Benthic-Pelagic Coupling: New Perspectives in the Animal Forests

Living reference work entry

Abstract

Animal forests all over the world play an essential role in benthic-pelagic coupling processes. These processes can change according to the feeding strategies of benthic species, as well as their extension and biomass. From the oligotrophic coral reefs to the highly seasonal productive Antarctic ecosystems, suspension feeders (the main eco-engineers of the animal forest) have evolved feeding strategies depending on the environmental constraints, which shape their survivorship and partly explain their high biodiversity. In the process of benthic-pelagic coupling, these organisms also have the ability to retain part of the organic and inorganic matter in their long-lived structures. In this chapter, hypotheses related to benthic-pelagic coupling processes will be presented, along with the newest methodology used to quantify the capacity of animal forests to function as carbon sinks. Although the role of animal forests as carbon sinks is an essential ecosystem service, it has been largely neglected in the conservation models for the majority of marine environments. The importance of food availability (quantity and quality) in suspension feeding animals will be discussed with a new approach based on random pulses of energy input. This approach will help to better understand their nutritional condition and the health status of their populations. Finally, to allow making key evaluations of the influence of animal forests in benthic-pelagic coupling processes and as carbon sinks, this approach will be overlapped with the distribution, density, and population size structure of benthic suspension feeders, obtained through the analysis of video or photo recorded via remotely operated vehicles (ROV). This new approach will be an essential tool for coastal, continental shelves and deep water coral area management and conservation, where animal forests are threatened synergistically by several direct and indirect impacts.

Keywords

Seston Seasonality Near-bottom water layer Short time cycles Food quality Trophic crisis Biomarkers Lipids Stable isotopes Carbon sinks 

Notes

Acknowledgments

We thank Darren Brown for his useful comments on the manuscript and English language corrections. We are grateful with the two reviewers that greatly improved the chapter. Support for this work was provided by a Marie Curie International Outgoing Fellowship (ANIMAL FOREST HEALTH, project number 327845). Authors want to thank the support of the Generalitat de Catalunya to MERS (2014 SGR - 1356).

