Skip to main content

Global Biodiversity in Cold-Water Coral Reef Ecosystems

  • Living reference work entry
  • First Online:
Book cover Marine Animal Forests

Abstract

Over half of all scleractinian coral species inhabit ocean depths greater than 50 m, some of which are capable of constructing reefs tens of kilometers long and hundreds of meters high. The biodiversity of life found on these cold-water coral reefs is astounding yet remarkable since, in contrast to the photic and mesophotic zones, so few coral species actually create a framework matrix at these depths. In light of rapid climate change and unprecedented rates of anthropogenic disturbance, it is urgent we understand how biodiversity in the depths of our oceans is coupled to the persistence of these habitats. We provide a synthetic overview of animal biodiversity associated with major reef framework-forming species, discussing this with respect to global trends in species diversity, composition, and regional species pools, large knowledge gaps, and also the frontiers in technology that cold-water coral science is adopting to help address these gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Beuck L, Vertino A, Stepina E, Karolczak M, Pfannkuche O. Skeletal response of Lophelia pertusa (Scleractinia) to bioeroding sponge infestation visualized with micro-computed tomography. Facies. 2007;53:157–76.

    Article  Google Scholar 

  • Biber MF, Duineveld GCA, Lavaleye MSS, Davies AJ, Bergman MJN, van den Beld IMJ. Investigating the association of fish abundance and biomass with cold-water corals in the deep Northeast Atlantic Ocean using a generalised linear modelling approach. Deep-Sea Res II. 2013;99:134–45.

    Article  Google Scholar 

  • Bongiorni L, Mea M, Gambi C, Pusceddu A, Taviani M, Danovaro R. Deep-water scleractinian corals promote higher biodiversity in deep-sea meiofaunal assemblages along continental margins. Biol Conserv. 2010;143:1687–700.

    Article  Google Scholar 

  • Cathalot C, Van Oevelen D, Cox TJS, Kutti T, Lavaleye M, Duineveld G, Meysman FJR. Cold-water coral reefs and adjacent sponge grounds: hotspots of benthic respiration and organic carbon cycling in the deep sea. Front Mar Sci. 2015;2:37.

    Article  Google Scholar 

  • Cordes EE, McGinley MP, Podowski EL, Becker EL, Lessard-Pilon S, Viada ST, Fisher CR. Coral communities of the deep Gulf of Mexico. Deep-Sea Res I. 2008;55:777–87.

    Article  Google Scholar 

  • D’Onghia G, Maiorano P, Sion L, Giove A, Capezzuto F, Carlucci R, Tursi A. Effects of deep-water coral banks on the abundance and size structure of the megafauna in the Mediterranean Sea. Deep-Sea Res II. 2010;57:397–411.

    Article  Google Scholar 

  • D’Onghia G, Maiorano P, Carlucci R, Capezzuto F, Carluccio A, Tursi A, Sion L. Comparing deep-sea fish fauna between coral and non-coral “megahabitats” in the Santa Maria di Leuca cold-water coral province (Mediterranean Sea). PLoS One. 2012;7:e44509.

    Article  PubMed  PubMed Central  Google Scholar 

  • Doonan IJ, Fu D, Dunn MR. Harvest control rules for a sustainable orange roughy fishery. Deep-Sea Res I. 2015;98:53–61.

    Article  Google Scholar 

  • Eiler JH, Grothue TM, Dobarro JA, Masuda MM. Comparing autonomous underwater vehicle (AUV) and vessel-based tracking performance for locating acoustically tagged fish. Mar Fish Rev. 2013;75:27–42.

    Article  Google Scholar 

  • Flögel S, Dullo W-C, Pfannkuche O, Kiriakoulakis K, Rüggeberg A. Geochemical and physical constraints for the occurrence of living cold-water corals. Deep-Sea Res II. 2014;99:19–26.

    Article  Google Scholar 

  • Gheerardyn H, De Troch M, Vincx M, Vanreusel A. Diversity and community structure of harpacticoid copepods associated with cold-water coral substrates in the Porcupine Seabight (North-East Atlantic). Helgol Mar Res. 2010;64:53–62.

