Skip to main content

Symbiotic Versus Non-symbiotic Octocorals: Physiological and Ecological Implications

  • Living reference work entry
  • First Online:
Book cover Marine Animal Forests

Abstract

Octocorals are a major component of the sessile benthic fauna worldwide, especially important in tropical regions, such as the Indo-Pacific and Caribbean, where together with hard corals they represent the most common group of macrobenthic animals of coral reefs. Despite their importance, little is known about their physiology, specifically the importance of their symbiotic relationship with the algal endosymbiont from the genus Symbiodinium, and the advantages/disadvantages associated with this symbiosis. In symbiotic species, the energetic contribution from Symbiodinium to the host might increase their resistance and/or recovery from stressful conditions, but the presence of these algal endosymbionts also limits octocoral distribution to the photic zone, where light is available. During the past few decades, octocorals have gained dominance in some tropical areas where scleractinian corals have declined due to climate change and local perturbations, increasing the need for research related to this understudied group. This chapter summarizes the current knowledge available about the ecology and physiology of octocorals, focusing on differences that are the result of the presence or absence of endosymbionts, and discusses the implications of having endosymbionts in the context of how octocorals may respond to global climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Al-Zibdah MK, Damhoureyeh SA, Badran MI. Temporal variations in coral reef health at a coastal industrial site on the Gulf of Aqaba, Red Sea. Oceanologia. 2007;49:565–78.

    Google Scholar 

  • Andras JP, Kirk NL, Harvell CD. Range-wide population genetic structure of Symbiodinium associated with the Caribbean Sea fan coral, Gorgonia ventalina. Mol Ecol. 2011;20:2525–42.

    Article  PubMed  Google Scholar 

  • Baird AH, Guest JR, Willis BL. Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu Rev Ecol Evol Syst. 2009;40:551–71.

    Article  Google Scholar 

  • Baker AC, Romanski AM. Multiple symbiotic partnerships are common in scleractinian corals, but not in octocorals: comment on Goulet (2006). Mar Ecol Prog Ser. 2007;335:237–42.

    Article  Google Scholar 

  • Barneah O, Weis VM, Perez S, Benayahu Y. Diversity of dinoflagellate symbionts in Red Sea soft corals: mode of symbiont acquisition matters. Mar Ecol Prog Ser. 2004;275:89–95.

    Article  CAS  Google Scholar 

  • Baum G, Januar HI, Ferse SCA, Kunzmann A. Local and regional impacts of pollution on coral reefs along the thousand islands north of the megacity Jakarta, Indonesia. PLoS One. 2015;10:e0138271.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bednarz VN, Cardini U, van Hoytema N, Al-Rshaidat MMD, Wild C. Seasonal variation in dinitrogen fixation and oxygen fluxes associated with two dominant zooxanthellate soft corals from the northern Red Sea. Mar Ecol Prog Ser. 2015;519:141–52.

    Article  Google Scholar 

  • Benayahu Y, Yosief T, Schleyer MH. Soft corals (Octocorallia, Alcyonacea) of the southern Red Sea. Israel J Zool. 2002;48:273–83.

    Article  Google Scholar 

  • Ben-David-Zaslow R, Benayahu Y. Competence and longevity in planulae of several species of soft corals. Mar Ecol Prog Ser. 1998;163:235–43.

    Article  Google Scholar 

  • Brafield AE, Chapman G. The oxygen consumption of Pennatula rubra Ellis and some other anthozoans. Z Vergl Physiol. 1965;50:363–70.

    Article  Google Scholar 

  • Bramanti L, Movilla J, Guron M, Calvo E, Gori A, Dominguez-Carrió C, Grinyó J, Lopez-Sanz A, Martinez-Quintana A, Pelejero C, Ziveri P, Rossi S. Detrimental effects of ocean acidification on the economically important Mediterranean red coral (Corallium rubrum). Global Change Biol. 2012;19:1897–908.

    Google Scholar 

  • Brown D, Edmunds PJ. Differences in the responses of three scleractinians and the hydrocoral Millepora platyphylla to ocean acidification. Mar Biol. 2016;163:62.

    Article  Google Scholar 

  • Bruckner AW, Dempsey AC. The status, threats, and resilience of reef-building corals of the Saudi Arabian Red Sea. In: Rasul NMA, Stewart ICF, editors. The Red Sea. Berlin/Heidelberg: Springer; 2015.

    Google Scholar 

  • Buddemeier RW, Kleypas JA, Aronson RB. Coral reefs and global climate change. Potential contributions of climate change to stresses on coral reef ecosystems. Arlington: Pew Center on Global Climate Change; 2004.

    Google Scholar 

  • Celliers L, Schleyer MH. Coral bleaching on high-latitude marginal reefs at Sodwana Bay, South Africa. Mar Poll Bull. 2002;44:1380–7.

    Article  CAS  Google Scholar 

  • Coffroth MA, Santos SR, Goulet TL. Early ontogenetic expression of specificity in a cnidarian-algal symbiosis. Mar Ecol Prog Ser. 2001;222:85–96.

    Article  Google Scholar 

  • Coles SL, Looker E, Burt JA. Twenty-year changes in coral near Muscat, Oman estimated from manta board tow observations. Mar Environ Res. 2015;103:66–73.

    Article  CAS  PubMed  Google Scholar 

  • Coma R, Ribes M, Gili JM, Zabala M. An energetic approach to the study of life-history traits of two modular colonial benthic invertebrates. Mar Ecol Prog Ser. 1998;162:89–103.

    Article  Google Scholar 

  • Coma R, Ribes M, Gili JM, Zabala M. Seasonality of in situ respiration rate in three temperate benthic suspension feeders. Limnol Oceanogr. 2002;47:324–31.

    Article  Google Scholar 

  • Dai C-F, Lin MC. The effects of flow on feeding of three gorgonians from southern Taiwan. J Exp Mar Biol Ecol. 1993;173:57–69.

    Article  Google Scholar 

  • Douglas AE. Host benefit and the evolution of specialization in symbiosis. Heredity. 1998;81:599–603.

    Article  Google Scholar 

  • Enríquez S, Méndez ER, Iglesias-Prieto R. Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr. 2005;50(4):1025–32.

    Article  Google Scholar 

  • Ezzat L, Merle P-L, Furla P, Buttler A, Ferrier-Pagès C. The response of the Mediterranean gorgonian Eunicella singularis to thermal stress is independent of its nutritional regime. PLoS One. 2013;8:e64370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabricius KE, Klumpp DW. Widespread mixotrophy in reef-inhabiting soft corals: the influence of depth, and colony expansion and contraction on photosynthesis. Mar Ecol Prog Ser. 1995;25:195–204.

    Article  Google Scholar 

  • Fabricius KE, McCorry D. Changes in octocoral communities and benthic cover along a water quality gradient in the reefs of Hong Kong. Mar Poll Bull. 2006;2:22–33.

    Article  Google Scholar 

  • Fabricius KE, Genin A, Benayahu Y. Flow-dependent herbivory and growth in zooxanthellae-free soft corals. Limnol Oceanogr. 1995;40(7):1290–301.

    Article  Google Scholar 

  • Farrant PA, Borowitzka MA, Hinde R, King RJ. Nutrition of the temperate Australian soft coral Capnella gabonensis. II. The role of zooxanthellae and feeding. Mar Biol. 1987;95:575–81.

    Article  Google Scholar 

  • Fay SA, Weber MX. The occurrence of mixed infections of Symbiodinium (Dinoflagellata) within individual hosts. J Phycol. 2012;48:1306–16.

    Article  PubMed  Google Scholar 

  • Ferrier-Pagès C, Reynaud S, Béraud E, Rottier C, Menu D, Duong G, Gévaert F. Photophysiology and daily primary production of a temperate symbiotic gorgonian. Photosynth Res. 2015;123(1):95–104.

    Article  PubMed  Google Scholar 

  • Forcioli D, Merle P-L, Caligara C, Ciosi M, Muti C, Francour P, Cerrano C, Allemand D. Symbiont diversity is not involved in depth acclimation in the Mediterranean Sea whip Eunicella singularis. Mar Ecol Prog Ser. 2011;439:57–71.

    Article  Google Scholar 

  • Fox HE, Pet JS, Dahuri R, Caldwell RL. Recovery in rubble fields: long-term impacts of blast fishing. Mar Poll Bull. 2003;46:1024–31.

    Article  CAS  Google Scholar 

  • Franklin EC, Stat M, Pochon X, Putnam HM, Gates RD. GeoSymbio: a hybrid, cloud-based web application of global bioinformatics and ecoinformatics for Symbiodinium-host symbioses. Mol Ecol. 2012;12:369–73.

    Article  Google Scholar 

  • Gabay Y, Fine M, Barkay Z, Benayahu Y. Octocoral tissue provides protection from declining oceanic pH. PLoS One. 2014;9:e91553.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaither MR, Rowan R. Zooxanthellae symbiosis in planula larvae of the coral Pocillopora damicornis. J Exp Mar Biol Ecol. 2010;386(1–2):45–53.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldberg WM. The ecology of the coral-octocoral communities off the southeast Florida Coast: geomorphology, species composition and zonation. Bull Mar Sci. 1973;23(3):465–88.

    Google Scholar 

  • Gori A, Bramanti L, López-González PJ, Thoma JN, Gili JM, Grinyó J, Uceira V, Rossi S. Characterization of the zooxanthellate and azooxanthellate morphotypes of the Mediterranean gorgonian Eunicella singularis. Mar Biol. 2012a;159:1485–96.

    Article  Google Scholar 

  • Gori A, Viladrich N, Gili JM, Kotta M, Cucio C, Magni L, Bramanti L, Rossi S. Reproductive cycle and trophic ecology in deep versus shallow populations of the Mediterranean gorgonian Eunicella singularis (Cap de Creus, northwestern Mediterranean Sea). Coral Reefs. 2012b;31:823–37.

    Article  Google Scholar 

  • Goulet TL, Simmons C, Goulet D. Worldwide biogeography of Symbiodinium in tropical octocorals. Mar Ecol Prog Ser. 2008;355:45–58.

    Article  Google Scholar 

  • Grillo M-C, Goldberg WM, Allemand D. Skeleton and sclerite formation in the precious red coral Corallium rubrum. Mar Biol. 1993;117:119–28.

    Article  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE. Heterotrophic plasticity and resilience in bleached corals. Nature. 2006;440:1186–9.

    Article  CAS  PubMed  Google Scholar 

  • Harii S, Kayanne H, Takigawa H, Hayashibara T, Yamamoto T. Larval survivorship, competency periods and settlement of two brooding corals, Heliopora coerulea and Pocillopora damicornis. Mar Biol. 2002;141:39–46.

    Article  Google Scholar 

  • Hoffmann TC. Coral reef health and effects of socio-economic factors in Fiji and Cook Islands. Mar Poll Bull. 2002;44:1281–93.

    Article  CAS  Google Scholar 

  • Jeng M-S, Huang H-D, Dai C-F, Hsiao Y-C, Benayahu Y. Sclerite calcification and reef-building in the fleshy octocoral genus Sinularia (Octocorallia: Alcyonacea). Coral Reefs. 2011;30:925–33.

    Article  Google Scholar 

  • Jordán Dahlgren E. Gorgonian community structure and reef zonation patterns on Yucatan coral reefs. Bull Mar Sci. 1989;45(3):678–96.

    Google Scholar 

  • Kim E, Lasker HR, Coffroth MA, Kim K. Morphological and genetic variation across reef habitats in a broadcast-spawning octocoral. Hydrobiologia. 2004;530/531:423–32.

    Article  CAS  Google Scholar 

  • Kinzie III RA. The zonation of West Indian gorgonians. Bull Mar Sci. 1973;23(1):93–155.