References

  1. Alamaru A, Loya Y, Brokovich E, Yam R, Shemesh A. Carbon and nitrogen utilization in two species of Red Sea corals along a depth gradient: insights from stable isotope analysis of total organic material and lipids. Geochim Cosmochim Acta. 2009;73(18):5333–42.CrossRefGoogle Scholar
  2. Ambroso S, Gori A, Dominguez C, Gili JM, Berganzo E, Teixidor N, Greenacre M, Rossi S. Spatial distribution patterns of the soft corals Alcyonium acaule and Alcyonium palmatum in coastal bottoms (Cap de Creus, northwestern Mediterranean Sea). Mar Biol. 2013;160:3059–70.Google Scholar
  3. Arrigo KR, Worthen D, Schnell A, Lizotte MP. Primary production in Southern Ocean waters. J Geophys Res. 1998;103:15587–600.CrossRefGoogle Scholar
  4. Baker DM, Webster KL, Kim K. Caribbean octocorals record changing carbon and nitrogen sources from 1862 to 2005. Global Change Biol. 2010;16(10):2701–10.CrossRefGoogle Scholar
  5. Calow P. The cost of reproduction – a physiological approach. Biol Rev. 1979;54:23–40.CrossRefPubMedGoogle Scholar
  6. Carlier A, Riera P, Amouroux J, Bodiou J-Y, Grémare A. Benthic trophic network in the Bay of Banyuls-sur-Mer (northwest Mediterranean, France): an assessment based on stable carbon and nitrogen isotopes analysis. Estuar Coast Shelf Sci. 2007;72:1–15.CrossRefGoogle Scholar
  7. Carlier A, Le Guilloux E, Olu K, Sarrazin J, Mastrototaro F, Taviani M, Clavier J. Trophic relationship in a deep Mediterranean cold-water bank (Santa Maria di Leuca, Ionian Sea). Mar Ecol Prog Ser. 2009;397:125–37.CrossRefGoogle Scholar
  8. Cloern JE. Does the benthos control phytoplankton biomass in south San Francisco Bay? Mar Ecol Prog Ser. 1982;9:191–202.CrossRefGoogle Scholar
  9. Cocito S, Ferrier-Pagès C, Cupido R, Rottier C, Meier-Augenstein W, Kemp H, Peirano A. Nutrient acquisition in four Mediterranean gorgonian species. Mar Ecol Prog Ser. 2013;473:179–88.CrossRefGoogle Scholar
  10. Coma R, Ribes M, Gili JM, Zabala M. An energetic approach to the study of life history traits of two modular colonial benthic invertebrates. Mar Ecol Prog Ser. 1998;162:89–103.CrossRefGoogle Scholar
  11. Coma R, Ribes M, Gili JM, Zabala M. Seasonality in coastal benthic ecosystems. Trends Ecol Evol. 2000;15:448–53.CrossRefPubMedGoogle Scholar
  12. Coppari M. The importance of benthic suspension feeders in the biogeochemical cycles: active and passive suspension feeders in a coralligenous community. PhD Thesis, Universitat Autónoma de Barcelona; 2015. 202 pp.Google Scholar
  13. Coppari M, Gori A, Rossi S. Size, spatial and bathymetrical distribution of the Mediterranean ascidian Halocynthia papillosa in a large coastal area of the Northwestern Mediterranean Sea: benthic-pelagic coupling implications. Mar Biol. 2014;161:2079–95.CrossRefGoogle Scholar
  14. Coppari M, Gori A, Viladrich N, Saponari L, Grinyó J, Olariaga A, Rossi S. The role of sponges in the benthic-pelagic coupling process in warm temperate coastal bottoms. J Exp Mar Biol Ecol. 2016;477:57–68.CrossRefGoogle Scholar
  15. DeNiro MJ, Epstein S. Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta. 1978;42:495–506.CrossRefGoogle Scholar
  16. Duarte CM, Marbà N, Gacia E, Fourqurean JW, Beggins J, Barrón C, Apostolaki ET. Seagrass community metabolism: assessing the carbon sink capacity of seagrass meadows. Global Biogeochem Cycles. 2010. doi:10.1029/2010GB003793.Google Scholar
  17. Elias-Piera F, Rossi S, Gili JM, Orejas C. Trophic ecology of seven Antarctic gorgonians. Mar Ecol Prog Ser. 2013;477:93–106.CrossRefGoogle Scholar
  18. Eong OJ. Mangrove- a carbon source and sink. Chemosphere. 1993;27:1097–107.CrossRefGoogle Scholar
  19. Estrada M. Primary production in the North-Western Mediterranean. Sci Mar. 1996;60 Suppl 2:55–64.Google Scholar
  20. Fegley SR, MacDonald BA, Jacobsen TR. Short-term variation in the quantity and quality of seston available to benthic suspension feeders. Estuar Coast Shelf Sci. 1992;34:393–412.CrossRefGoogle Scholar