    Article  Google Scholar 

  • Guardiola M, Uriz MJ, Taberlet P, Coissac E, Wangensteen OS, Turon X. Deep-sea, deep-sequencing: metabarcoding extracellular DNA from sediments of marine canyons. PLoS ONE. 2015;10:e0139633.

    Article  PubMed  PubMed Central  Google Scholar 

  • Henry L-A, Roberts JM. Biodiversity and ecological composition of macrobenthos on cold-water coral mounds and adjacent off-mound habitat in the bathyal Porcupine Seabight, NE Atlantic. Deep-Sea Res I. 2007;54:654–72.

    Article  Google Scholar 

  • Henry L-A, Nizinski MS, Ross SW. Occurrence and biogeography of hydroids (Cnidaria: Hydrozoa) from deep-water coral habitats off the southeastern United States. Deep-Sea Res I. 2008;55:788–800.

    Article  Google Scholar 

  • Henry L-A, Moreno Navas J, Roberts JM. Multi-scale interactions between local hydrography, seabed topography, and community assembly on cold-water coral reefs. Biogeosciences. 2013a;10:2737–46.

    Article  Google Scholar 

  • Henry L-A, Moreno Navas J, Hennige S, Wicks LC, Vad J, Roberts JM. Cold-water coral reef habitats benefit recreationally valuable sharks. Biol Conserv. 2013b;161:67–70.

    Article  Google Scholar 

  • Henry L-A, Frank N, Hebbeln D, Wienberg C, Robinson L, van de Flierdt T, Dahl M, Douarin M, Morrison CL, López Correa M, Rogers AD, Ruckelshausen M, Roberts JM. Global ocean conveyor lowers extinction risk in the deep sea. Deep-Sea Res I. 2014a;88:8–16.

    Article  CAS  Google Scholar 

  • Henry L-A, Vad J, Findlay HS, Murillo J, Milligan R, Roberts JM. Environmental variability and biodiversity of megabenthos on the Hebrides Terrace Seamount (Northeast Atlantic). Nat Sci Rep. 2014b;4:5589.

    CAS  Google Scholar 

  • Herrera Monroy S. Evolutionary and ecological genomics in deep-sea organisms. Ph.D thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institute February. 2015.

    Google Scholar 

  • Husebø A, Nottestad L, Fosså JH, Furevik DM, Jorgensen SB. Distribution and abundance of fish in deep-sea coral habitats. Hydrobiologia. 2002;471:91–9.

    Article  Google Scholar 

  • Kutti T, Bergstad OA, Fosså JH, Helle K. Cold-water coral mounds and sponge-beds as habitats for demersal fish on the Norwegian shelf. Deep-Sea Res II. 2014;99:122–33.

    Article  Google Scholar 

  • Lavaleye M, Duineveld G, Bergman M, Ven den Beld I. Long-term baited lander experiments at a cold-water coral community on Galway Mound (Belgica Mound Province, NE Atlantic). Deep-Sea Res II. 2015. doi:10.1016/j.dsr2.2015.12.014.

    Google Scholar 

  • Lessard-Pilon SA, Podowski EL, Cordes EE, Fisher CR. Megafauna community composition associated with Lophelia pertusa colonies in the Gulf of Mexico. Deep-Sea Res II Top Stud Oceanogr. 2010;57:1882–90.

    Article  Google Scholar 

  • Linley TD, Lavaleye M, Maiorano P, Bergman M, Capezzuto F, Cousins NJ, D’Onghia G, Duineveld G, Shields MA, Sion L, Tursi A, Priede IG. Effects of cold-water corals on fish diversity and density (European continental margin: Arctic, NE Atlantic and Mediterranean Sea): data from three baited lander systems. Deep-Sea Res II. 2015. doi:10.1016/j.dsr2.2015.12.003.

