicanthis niloticus. J Biol Rhythms. 1999;14:364–77.PubMedCrossRefGoogle Scholar
  161. 161.
    Noda K, Melhorn MI, Zandi S, Frimmel S, Tayyari F, Hisatomi T, et al. An animal model of spontaneous metabolic syndrome: Nile grass rat. FASEB J. 2010;24:2443–53.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Noda K, Nakao S, Zandi S, Sun D, Hayes KC, Hafezi-Moghadam A. Retinopathy in a novel model of metabolic syndrome and type 2 diabetes: new insight on the inflammatory paradigm. FASEB J. 2014;28:2038–46.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Srinivas NR. Strategies for preclinical pharmacokinetic investigation in streptozotocin-induced diabetes mellitus (DMIS) and alloxan-induced diabetes mellitus (DMIA) rat models: case studies and perspectives. Eur J Drug Metab Pharmacokinet. 2015;40:1–12.PubMedCrossRefGoogle Scholar
  164. 164.
    Bonner-Weir S, Trent DF, Honey RN, Weir GC. Responses of neonatal rat islets to streptozotocin: limited B-cell regeneration and hyperglycemia. Diabetes. 1981;30:64–9.PubMedCrossRefGoogle Scholar
  165. 165.
    Blondel O, Bailbe D, Portha B. Relation of insulin deficiency to impaired insulin action in NIDDM adult rats given streptozocin as neonates. Diabetes. 1989;38:610–7.PubMedCrossRefGoogle Scholar
  166. 166.
    Leahy JL, Bonner-Weir S, Weir GC. Minimal chronic hyperglycemia is a critical determinant of impaired insulin secretion after an incomplete pancreatectomy. J Clin Invest. 1988;81:1407–14.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Bonner-Weir S, Trent DF, Weir GC. Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J Clin Invest. 1983;71:1544–53.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Wang RN, Kloppel G, Bouwens L. Duct- to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats. Diabetologia. 1995;38:1405–11.PubMedCrossRefGoogle Scholar
  169. 169.
    DeSisto CL, Kim SY, Sharma AJ. Prevalence estimates of gestational diabetes mellitus in the United States, Pregnancy Risk Assessment Monitoring System (PRAMS), 2007–2010. Prev Chronic Dis. 2014;11:E104. doi:10.5888/pcd11.130415.:E104.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Cheung NW, Byth K. Population health significance of gestational diabetes. Diabetes Care. 2003;26:2005–9.PubMedCrossRefGoogle Scholar
  171. 171.
    Dabelea D, Mayer-Davis EJ, Lamichhane AP, D’Agostino Jr RB, Liese AD, Vehik KS, et al. Association of intrauterine exposure to maternal diabetes and obesity with type 2 diabetes in youth: the SEARCH Case–control Study. Diabetes Care. 2008;31:1422–6.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Pereira TJ, Moyce BL, Kereliuk SM, Dolinsky VW. Influence of maternal overnutrition and gestational diabetes on the programming of metabolic health outcomes in the offspring: experimental evidence. Biochem Cell Biol. 2014;19:1–14.Google Scholar
  173. 173.
    Pasek RC, Gannon M. Advancements and challenges in generating accurate animal models of gestational diabetes mellitus. Am J Physiol Endocrinol Metab. 2013;305:E1327–38.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Liang C, DeCourcy K, Prater MR. High-saturated-fat diet induces gestational diabetes and placental vasculopathy in C57BL/6 mice. Metabolism. 2010;59:943–50.PubMedCrossRefGoogle Scholar
  175. 175.
    Holemans K, Caluwaerts S, Poston L, Van Assche FA. Diet-induced obesity in the rat: a model for gestational diabetes mellitus. Am J Obstet Gynecol. 2004;190:858–65.PubMedCrossRefGoogle Scholar
  176. 176.
    Van Mieghem T, van Bree R, Van Herck E, Deprest J, Verhaeghe J. Insulin-like growth factor-II regulates maternal hemodynamic adaptation to pregnancy in rats. Am J Physiol Regul Integr Comp Physiol. 2009;297:R1615–21.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Couvreur O, Ferezou J, Gripois D, Serougne C, Crepin D, Aubourg A, et al. Unexpected long-term protection of adult offspring born to high-fat fed dams against obesity induced by a sucrose-rich diet. PLoS One. 2011;6:e18043.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Tufino C, Villanueva-Lopez C, Ibarra-Barajas M, Bracho-Valdes I, Bobadilla-Lugo RA. Experimental gestational diabetes mellitus induces blunted vasoconstriction and functional changes in the rat aorta. Biomed Res Int. 2014;2014:329634. doi:10.1155/2014/329634. Epub 28 Dec 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Desai N, Roman A, Rochelson B, Gupta M, Xue X, Chatterjee PK, et al. Maternal metformin treatment decreases fetal inflammation in a rat model of obesity and metabolic syndrome. Am J Obstet Gynecol. 2013;209:136–9.PubMedCrossRefGoogle Scholar
  180. 180.
    Accili D, Drago J, Lee EJ, Johnson MD, Cool MH, Salvatore P, et al. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat Genet. 1996;12:106–9.PubMedCrossRefGoogle Scholar
  181. 181.
    Tamemoto H, Kadowaki T, Tobe K, Yagi T, Sakura H, Hayakawa T, et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature. 1994;372:182–6.PubMedCrossRefGoogle Scholar
  182. 182.
    Rees DA, Alcolado JC. Animal models of diabetes mellitus. Diabet Med. 2005;22:359–70.PubMedCrossRefGoogle Scholar
  183. 183.
    Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren JM, Previs S, et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature. 1998;391:900–4.PubMedCrossRefGoogle Scholar
  184. 184.
    Scrocchi LA, Brown TJ, MaClusky N, Brubaker PL, Auerbach AB, Joyner AL, et al. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat Med. 1996;2:1254–8.PubMedCrossRefGoogle Scholar
  185. 185.
    Lee Y, Berglund ED, Wang MY, Fu X, Yu X, Charron MJ, et al. Metabolic manifestations of insulin deficiency do not occur without glucagon action. Proc Natl Acad Sci U S A. 2012;109:14972–6.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Nagy A. Cre recombinase: the universal reagent for genome tailoring. Genesis. 2000;26:99–109.PubMedCrossRefGoogle Scholar
  187. 187.
    Schwartz MW, Guyenet SJ, Cirulli V. The hypothalamus and ss-cell connection in the gene-targeting era. Diabetes. 2010;59:2991–3.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Magnuson MA, Osipovich AB. Pancreas-specific Cre driver lines and considerations for their prudent use. Cell Metab. 2013;18:9–20.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Bruning JC, Michael MD, Winnay JN, Hayashi T, Horsch D, Accili D, et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell. 1998;2:559–69.PubMedCrossRefGoogle Scholar
  190. 190.
    Kulkarni RN, Bruning JC, Winnay JN, Postic C, Magnuson MA, Kahn CR. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell. 1999;96:329–39.PubMedCrossRefGoogle Scholar
  191. 191.
    Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, et al. Role of brain insulin receptor in control of body weight and reproduction. Science. 2000;289:2122–5.PubMedCrossRefGoogle Scholar
  192. 192.
    Guerra C, Navarro P, Valverde AM, Arribas M, Bruning J, Kozak LP, et al. Brown adipose tissue-specific insulin receptor knockout shows diabetic phenotype without insulin resistance. J Clin Invest. 2001;108:1205–13.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Nir T, Melton DA, Dor Y. Recovery from diabetes in mice by beta cell regeneration. J Clin Invest. 2007;117:2553–61.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Wang ZV, Mu J, Schraw TD, Gautron L, Elmquist JK, Zhang BB, et al. PANIC-ATTAC: a mouse model for inducible and reversible beta-cell ablation. Diabetes. 2008;57:2137–48.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Herrera PL. Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development. 2000;127:2317–22.PubMedGoogle Scholar
  196. 196.
    Collombat P, Xu X, Ravassard P, Sosa-Pineda B, Dussaud S, Billestrup N, et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell. 2009;138:449–62.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Liu Z, Habener JF. Alpha cells beget beta cells. Cell. 2009;138:424–6.PubMedCrossRefGoogle Scholar
  198. 198.
    Deisseroth K. Optogenetics. Nat Methods. 2011;8:26–9.PubMedCrossRefGoogle Scholar
  199. 199.
    Allen BD, Singer AC, Boyden ES. Principles of designing interpretable optogenetic behavior experiments. Learn Mem. 2015;22:232–8.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Zhao S, Ting JT, Atallah HE, Qiu L, Tan J, Gloss B, et al. Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods. 2011;8:745–52.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Kushibiki T, Okawa S, Hirasawa T, Ishihara M. Optogenetic control of insulin secretion by pancreatic beta-cells in vitro and in vivo. Gene Ther. 2015;22:553–9.PubMedCrossRefGoogle Scholar
  202. 202.
    Ye H, Daoud-El Baba M, Peng RW, Fussenegger M. A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science. 2011;332:1565–8.PubMedCrossRefGoogle Scholar
  203. 203.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32:347–55.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Pelletier S, Gingras S, Green DR. Mouse genome engineering via CRISPR-Cas9 for study of immune function. Immunity. 2015;42:18–27.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Bao D, Ma Y, Zhang X, Guan F, Chen W, Gao K, et al. Preliminary characterization of a leptin receptor knockout rat created by CRISPR/Cas9 system. Sci Rep. 2015;5:15942.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex – linking immunity and metabolism. Nat Rev Endocrinol. 2012;8:743–54.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Scherer T, Lindtner C, Zielinski E, O’Hare J, Filatova N, Buettner C. Short term voluntary overfeeding disrupts brain insulin control of adipose tissue lipolysis. J Biol Chem. 2012;287:33061–9.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Shin AC, Fasshauer M, Filatova N, Grundell LA, Zielinski E, Zhou JY, et al. Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism. Cell Metab. 2014;20:898–909.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Christine N. Metz
    • 1
    • 2
  • LaQueta K. Hudson
    • 2
    • 3
  • Valentin A. Pavlov
    • 2
    • 3
    • 4
    Email author
  1. 1.Laboratory of Medicinal BiochemistryThe Feinstein Institute for Medical Research, Northwell HealthManhassetUSA
  2. 2.Hofstra Northwell School of MedicineHempsteadUSA
  3. 3.Laboratory of Biomedical ScienceThe Feinstein Institute for Medical Research, Northwell HealthManhassetUSA
  4. 4.Department of Molecular MedicineHofstra Northwell School of MedicineNew YorkUSA

Personalised recommendations