  21. Ferrier-Pagés C, Gattuso JP, Cauwet G, Jaubert J, Allemand D. Release of dissolved organic carbon and nitrogen by the zooxanthellate coral Galaxea fascicularis. Mar Ecol Prog Ser. 1998;172:265–74.CrossRefGoogle Scholar
  22. Ferrier-Pagès C, Peirano A, Abbate M, Cocito S, 5 others. Summer autotrophy and winter heterotrophy in the temperate symbiotic coral Cladocora caespitosa. Limnol Oceanogr. 2011;56:1429–38.Google Scholar
  23. Fitt WK, McFarland FK, Warner M, Chilcoat GC. Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol Oceanogr. 2000;45(3):677–85.CrossRefGoogle Scholar
  24. Gardner JPA. Where are the mussels on Cook Strait (New Zealand) shores? Low seston quality as a possible factor limiting multi-species distributions. Mar Ecol Prog Ser. 2000;194:123–32.CrossRefGoogle Scholar
  25. Gili JM, Coma R. Benthic suspension feeders: their paramount role in littoral marine food webs. Trends Ecol Evol. 1998;13:316–21.CrossRefPubMedGoogle Scholar
  26. Gili JM, Duró A, García-Valero J, Gasol JM, Rossi S. Herbivorism in small carnivores: benthic hydroids as an example. J Mar Biol Assoc UK. 2008;88:1541–6.CrossRefGoogle Scholar
  27. Gili JM, Orejas C, Isla E, Rossi S, Arntz WE. Seasonality on the high Antarctic benthic shelf communities? In: Turner J, Convey P, di Prisco G, Mayewski P, Hodgson D, Fahrbach E, Bindschadler B, editors. Antarctic climate change and the environment. ACCE Report. Cambridge: Cambridge University Press; 2009. p. 276–8.Google Scholar
  28. Gori A, Rossi S, Berganzo-González E, Pretus JL, Dale MRT, Gili JM. Spatial distribution, abundance and relationship with environmental variables of the gorgonians Eunicella singularis, Paramuricea clavata and Leptogorgia sarmentosa (Cape of Creus, Northwestern Mediterranean Sea). Mar Biol. 2011;158:143–58.CrossRefGoogle Scholar
  29. Gori A, Viladrich N, Gili JM, Kotta M, Cucio C, Magni L, Rossi S. Reproductive cycle and trophic ecology in deep versus shallow populations of the Mediterranean gorgonian Eunicella singularis. Coral Reefs. 2012;31:823–37.CrossRefGoogle Scholar
  30. Gori A, Linares C, Viladrich N, Clavero A, Orejas C, Fiorillo I, Ambroso S, Gili JM, Rossi S. The effects of starvation on the gonadal development and biochemical composition of the Mediterranean gorgonian Paramuricea clavata. J Exp Mar Biol Ecol. 2013;444:38–45.CrossRefGoogle Scholar
  31. Grace J, Lloyd J, McIntyre J, Miranda AC, Meir P, Miranda HS, Nobre C, Moncrieff J, Mahli Y, Wright I, Gash J. Carbon dioxide uptake by an undisturbed tropical rain forest in southwest Amazonia, 1992 to 1993. Science. 1995;270:778–80.CrossRefGoogle Scholar
  32. Graf G. Benthic-pelagic coupling in a deep-sea benthic community. Nature. 1989;341:437–9.CrossRefGoogle Scholar
  33. Graf G, Rosenberg R. Bioresuspension and biodeposition: a review. J Mar Syst. 1997;11:269–78.CrossRefGoogle Scholar
  34. Grémare A, Amouroux JM, Charles F, Dinet A, Riaux-Gobin C, Baudart J, Medernach L, Bodiou JY, Vétion G, Colomines JC, Albert P. Temporal changes in the biochemical composition and nutritional value of the particulate organic matter available to surface deposit-feeders: a two year study. Mar Ecol Prog Ser. 1997;150:195–206.CrossRefGoogle Scholar
  35. Grémare A, Medernach L, deBovée F, Amoroux JM, Vétion G, Albert P. Relationships between sedimentary organics and benthic meiofauna on the continental shelf and the upper slope of the Gulf of Lions (NW Mediterranean). Mar Ecol Prog Ser. 2002;234:85–94.CrossRefGoogle Scholar
  36. Grémare A, Amouroux JM, Cauwet G, Charles F, Courties C, DeBovée F, Dinet A, Devenon JL, Durrieu de Madron X, Ferré B, Fraunié P, Joux F, Lantoine F, Lebaron P, Naudin JJ, Palanques A, Pujo-Pay M, Zudaire L. The effects of a strong winter storm on physical and biological variables at a shelf site in the Mediterranean. Ocean Acta. 2003;26:407–19.CrossRefGoogle Scholar
  37. Grottoli AG, Rodrigues LJ, Juarez C. Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event. Mar Biol. 2004;145(3):621–31.CrossRefGoogle Scholar
  38. Gutt J, Starmans A, Dieckmann G. Phytodetritus deposited on the Antarctic shelf and upper slope: its relevance for the benthic system. J Mar Syst. 1998;17:435–44.CrossRefGoogle Scholar
  39. Hughes RN. Optimal foraging theory in the marine context. Ocenogr Mar Biol Ann Rev. 1980;18:423–81.Google Scholar
  40. Imbs AB. Fatty acids and other lipids of corals: composition, distribution, and biosynthesis. Russ J Mar Biol. 2013;39:153–68.CrossRefGoogle Scholar
  41. Isla E, Rossi S, Palanques A, Gili JM, Gerdes D, Arntz W. Biochemical composition of the sediment from the Eastern Weddell Sea High nutritive value in a high benthic-biomass environment. J Mar Syst. 2006;60:255–67.CrossRefGoogle Scholar
  42. Isla E, Gerdes D, Palanques A, Gili J-M, Arntz WE, König-Langlo G. Downward particle fuxes, wind and a phytoplankton bloom over a polar continental shelf: a stormy impulse for the biological pump. Mar Geol. 2009;259:59–72.CrossRefGoogle Scholar
  43. Isla E, Gerdes D, Rossi S, Fiorillo I, Sañe E, Gili JM, Arntz W. Biochemical characteristics of surface sediments on the eastern Weddell Sea continental shelf, Antarctica: is there any evidence of seasonal patterns? Polar Biol. 2011;34:1125–33.CrossRefGoogle Scholar
  44. Jacob U, Mintenbeck K, Brey T, Knust R, Beyer K. Stable isotope food web studies: a case for standardized sample treatment. Mar Ecol Prog Ser. 2005;287:251–3.CrossRefGoogle Scholar
  45. Jiménez E, Ribes M. Sponges as a source of dissolved inorganic nitrogen: nitrification mediated by temperate sponges. Limnol Oceanogr. 2007;52:948–58.CrossRefGoogle Scholar
  46. Jonas RB. Bacteria, dissolved organics and oxygen consumption in salinity stratified Chesapeake Bay, an anoxia paradigm. Am Zool. 1997;37:612–20.CrossRefGoogle Scholar
  47. Kanaya G, Nobata E, Toya T, Kikuchi E. Effects of different feeding habits of three bivalve species on sediment characteristics and benthic diatom abundance. Mar Ecol Prog Ser. 2005;299:67–78.CrossRefGoogle Scholar
  48. Kelly JR, Scheibling ER. Fatty acids as dietary tracers in benthic food webs. Mar Ecol Prog Ser. 2012;446:1–22.CrossRefGoogle Scholar
  49. Naylor E. Chronobiology: implications for marine resource exploitation and management. Sci Mar. 2005;69 Suppl 1:157–67.CrossRefGoogle Scholar
  50. Nielsen TG, Maar M. Effects of a blue mussel Mytilus edulis bed of vertical distribution and composition of the pelagic food web. Mar Ecol Prog Ser. 2007;339:185–98.CrossRefGoogle Scholar
  51. Nixon SW. Remineralization and nutrient cycling in coastal marine ecosystems. In: Neilson BJ, Cronin E, editors. Estuaries and nutrients. Clifton: Humana Press; 1981. p. 111–38.CrossRefGoogle Scholar
  52. Post D. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology. 2002;83:703–18.CrossRefGoogle Scholar
  53. Priori C, Mastascusa V, Erra F, Angiolillo M, Canese S, Santangelo G. Demography of deep-dwelling red coral populations: age and reproductive assessment of a high valuable marine species. Estuar Coast Shelf Sci. 2013;118:43–9.CrossRefGoogle Scholar
  54. Renaud PE, Morata N, Carroll ML, Denisenko SG, Reigstad M. Pelagic-benthic coupling in the western Barents Sea: processes and time scales. Deep-Sea Res II. 2008;55:2372–80.CrossRefGoogle Scholar
  55. Reynaud S, Ferrier-Pages C, Sambrotto R, Juillet-Leclerc A, Jaubert J, Gattuso JP. Effect of feeding on the carbon and oxygen isotopic composition in the tissues and skeleton of the zooxanthellate coral Stylophora pistillata. Mar Ecol Prog Ser. 2002;238:81–9.CrossRefGoogle Scholar
  56. Ribera d’Alcalá M, Conversano F, Corato F, Licandro P, Mangoni O, Marino D, Mazzocchi MG, Modigh M, Montresor M, Nardella M, Saggiorno V, Sarno D, Zingone A. Seasonal patterns in plankton communities in a pluriannual time series at a coastal Mediterranean site (Gulf of Naples): an attempt to discern recurrences and trends. Sci Mar. 2004;68:65–83.CrossRefGoogle Scholar
  57. Ribes M, Coma R, Rossi S, Micheli M. The cycle of gonadal development of Eunicella singularis (Cnidaria: Octocorallia): trends on sexual reproduction in Mediterranean gorgonians. Invertebr Biol. 2007;126:307–17.CrossRefGoogle Scholar
  58. Riedl R. Fauna und flora des mittelmeers. Hamburg: Paul Parey; 1984.Google Scholar
  59. Riisgard HU, Larsen PS. Comparative ecophysiology of active zoobenthic filter feeding, essence of current knowledge. J Sea Res. 2000;44:169–93.CrossRefGoogle Scholar
  60. Roberts JM, Wheeler AJ, Freiwald A. Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science. 2006;312:543–7.CrossRefPubMedGoogle Scholar
  61. Rodrigues LJ, Grottoli AG, Pease TK. Lipid class composition of bleached and recovering Porites compressa Dana, and Montipora capitata Dana, corals from Hawaii. J Exp Mar Biol Ecol. 2008;358:136–43.CrossRefGoogle Scholar
  62. Rossi S. Environmental factors affecting the trophic ecology of benthic suspension feeders. PhD thesis, University of Barcelona; 2002. 200 pp.Google Scholar
  63. Rossi S. The destruction of the ‘animal forests’ in the oceans: towards an over-simplification of the benthic ecosystems. Ocean Coast Manag. 2013;84:77–85.CrossRefGoogle Scholar
  64. Rossi S, Fiorillo I. Biochemical features of a Protoceratium reticulatum red tide in Chipana Bay (Northern Chile) in summer conditions. Sci Mar. 2010;74(4):633–42.CrossRefGoogle Scholar
  65. Rossi S, Gili JM. Short-time-scale variability of near bottom seston composition during spring in a warm temperate sea. Hydrobiologia. 2007;557:373–88.CrossRefGoogle Scholar
  66. Rossi S, Gili JM. Near bottom phytoplankton and seston: importance in the pelagic-benthic coupling processes. In: Kersey WT, Munger SP, editors. Marine phytoplankton. New York: Nova Science Publishers; 2009. p. 45–85. ISBN 978-1-60741-087-4.Google Scholar
  67. Rossi S, Tsounis G. Temporal and spatial variation in protein, carbohydrate, and lipid levels in Corallium rubrum (anthozoa, octocorallia). Mar Biol. 2007;152:429–39.CrossRefGoogle Scholar
  68. Rossi S, Grémare A, Gili JM, Amouroux JM, Jordana E, Vétion G. Biochemical characteristics of settling particulate organic matter at two north-western Mediterranean sites: a seasonal comparison. Estuar Coast Shelf Sci. 2003;58:423–34.CrossRefGoogle Scholar
  69. Rossi S, Ribes M, Coma R, Gili JM. Temporal variability in zooplankton prey capture rate of the soft bottom passive suspension feeder Leptogorgia sarmentosa (Cnidaria: Octocorallia), a case study. Mar Biol. 2004;144:89–99.CrossRefGoogle Scholar
  70. Rossi S, Gili JM, Coma R, Linares C, Gori A, Vert N. Temporal variation in protein, carbohydrate and lipid concentrations in Paramuricea clavata: (Anthozoa, Octocorallia): evidence for summer-autumn feeding constraints. Mar Biol. 2006;149:643–51.CrossRefGoogle Scholar
  71. Rossi S, Tsounis G, Orejas C, Padrón T, Gili JM, Bramanti L, Teixidó N, Gutt J. Survey of deep-dwelling red coral (Corallium rubrum) populations at Cap de Creus (NW Mediterranean). Mar Biol. 2008;154:533–45.CrossRefGoogle Scholar
  72. Rossi S, Bramanti L, Broglio E, Gili JM. Trophic impact of long-lived species indicated by population dynamics in a short-lived hydrozoan, Eudendrium racemosum. Mar Ecol Prog Ser. 2012;467:97–111.CrossRefGoogle Scholar
  73. Rossi S, Isla E, Martínez-García A, Moraleda N, Gili JM, Rosell-Melé A, Arntz W, Gerdes D. Transfer of seston lipids during a flagellate bloom from the surface to the benthic community in the Weddell Sea. Sci Mar. 2013;77:397–407.CrossRefGoogle Scholar
  74. Santangelo G, Bramanti l, Iannelli M. Population dynamics and conservation biology of the over-exploited Mediterranean red coral. J Theor Biol. 2007;244:416–23.CrossRefPubMedGoogle Scholar
  75. Sargent JR, Parks RJ, Mueller-Harvey I, Henderson RJ. Lipid biomarkers in marine ecology. In: Sliegh MA, editor. Microbes in the sea. Chichester: Ellis Horwood Ltd; 1988. p. 119–38.Google Scholar
  76. Sargent JR, McEvoy LA, Estevez A, Bell JG, Bell M, Henderson J, Tocher D. Lipid nutrition of marine fish during early development: current status and future directions. Aquaculture. 1999;179:217–29.CrossRefGoogle Scholar
  77. Sebens KP, De Reimer K. Diel cycles of expansion and contraction of coral reef anthozoans. Mar Biol. 1977;43:247–56.CrossRefGoogle Scholar
  78. Seemann J, Sawall Y, Auel H, Richter C. The use of lipids and fatty acids to measure the trophic plasticity of the coral Stylophora subseriata. Lipids. 2013;48:275–86.CrossRefPubMedGoogle Scholar
  79. Smetacek V, Passow U. Spring bloom initiation and Sverdrup’s critical-depth model. Limnol Oceanogr. 1990;35:228–34.CrossRefGoogle Scholar
  80. Sournia A. Circadian periodicities in natural populations of marine phytoplankton. Adv Mar Biol. 1974;12:325–89.CrossRefGoogle Scholar
  81. Starr M, Himmelman JH, Therriault JC. Marine invertebrate spawing induced by phytoplankton. Science. 1990;247:1071–4.CrossRefPubMedGoogle Scholar
  82. Sverdrup HU. On conditions for the vernal blooming of phytoplankton. J Conseil Int Explor Mer. 1953;18:287–95.CrossRefGoogle Scholar
  83. Thomsen L. Processes in benthic boundary layer at continental margins and their implication for the benthic carbon cycle. J Sea Res. 1999;41:73–86.CrossRefGoogle Scholar
  84. Towsend DW, Mayer LM, Dortch Q, Spinard RW. Vertical structure and biological activity in the bottom nepheloid layer of the Gulf of Maine. Cont Shelf Res. 1992;12:367–87.CrossRefGoogle Scholar
  85. Tsounis G, Rossi S, Grigg R, Santangelo G, Bramanti L, Gili JM. The exploitation and conservation of precious corals. Oceanogr Mar Biol Ann Rev. 2010;48:161–212.CrossRefGoogle Scholar
  86. Valiela I. Marine ecological process. 2nd ed. New York: Springer; 1995.CrossRefGoogle Scholar
  87. van Duyl FC, Moodley L, Nieuwland G, van Ijzerloo L, van Soest RW, Houtekamer M, Middelburg JJ. Coral cavity sponges depend on reef-derived food resources: stable isotope and fatty acid constraints. Mar Biol. 2011;158(7):1653–66.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Viladrich N. Study of environmental and biological factors that affect larval survival in sessile coastal organisms. PhD Thesis, Universitat de Barcelona; 2015. 116 pp.Google Scholar
  89. Viladrich N, Bramanti L, Tsounis G, Chocarro B, Martínez-Quintana A, Ambroso S, Madurell T, Rossi S. Variation in lípid and free fatty acid content during spawning in two temperate octocorals with diferent reproductive strategies: surface versus internal brooder. Coral Reefs. 2016a;35:1033. doi:10.1007/s00338-016-1440-1.CrossRefGoogle Scholar
  90. Viladrich N, Rossi S, López A, Orejas C. Nutritional condition of two coastal rocky fishes and the potential role of a marine protected area. Mar Ecol. 2016b;37:46–63.CrossRefGoogle Scholar
  91. Vogel S. Life in moving fluids: the physical biology of flow. Princeton: Princeton University Press; 1994.Google Scholar
  92. Ward BB. Nitrification and the marine nitrogen cycle. In: Kirchman DL, editor. Microbial ecology of the oceans. New York: Wiley-Liss; 2000. p. 427–53.Google Scholar
  93. Weisz JB, Massaro AJ, Ramsby BD, Hill MS. Zooxanthellar symbionts shape host sponge trophic status through translocation of carbon. Biol Bull. 2010;219(3):189–97.CrossRefPubMedGoogle Scholar
  94. Yahel G, Post AF, Fabricius K, Marie D, Vaulot D, Genin A. Phytoplankton distribution and grazing near coral reefs. Limnol Oceanogr. 1998;43:551–63.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sergio Rossi
    • 1
  • Martina Coppari
    • 2
  • Núria Viladrich
    • 1
  1. 1.Institut de Ciència i Tecnologia AmbientalsUniversitat Autònoma de BarcelonaBarcelonaSpain
  2. 2.Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV)Università degli Studi di GenovaGenoaItaly

Personalised recommendations