    Google Scholar 

  • Lopes DA, Hajdu E. Carnivorous sponges from deep-sea coral mounds in the Campos Basin (SW Atlantic), with the description of six new species (Cladorhizidae, Poecilosclerida, Demospongiae). Mar Biol Res. 2014;10:329–56.

    Article  Google Scholar 

  • Mortensen PB, Fosså JH. Species diversity and spatial distribution of invertebrates on deep-water Lophelia reefs in Norway. In: Proceedings of 10th international coral reef symposium, Okinawa, Japan. 2006. p. 1849–68.

    Google Scholar 

  • Purser A, Bergmann M, Lundälv T, Ontrup J, Nattkemper TW. Use of machine-learning algorithms for the automated detection of cold-water coral habitats: a pilot study. Mar Ecol Prog Ser. 2009;397:241–51.

    Article  Google Scholar 

  • Purser A, Thomsen L, Barnes C, Best M, Chapman R, Hofbauer M, Menzel M, Wagner H. Temporal and spatial benthic data collection via an internet operated Deep Sea Crawler. Methods Oceanogr. 2013a;5:1–18.

    Article  Google Scholar 

  • Purser A, Orejas C, Gori A, Tong R, Unnithan V, Thomsen L. Local variation in the distribution of benthic megafauna species associated with cold-water coral reefs on the Norwegian margin. Cont Shelf Res. 2013b;54:37–51.

    Article  Google Scholar 

  • Quattrini AM, Partyka ML, Ross SW. Aspects of the reproductive biology of the skate Fenestraja plutonia (Garman) off North Carolina. Southeast Nat. 2009;8:55–70.

    Article  Google Scholar 

  • Raddatz J, Rüggeberg A, Margreth S, Dullo W-C, Expedition, IODP. Paleoenvironmental reconstruction of Challenger Mound initiation in the Porcupine Seabight, NE Atlantic. Mar Geol. 2011;282:79–90.

    Article  CAS  Google Scholar 

  • Raes M, Vanreusel A. Microhabitat type determines the composition of nematode communities associated with sediment-clogged cold-water coral framework in the Porcupine Seabight (NE Atlantic). Deep-Sea Res I. 2006;53:1880–94.

    Article  Google Scholar 

  • Reveillaud J, Remerie T, van Soest R, Erpenbeck D, Cárdenas P, Derycke S, Xavier JR, Rigaux A, Vanreusel A. Species boundaries and phylogenetic relationships between Atlanto-Mediterranean shallow-water and deep-sea coral associated Hexadella species (Porifera, Ianthellidae). Mol Phylogenet Evol. 2010;56:104–14.

    Article  PubMed  Google Scholar 

  • Reveillaud J, van Soest R, Derycke S, Picton B, Rigaux A, Vanreusel A. Phylogenetic relationships among NE Atlantic Plocamionida Topsent (1927) (Porifera, Poecilosclerida): under-estimated diversity in reef ecosystems. PLoS One. 2011;6:e16533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice J, Gjerde KM, Ardron J, Arico S, Cresswell I, Escobar E, Grant S, Vierros M. Policy relevance of biogeographic classification for conservation and management of marine biodiversity beyond national jurisdiction, and the GOODS biogeographic classification. Ocean Coast Manag. 2011;54:110–22.

    Article  Google Scholar 

  • Roberts JM, Cairns SD. Cold-water corals in a changing ocean. Curr Opin Environ Sustain. 2014;7:118–26.

    Article  Google Scholar 

  • Roberts JM, Peppe OC, Dodds LA, Mercer DJ, Thomson WT, Gage JD, Meldrum DT. Monitoring environmental variability around cold-water coral reefs: the use of a benthic photolander and the potential of seafloor observatories. In: Freiwald A, Roberts JM, editors. Cold-water corals and ecosystems. Berlin/Heidelberg: Springer; 2005. p. 483–502.

    Chapter  Google Scholar 

  • Roberts JM, Wheeler A, Freiwald A, Cairns S. Cold-water corals. Cambridge: Cambridge University Press; 2009.

    Book  Google Scholar 

  • Ross SW, Rhode M, Quattrini AM. Demersal fish distribution and habitat use within and near Baltimore and Norfolk Canyons, U.S. middle Atlantic slope. Deep-Sea Res I. 2015;103:137–54.

    Article  Google Scholar 

  • Rovelli L, Attard KM, Bryant LD, Flögel S, Stahl H, Roberts JM, Linke P, Glud RN. Benthic O2 uptake of two cold-water coral communities estimated with the non-invasive eddy correlation technique. Mar Ecol Prog Ser. 2015;525:97–104.

    Article  Google Scholar 

  • Stevenson A, Mitchell FJG, Davies JS. Predation has no competition: factors influencing space and resource use by echinoids in deep-sea coral habitats, as evidenced by continuous video transects. Mar Ecol. 2014. doi:10.1111/maec.12245.

    Google Scholar 

  • Stramma L, Prince ED, Schmidtko S, Luo J, Hoolihan JP, Visbeck M, Wallace DWR, Brandt P, Körtzinger A. Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nat Clim Chang. 2012;2:33–7.

    Article  CAS  Google Scholar 

  • Thresher R, Althaus F, Adkins J, Gowlett-Holmes K, Alderslade P, Dowdney J, Cho W, Gagnon A, Staples D, McEnnulty F, Williams A. Strong depth-related zonation of megabenthos on a rocky continental margin (~700–4000 m) off southern Tasmania, Australia. PLoS One. 2014;9:e85872.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Oevelen D, Duineveld G, Lavaleye M, Mienis F, Soetaert K, Heip CHR. The cold-water coral community as a hot spot for carbon cycling on continental margins: a food-web analysis from Rockall Bank (northeast Atlantic). Limnol Oceanogr. 2009;54:1829–44.

    Article  Google Scholar 

  • van Soest RWM, Beglinger EJ. New bioeroding sponges from Mingulay coldwater reefs, north-west Scotland. J Mar Biol Assoc UK. 2009;89:329–35.

    Article  Google Scholar 

  • van Soest RWM, de Voogd N. Sponge species composition of north-east Atlantic cold-water coral reefs compared in a bathyal to inshore gradient. J Mar Biol Assoc UK. 2013. doi:10.1017/S0025315413001410.

    Google Scholar 

  • Wisshak M, Schönberg CHL, Form A, Freiwald A. Sponge bioerosion accelerated by ocean acidification across species and latitudes? Helgol Mar Res. 2014;68:253–62.

    Article  Google Scholar 

  • Wynn RB, Huvenne VAI, Le Bas TP, Murton BJ, Connelly DP, Bett BJ, Ruhl HA, Morris KJ, Peakall J, Parsons DR, Sumner EJ, Darby SE, Dorrell RM, Hunt JE. Autonomous underwater vehicles (AUVs): their past, present and future contributions to the advancement of marine geoscience. Mar Geol. 2014;352:451–68.

    Article  Google Scholar 

Download references

Acknowledgments

This work builds upon several projects including the European Union Marie Curie fellowships ECCRE (Contract no. 002469) and TRACES (MOIF-CT-2006–040018). The authors acknowledge the recent UK Ocean Acidification programme (Natural Environment Research Council grant NE/H017305/1) and on-going NERC projects (grants NE/M007235/1 and NE/J021121/1). Further thanks are due to the captain and crew of the RRS James Cook for assistance at sea and to Marta Mellado-Silva, Claudia Wienberg, and Dierk Hebbeln at MARUM, and Di Tracey and Malcolm Clark at NIWA for images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lea-Anne Henry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Henry, LA., Roberts, J.M. (2016). Global Biodiversity in Cold-Water Coral Reef Ecosystems. In: Rossi, S., Bramanti, L., Gori, A., Orejas Saco del Valle, C. (eds) Marine Animal Forests. Springer, Cham. https://doi.org/10.1007/978-3-319-17001-5_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17001-5_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-17001-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics