Evolution of the Marine Animal Forest: EvoDevo of Corals, Sea Anemones, and Jellyfishes

Living reference work entry

Abstract

Cnidarians are the sister group of Bilaterians, so they are in a unique position to provide essential clues about the evolution of developmental pathways in animals. It is surprising that with only 10,000 described species, they come in so many different forms, shapes, sizes, and colors. Reef corals, that certainly look as a rich marine forest, are the clearest example of this phenotypic plasticity. Cnidarians are an ancient phylum that together with Porifera, Placozoa, and Ctenophora stand at the base of the animal kingdom tree. Cnidarians share with Bilaterians the main molecular toolkit genes used for patterning cells and tissues and build the basic animal body plan. Plasticity in the Wnt, Fgf, Bmp, and Hox molecular pathways is a key factor to understand such morphological evolution, as these are the main players in the patterning of the anteroposterior and the dorsoventral axes and therefore fundamental to ultimately shape the reef seascape. We intend to provide a link between the diversification of the toolkit versatile genetic pathways to the myriad of shapes of corals, sea anemones, and jellyfishes. The objective is the understanding of how all that morphological richness is produced transforming the molecular repertory. Coral reef species variability makes you appreciate the diversity of forms of marine organisms and makes you understand why conservation efforts must be a priority if we want to preserve this special case of biodiversity.

Keywords

Cnidarians Development Evolution Basic body plan Genetic toolkit Hox Wnt and Bmp genes 

Notes

Acknowledgments

This work was funded by CONACYT program “Fronteras en la Ciencia 2015-1” grant number 2 awarded to EM. ER-H is a graduate student at the Biomedical Sciences Program at UNAM. In memory of Professor Armando Gomez-Puyou.

References

  1. Adamska M, Degnan SM, Green KM, Adamski M, Craigie A, Larroux C, et al. Wnt and TGF-beta expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning. PLoS One. 2007;2(10):e1031.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Appeltans W, Ahyong ST, Anderson G, Angel MV, Artois T, Bailly N, et al. The magnitude of global marine species diversity. Curr Biol. 2012;22(23):2189–202.CrossRefPubMedGoogle Scholar
  3. Ball EE, Hayward DC, Saint R, Miller DJ. A simple plan--cnidarians and the origins of developmental mechanisms. Nat Rev Genet. 2004;5(8):567–77.CrossRefPubMedGoogle Scholar
  4. Bateson W. Materials for the study of variation treated with especial regard to discontinuity in the origin of species. London: Macmillan and co.; 1894. xv, 1, 598 p.Google Scholar
  5. Bier E, De Robertis EM. EMBRYO DEVELOPMENT. BMP gradients: a paradigm for morphogen-mediated developmental patterning. Science. 2015;348(6242):aaa5838.CrossRefPubMedGoogle Scholar
  6. Carroll SB. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell. 2008;134(1):25–36.CrossRefPubMedGoogle Scholar
  7. Carroll SB, Grenier JK, Weatherbee SD. From DNA to diversity : molecular genetics and the evolution of animal design. 2nd ed. Malden: Blackwell Publishing; 2005. ix, 258 p.Google Scholar
  8. Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, et al. The dynamic genome of Hydra. Nature. 2010;464(7288):592–6.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Collins AG, Cartwright P, McFadden CS, Schierwater B. Phylogenetic context and Basal metazoan model systems. Integr Comp Biol. 2005;45(4):585–94.CrossRefPubMedGoogle Scholar
  10. Cuvier G. Le règne animal distribué d’après son organisation, pour servir de base à l’ histoire naturelle des animaux et d’ introduction à l’anatomie comparée, Vol. 2. Paris: Deterville; 1817.Google Scholar
  11. de Jong DM, Hislop NR, Hayward DC, Reece-Hoyes JS, Pontynen PC, Ball EE, et al. Components of both major axial patterning systems of the Bilateria are differentially expressed along the primary axis of a 'radiate' animal, the anthozoan cnidarian Acropora millepora. Dev Biol. 2006;298(2):632–43.CrossRefPubMedGoogle Scholar
  12. De Robertis EM. Spemann's organizer and self-regulation in amphibian embryos. Nat Rev Mol Cell Biol. 2006;7(4):296–302.CrossRefPubMedPubMedCentralGoogle Scholar
  13. DuBuc TQ, Ryan JF, Shinzato C, Satoh N, Martindale MQ. Coral comparative genomics reveal expanded Hox cluster in the cnidarian-bilaterian ancestor. Integr Comp Biol. 2012;52(6):835–41.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, et al. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature. 2008;452(7188):745–9.CrossRefPubMedGoogle Scholar
  15. Finnerty JR. The origins of axial patterning in the metazoa: how old is bilateral symmetry? Int J Dev Biol. 2003;47(7–8):523–9.PubMedGoogle Scholar
  16. Finnerty JR, Martindale MQ. Homeoboxes in sea anemones (Cnidaria:Anthozoa): a PCR-based survey of Nematostella vectensis and Metridium senile. Biol Bull. 1997;193(1):62–76.CrossRefPubMedGoogle Scholar
  17. Finnerty JR, Pang K, Burton P, Paulson D, Martindale MQ. Origins of bilateral symmetry: hox and dpp expression in a sea anemone. Science. 2004;304(5675):1335–7.CrossRefPubMedGoogle Scholar
  18. Gauchat D, Mazet F, Berney C, Schummer M, Kreger S, Pawlowski J, et al. Evolution of Antp-class genes and differential expression of Hydra Hox/paraHox genes in anterior patterning. Proc Natl Acad Sci U S A. 2000;97(9):4493–8.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Genikhovich G, Fried P, Prunster MM, Schinko JB, Gilles AF, Fredman D, et al. Axis patterning by BMPs: cnidarian network reveals evolutionary constraints. Cell Rep. 2015;10(10):1646–54.Google Scholar
  20. Gilbert SF, Bosch TC, Ledon-Rettig C. Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents. Nat Rev Genet. 2015;16(10):611–22.CrossRefPubMedGoogle Scholar
  21. Haeckel E. Generelle Morphologie der Organismen. Berlin: George Reimer; 1866.CrossRefGoogle Scholar
  22. Haeckel E. Art forms in nature: the prints of Ernst Haeckel. Munich: Prestel; 1998. 139 pp.Google Scholar
  23. Hartmann B, Muller M, Hislop NR, Roth B, Tomljenovic L, Miller DJ, et al. Coral emx-Am can substitute for Drosophila empty spiracles function in head, but not brain development. Dev Biol. 2010;340(1):125–33.CrossRefPubMedGoogle Scholar
  24. Hatschek B. Lehrbuch der Zoologie. Jena: G Fischer; 1888.Google Scholar
  25. Hayward DC, Grasso LC, Saint R, Miller DJ, Ball EE. The organizer in evolution-gastrulation and organizer gene expression highlight the importance of Brachyury during development of the coral, Acropora millepora. Dev Biol. 2015;399(2):337–47.CrossRefPubMedGoogle Scholar
  26. Hayward DC, Samuel G, Pontynen PC, Catmull J, Saint R, Miller DJ, et al. Localized expression of a dpp/BMP2/4 ortholog in a coral embryo. Proc Natl Acad Sci U S A. 2002;99(12):8106–11.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hobmayer B, Rentzsch F, Kuhn K, Happel CM, von Laue CC, Snyder P, et al. WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature. 2000;407(6801):186–9.CrossRefPubMedGoogle Scholar
  28. Hollo G. A new paradigm for animal symmetry. Interface Focus. 2015;5(6):20150032.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hopwood N. Haeckel's embryos : images, evolution, and fraud. Chicago: The University of Chicago Press; 2015. vii, 388 pages p.Google Scholar
  30. Ikmi A, McKinney SA, Delventhal KM, Gibson MC. TALEN and CRISPR/Cas9-mediated genome editing in the early-branching metazoan Nematostella vectensis. Nat Commun. 2014;5:5486.CrossRefPubMedGoogle Scholar
  31. Jenner RA. Evolution of animal body plans: the role of metazoan phylogeny at the interface between pattern and process. Evol Dev. 2000;2(4):208–21.CrossRefPubMedGoogle Scholar
  32. Kaneda T, Motoki JY. Gastrulation and pre-gastrulation morphogenesis, inductions, and gene expression: similarities and dissimilarities between urodelean and anuran embryos. Dev Biol. 2012;369(1):1–18.CrossRefPubMedGoogle Scholar
  33. Kitchen SA, Crowder CM, Poole AZ, Weis VM, Meyer E. De Novo Assembly and Characterization of Four Anthozoan (Phylum Cnidaria) Transcriptomes. G3 (Bethesda). 2015;5(11):2441–52.CrossRefGoogle Scholar
  34. Kraus Y, Fritzenwanker JH, Genikhovich G, Technau U. The blastoporal organiser of a sea anemone. Curr Biol. 2007;17(20):R874–6.CrossRefPubMedGoogle Scholar
  35. Kuhn K, Streit B, Schierwater B. Isolation of Hox genes from the scyphozoan Cassiopeia xamachana: implications for the early evolution of Hox genes. J Exp Zool. 1999;285(1):63–75.CrossRefPubMedGoogle Scholar
  36. Kusserow A, Pang K, Sturm C, Hrouda M, Lentfer J, Schmidt HA, Technau U, von Haeseler A, Hobmayer B, Martindale MQ, Holstein TW. Unexpected complexity of the Wnt gene family in a sea anemone. Nature. 2005;433(7022):156–60.CrossRefPubMedGoogle Scholar
  37. Laland KN, Odling-Smee J, Gilbert SF. EvoDevo and niche construction: building bridges. J Exp Zool B Mol Dev Evol. 2008;310(7):549–66.CrossRefPubMedGoogle Scholar
  38. Lanna E. Evo-devo of non-bilaterian animals. Genet Mol Biol. 2015;38(3):284–300.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lapraz F, Besnardeau L, Lepage T. Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network. PLoS Biol. 2009;7(11):e1000248.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Leininger S, Adamski M, Bergum B, Guder C, Liu J, Laplante M, et al. Developmental gene expression provides clues to relationships between sponge and eumetazoan body plans. Nat Commun. 2014;5:3905.CrossRefPubMedGoogle Scholar
  41. Leray M, Knowlton N. Censusing marine eukaryotic diversity in the twenty-first century. Philos Trans R Soc Lond Ser B Biol Sci. 2016;371(1702).Google Scholar
  42. Libro S, Vollmer SV. Genetic signature of resistance to white band disease in the Caribbean Staghorn coral Acropora cervicornis. PLoS One. 2016;11(1):e0146636.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202–14.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Maeda RK, Karch F. The ABC of the BX-C: the bithorax complex explained. Development. 2006;133(8):1413–22.CrossRefPubMedGoogle Scholar
  45. Manuel M. Early evolution of symmetry and polarity in metazoan body plans. C R Biol. 2009;332(2–3):184–209.CrossRefPubMedGoogle Scholar
  46. Martindale MQ, Pang K, Finnerty JR. Investigating the origins of triploblasty: 'mesodermal' gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa). Development. 2004;131(10):2463–74.CrossRefPubMedGoogle Scholar
  47. Matus DQ, Pang K, Marlow H, Dunn CW, Thomsen GH, Martindale MQ. Molecular evidence for deep evolutionary roots of bilaterality in animal development. Proc Natl Acad Sci U S A. 2006;103(30):11195–200.CrossRefPubMedPubMedCentralGoogle Scholar
  48. McClain CR, Balk MA, Benfield MC, Branch TA, Chen C, Cosgrove J, et al. Sizing ocean giants: patterns of intraspecific size variation in marine megafauna. PeerJ. 2015;3:e715.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mendivil Ramos O, Barker D, Ferrier DE. Ghost loci imply Hox and ParaHox existence in the last common ancestor of animals. Curr Biol. 2012;22(20):1951–6.CrossRefPubMedGoogle Scholar
  50. Miglietta MP, Cunningham CW. Evolution of life cycle, colony morphology, and host specificity in the family Hydractiniidae (Hydrozoa, Cnidaria). Evolution. 2012;66(12):3876–901.CrossRefPubMedGoogle Scholar
  51. Moczek AP. The nature of nurture and the future of evodevo: toward a theory of developmental evolution. Integr Comp Biol. 2012;52(1):108–19.CrossRefPubMedGoogle Scholar
  52. Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP, Povolotskaya IS, et al. The ctenophore genome and the evolutionary origins of neural systems. Nature. 2014;510(7503):109–14.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Murtha MT, Leckman JF, Ruddle FH. Detection of homeobox genes in development and evolution. Proc Natl Acad Sci U S A. 1991;88(23):10711–5.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Newman SA, Forgacs G, Muller GB. Before programs: the physical origination of multicellular forms. Int J Dev Biol. 2006;50(2–3):289–99.CrossRefPubMedGoogle Scholar
  55. Nosenko T, Schreiber F, Adamska M, Adamski M, Eitel M, Hammel J, et al. Deep metazoan phylogeny: when different genes tell different stories. Mol Phylogenet Evol. 2013;67(1):223–33.CrossRefPubMedGoogle Scholar
  56. Pick KS, Philippe H, Schreiber F, Erpenbeck D, Jackson DJ, Wrede P, et al. Improved phylogenomic taxon sampling noticeably affects nonbilaterian relationships. Mol Biol Evol. 2010;27(9):1983–7.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science. 2007;317(5834):86–94.CrossRefPubMedGoogle Scholar
  58. Quiquand M, Yanze N, Schmich J, Schmid V, Galliot B, Piraino S. More constraint on ParaHox than Hox gene families in early metazoan evolution. Dev Biol. 2009;328(2):173–87.CrossRefPubMedGoogle Scholar
  59. Ryan JF, Pang K, Schnitzler CE, Nguyen AD, Moreland RT, Simmons DK, et al. The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science. 2013;342(6164):1242592.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Saina M, Genikhovich G, Renfer E, Technau U. BMPs and chordin regulate patterning of the directive axis in a sea anemone. Proc Natl Acad Sci U S A. 2009;106(44):18592–7.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Scholz CB, Technau U. The ancestral role of Brachyury: expression of NemBra1 in the basal cnidarian Nematostella vectensis (Anthozoa). Dev Genes Evol. 2003;212(12):563–70.PubMedGoogle Scholar
  62. Schuchert P. High genetic diversity in the hydroid Plumularia setacea: a multitude of cryptic species or extensive population subdivision? Mol Phylogenet Evol. 2014;76:1–9.CrossRefPubMedGoogle Scholar
  63. Schummer M, Scheurlen I, Schaller C, Galliot B. HOM/HOX homeobox genes are present in hydra (Chlorohydra viridissima) and are differentially expressed during regeneration. EMBO J. 1992;11(5):1815–23.PubMedPubMedCentralGoogle Scholar
  64. Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M, et al. Using the Acropora digitifera genome to understand coral responses to environmental change. Nature. 2011;476(7360):320–3.CrossRefPubMedGoogle Scholar
  65. Shubin N, Tabin C, Carroll S. Deep homology and the origins of evolutionary novelty. Nature. 2009;457(7231):818–23.CrossRefPubMedGoogle Scholar
  66. Smith WC, Harland RM. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell. 1992;70(5):829–40.CrossRefPubMedGoogle Scholar
  67. Spemann HaM H. Uber induktion von Embryonalagen durch Impantation Artfremder Organisatoren. Arch Entw Mech. 1924;100:599–638.Google Scholar
  68. Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, et al. The Trichoplax genome and the nature of placozoans. Nature. 2008;454(7207):955–60.CrossRefPubMedGoogle Scholar
  69. Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME, Mitros T, et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature. 2010;466(7307):720–6.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Wikramanayake AH, Hong M, Lee PN, Pang K, Byrum CA, Bince JM, et al. An ancient role for nuclear beta-catenin in the evolution of axial polarity and germ layer segregation. Nature. 2003;426(6965):446–50.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.EvoDevo Lab, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de México, UNAM Puerto MorelosQuintana RooMexico
  2. 2.Research fellow of the Mexican Council of Sciences and technology (CONACYT), Department of Ecology, Center of Biological Sciences and AgricultureUniversity of GuadalajaraNextipac, ZapopanMexico

Personalised recommendations