    Google Scholar 

  • Kinzie III RA. Experimental infection of aposymbiotic gorgonian polyps with zooxanthellae. J Exp Mar Biol Ecol. 1974;15:335–45.

    Article  Google Scholar 

  • Kirk NL, Ware JR, Coffroth MA. Stable Symbiodinium composition in the sea fan Gorgonia ventalina during temperature and disease stress. Biol Bull. 2005;209:227–34.

    Article  PubMed  Google Scholar 

  • Kitahara MV, Cairns SD, Stolarski J, Blair D, Miller DJ. A comprehensive phylogenetic analysis of the scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data. PLoS One. 2010;5(7):e11490.

    Article  PubMed  PubMed Central  Google Scholar 

  • Konishi K. Alcyonarian spiculite: limestone of soft corals. In: Proceedings of the 4th International Coral Reef Symposium, Manila; 1981.

    Google Scholar 

  • Kremien M, Shavit U, Mass T, Genin A. Benefit of pulsation in soft corals. Proc Natl Acad Sci. 2013;110:8978–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lasker HR. A comparison of the particulate feeding abilities of three species of gorgonian soft coral. Mar Ecol Prog Ser. 1981;5:61–7.

    Article  Google Scholar 

  • Lasker HR. Light dependent activity patterns amonf reef corals: Montastraea cavernosa. Biol Bull. 1979;156:196–211.

    Google Scholar 

  • Lasker HR. Zooxanthella densities within a Caribbean octocoral during bleaching and non-bleaching years. Coral Reefs. 2003;22:23–6.

    Google Scholar 

  • Lasker HR, Gottfried MD, Coffroth MA. Effects of depth on the feeding capabilities of two octocorals. Mar Biol. 1983;73:73–8.

    Article  Google Scholar 

  • Lenz EA, Bramanti L, Lasker HR, Edmunds PJ. Long-term variation of octocoral populations in St. John, US Virgin Islands. Coral Reefs. 2015;34(4):1099–109.

    Article  Google Scholar 

  • Levy O, Mizrahi L, Chadwick-Furman NE, Achituv Y. Factors controlling the expansion behavior of Favia favus (Cnidaria: Scleractinia): effects of light, flow, and planktonic prey. Biol Bull. 2001;200:118–26.

    Article  CAS  PubMed  Google Scholar 

  • Lewis JB. Feeding behaviour and feeding ecology of the Octocorallia (Coelenterata: Anthozoa). J Zool Lond. 1982;196:371–84.

    Article  Google Scholar 

  • Lewis CL, Coffroth MA. The acquisition of exogenous algal symbionts by an octocoral after bleaching. Science. 2004;304:1490–2.

    Article  CAS  PubMed  Google Scholar 

  • Marshall PA, Baird AH. Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs. 2000;19:155–63.

    Article  Google Scholar 

  • Norström AV, Nyström M, Lokrantz J, Folke C. Alternative states on coral reefs: beyond coral–macroalgal phase shifts. Mar Ecol Prog Ser. 2009;376:295–306.

    Article  Google Scholar 

  • Porter JW. Heterotrophy and resource partitioning in Caribbean reef-building corals. Am Nat. 1976;110:731–42.

    Article  Google Scholar 

  • Prada C, Schizas NV, Yoshioka PM. Phenotypic plasticity or speciation? A case from a clonal marine organism. BMC Evol Biol. 2008;8:47–65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Previati M, Scinto A, Cerrano C, Osinga R. Oxygen consumption in Mediterranean octocorals under different temperatures. J Exp Mar Biol Ecol. 2010;390:39–48.

    Article  Google Scholar 

  • Ramsby BD, Shirur KP, Iglesias-Prieto R, Goulet TL. Symbiodinium photosynthesis in Caribbean octocorals. PLoS One. 2014;9(9):e106419.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reinicke GB, Kroll DK, Schuhmacher H. Patterns and changes of reef-coral communities at the Sanganeb-Atoll (Sudan, Central Red Sea): 1980–1991. Facies. 2003;49:271–98.

    Google Scholar 

  • Ribera D’Alcalá M, Conversano F, Corato F, Licandro P, Mangoni O, Marino D, Mazzocchi MG, Modigh M, Montresor M, Nardella M, Saggiomo V, Sarno D, Zingone A. Seasonal patterns in plankton communities in a pluriannual time series at a coastal Mediterranean site (Gulf of Naples): an attempt to discern recurrences and trends. Sci Mar. 2004;68:65–83.

    Article  Google Scholar 

  • Ribes M, Coma R, Gili JM. Heterotrophic feeding by gorgonian corals with symbiotic zooxanthella. Limnol Oceanogr. 1998;43:1170–9.

    Article  Google Scholar 

  • Ribes M, Coma R, Rossi S. Natural feeding of the temperate asymbiotic octocoral-gorgonian Leptogorgia sarmentosa (Cnidaria: Octocorallia). Mar Ecol Prog Ser. 2003;254:141–50.

    Article  CAS  Google Scholar 

  • Rossi S. Environmental factors affecting the trophic ecology of benthic suspension feeders. PhD thesis, University of Barcelona; 2002.

    Google Scholar 

  • Rowley SJ. Gorgonian responses to environmental change on coral reefs in SE Sulawesi. PhD thesis. http://hdl.handle.net/10063/3734. 2014.

  • Ruzicka RR, Colella MA, Porter JW, Morrison JM, Kidney JA, Brinkhuis V, Lunz KS, Macaulay KA, Bartlett LA, Meyers MK, Colee J. Temporal changes in benthic assemblages on Florida Keys reefs 11 years after the 1997/1998 El Niño. Mar Ecol Prog Ser. 2013;489:125–41.

    Article  Google Scholar 

  • Sánchez JA. Black coral-octocoral distribution patterns on Imelda bank, a deep-water reef, Colombia, Caribbean Sea. Bull Mar Sci. 1999;65(1):215–25.

    Google Scholar 

  • Santodomingo N, Reyes J, Flórez P, Chacón-Gómez IC, van Ofwegen LP, Hoeksema BW. Diversity and distribution of azooxanthellate corals in the Colombian Caribbean. Mar Biodivers. 2013;43:7–22.

    Article  Google Scholar 

  • Schlichter D, Svoboda A, Kremer BP. Functional autotrophy of Heteroxenia fuscescens (Anthozoa: Alcyonaria): carbon assimilation and translocation of photosynthates from symbionts to host. Mar Biol. 1983;78:29–38.

    Article  CAS  Google Scholar 

  • Schumacher H. Soft corals as reef builders. In: Proceedings of the 8th International Coral Reef Symposium, vol. 1; 1997. p. 499–502.

    Google Scholar 

  • Sebens KP, DeRiemer K. Diel cycles of expansion and contraction in coral reef anthozoans. Mar Biol. 1977;43:247–56.

    Article  Google Scholar 

  • Sorokin YI. Biomass, metabolic rates and feeding of some common reef zoanthiarians and octocorals. Austa J Mar Freshwat Res. 1991;42:729–41.

    Article  Google Scholar 

  • Sorokin YI. Morphology and ecological physiology of corals. In: Sorokin YI, editor. Coral Reef Ecology. Berlin/Heidelberg: Springer; 1995.

    Google Scholar 

  • Spiro BF. Ultrastructure and chemistry of the skeleton of Tubipora musica Linne. Med Fra Dansk Geol Forening. 1971;20:279–84.

    CAS  Google Scholar 

  • Stobart B, Teleki K, Buckley R, Downing N, Callow M. Coral recovery at Aldabra Atoll, Seychelles: five years after the 1998 bleaching event. Phil Trans Roy Soc A. 2005;363:251–5.

    Article  Google Scholar 

  • Stolarski J, Kitahara MV, Miller DJ, Cairns SD, Mazur M, Meiborn A. The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals. BMC Evol Biol. 2011;11:316.

    Article  PubMed  PubMed Central  Google Scholar 

  • Svoboda A. In situ monitoring of oxygen production and respiration in Cnidaria with and without zooxanthellae. In: Proceedings of the 12th European Symposium of Marine Biology Stirling; 1978. p. 75–82.

    Google Scholar 

  • Thompson RJ. The relationship between food ration and reproductive effort in the green sea urchin, Strongylocentrotus droebachiensis. Oecologia. 1982;56:50–7.

    Article  Google Scholar 

  • Tilot V, Leujak W, Ormond RFG, Ashworth JA, Mabrouk A. Monitoring of South Sinai coral reefs: influence of natural and anthropogenic factors. Aquat Conserv Mar Freshw Ecosyst. 2008;18:1109–26.

    Article  Google Scholar 

  • Vafidis D, Koukouras A, Voultsiadou-Koukoura E. Octocoral fauna of the Aegean Sea with a check list of the Mediterranean species: new information, faunal comparison. Ann Inst Océanogr, Paris. 1994;70(2):217–29.

    Google Scholar 

  • van Oppen MJH, Mieog C, Sánchez CA, Fabricius KE. Diversity of algal endosymbionts (zooxanthellae) in octocorals: the roles of geography and host relationships. Mol Ecol. 2005;4:2403–17.

    Article  Google Scholar 

  • Velimirov B, Böhm EL. Calcium and magnesium carbonate concentrations in different growth regions of gorgonians. Mar Biol. 1976;35:269–75.

    Article  CAS  Google Scholar 

  • Viladrich N. Study of environmental and biological factors that affect larval survival in sessile coastal marine organisms. PhD Thesis, Universitat Autónoma de Barcelona. www.tdx.cat/bitstream/10803/305237/1/nv1de1.pdf. 2015.

  • Wainwright SA. Diurnal activity of hermatypic gorgonians. Nature. 1967;216:1041.

    Article  Google Scholar 

  • Wakeford M, Done TJ, Johnson CR. Decadal trends in a coral community and evidence of changed disturbance regime. Coral Reefs. 2008;27:1–13.

    Article  Google Scholar 

  • Weinberg S, Weinberg F. The life cycle of a gorgonian: Eunicella singularis (Esper, 1794). Bijdragen tot de Dierkunde. 1979;48:127–37.

    Google Scholar 

  • Weis VM. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol. 2008;211:3059–66.

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson C. Status of coral reefs of the world. Australian Institute of Marine Science. Global Coral Reef Monitoring Network. 2002.

    Google Scholar 

  • Williams GC. The global diversity of sea pens (Cnidaria: Octocorallia: Pennatulacea). PLoS One. 2011;6(7):e22747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood E, Dipper F. What is the future for extensive areas of reef impacted by fish blasting and coral bleaching and now dominated by soft corals? A case study from Malaysia. In: Proceedings of the 11th International Coral Reef Symposium. Fort Lauderdale; 2008.

    Google Scholar 

  • Yacobovitch T, Weis VM, Benayahu Y. Development and survivorship of zooxanthellate and azooxanthellate primary polyps of the soft coral Heteroxenia fuscescens: laboratory and field comparisons. Mar Biol. 2003;142:1055–63.

    Article  Google Scholar 

  • Zann LP, Bolton L. The distribution, abundance and ecology of the blue coral Heliopora coerulea (Pallas) in the Pacific. Coral Reefs. 1985;4:125–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine Schubert .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

TABLES (DOCX 45 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Schubert, N., Brown, D., Rossi, S. (2016). Symbiotic Versus Non-symbiotic Octocorals: Physiological and Ecological Implications. In: Rossi, S., Bramanti, L., Gori, A., Orejas Saco del Valle, C. (eds) Marine Animal Forests. Springer, Cham. https://doi.org/10.1007/978-3-319-17001-5_54-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17001-5_54-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-17001-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics