Activity Rhythm Measurement in Suspension Feeders

Living reference work entry


Measurement of activities of benthic species is a recurrent problem. Variability in the size, aspects, type of movements, structures created to filter or collect the particles suspended in the water column, and falling on the sediment surface implicates the development of versatile measuring devices. Suspension feeding is a time-consuming process for the benthic species. The time spent filtering can be observed and recorded with sensors running in the background, capturing the ongoing activity. Depending on their position on or inside the substrate, species will adapt their way of capturing the particles and develop strategies and timings for the feeding events. Passive or active suspension feeding will be related to different energies expended to collect food. Recording the behavioral patterns is an important step in the knowledge of the animal energy budget. Some species are able to switch between passive and active mode, depending on the varying environmental conditions, such as the flow rate or the detection of increased particle densities. Simultaneous measure of individual activity and environmental variables, using associated sensors, can increase this knowledge.

Indices describing this activity can be produced by image analysis, coupled with specialized libraries developed sometimes on a species basis. Other techniques like valvometry may be used for measuring long-term, high-speed activities related to the shell opening in bivalves. Indirect variables including temperature, fluorometry, or other techniques can be used to study the pumping rate or the bioturbation effect of animal activities.

In this chapter some examples will be provided on the way of measuring the benthic suspension-feeding activities, among passive and active suspension feeders.


Animal forest Benthic animals Activity measurement 


  1. Achituv Y, Yamaguchi T. Water pumping in the pendiculate barnacle Conchodermata auritum. J Mar Biol Assoc UK. 1997;77:1073–82.CrossRefGoogle Scholar
  2. Aguzzi J, Chiesa JJ, Caprioli R, Cascione D, Magnifico G, Rimatori V, Costa C. Preliminary evidences of circadian fan activity rhythm in Sabella spallanzanii Gmelin, 1791 Polychaeta Sabellidae. Scientia Marina. 2000;70(4):727–34.Google Scholar
  3. Aguzzi J, Doya C, Tecchio S, De Leo FC, Azzurro E, Costa C, Sbragaglia V, Del Rio J, Navarro J, Ruhl HA, Company JB, Favali P, Purser A, Thomsen L, Catalan IA. Coastal observatories for monitoring of fish behaviour and their responses to environmental changes. Rev Fish Biol Fisheries. 2015;25:463–83.CrossRefGoogle Scholar
  4. Arbelaez P, Maire M, Fowlkes C, Malik J. Contour Detection and Hierarchical Image Segmentation. IEEE TPAMI. 2011;33(5):898–916.CrossRefGoogle Scholar
  5. Bay H, Ess A, Tuytelaars T, Van Gol L. Speeded-up robust features (SURF). J Comput Vis Image Underst. 2008;110(3):346–59.CrossRefGoogle Scholar
  6. Bernard G, Grémare A, Maire O, Lecroart P, Meysman FJR, Ciutat A, Deflandre B, Duchêne JC. Experimental assessment of particle mixing fingerprints in the deposit-feeding bivalve Abra alba (Wood). J Mar Res. 2012;70:689–718.CrossRefGoogle Scholar
  7. Bianchi RAC, Reali-Costa AH. Implementing computer vision algorithms in hardware: an FPGA/VHDL-based vision system for a mobile robot. In: Birk A, Coradeschi S, Tadokoro S, editors. RoboCup 2001, LNAI, vol. 2377. Berlin/Heidelberg: Springer; 2002. p. 281–6.Google Scholar
  8. Bouget JF, Mazurie J. Dispositif de surveillance biologique de la qualite d’eau d’un site conchylicole estuarien utilisant un biocapteur valvaire muni d’huitres et de moules. TMS. 1997;11:71–9.Google Scholar
  9. Bushek D, Allen DM. Motile suspension-feeders in estuarine and marine ecosystems. In: The comparative roles of suspension-feeders in ecosystems. Proceedings of the NATO advanced research workshop on the comparative roles of suspension-feeders in ecosystems Nida, Lithuania 4–9 Oct 2003. 2005. p. 53–71.Google Scholar
  10. Buskey EJ. Role of vision in the aggregative behavior of the planktonic mysid Mysidium columbiae. Mar Biol. 2000;137:257–65.CrossRefGoogle Scholar
  11. Champalbert G, Le Direach-Boursier L. Influence of light and feeding conditions on swimming activity rhythms of larval and juvenile turbot Scophthalmus maximus: an experimental study. J Sea Res. 1998;40:333–45.CrossRefGoogle Scholar
  12. Charles F. Utilization of fresh detritus derived from Cystoseira mediterranea and Posidonia oceanica by the deposit-feeding bivalve Abra ovata. J Exp Mar Biol Ecol. 1993;174:43–64.CrossRefGoogle Scholar
  13. Ciutat A, Widdows J, Pope ND. Effect of Cerastoderma edule density on near-bed hydrodynamics and stability of cohesive muddy sediments. JEMBE. 2007;346:114–26.CrossRefGoogle Scholar
  14. Costa C, Francesca Antonucci F, Pallottino F, Aguzzi J, Sun DW, Menesatti P. Shape analysis of agricultural products: a review of recent research advances and potential application to computer vision. Food Bioprocess Technol. 2011;4:673–92.CrossRefGoogle Scholar
  15. Cranford PJ, Hill PS. Seasonal variation in food utilization by the suspension-feeding bivalve molluscs Mytilus edulis and Placopecten magellanicus. Mar Ecol Prog Ser. 1999;190:223–39.CrossRefGoogle Scholar
  16. Cronin TW, Forward RB. Tidally timed behavior: effects on larval distribution in estuaries. In: Kennedy VS, editor. Estuarine comparisons. New York: Academic; 1982. p. 505–20.CrossRefGoogle Scholar
  17. Cronin TW, Forward Jr RB. Vertical migration cycles of crab larvae and their role in larval dispersion. Bull Mar Sci. 1986;39:192–201.Google Scholar
  18. Dales P. Some quantitative aspects of feeding in sabellids and serpulids fan worms. J Mar Biol Ass UK. 1957;36:309–16.CrossRefGoogle Scholar
  19. Doering PH, Oviatt CA. Application of filtration rate models to field population of bivalves: an assessment using experimental mesocosms. Mar Ecol Prog Ser. 1986;31:265–75.CrossRefGoogle Scholar
  20. Duchêne JC. Sediment recognition by post-larval stages of Eupolymnia nebulosa (Polychaeta, Terebellidae). JEMBE. 2010;386:69–76.CrossRefGoogle Scholar
  21. Duchêne JC. Hydroid and serpulid recruitment patterns using a new laser microtopography technique. JEMBE. 2012;412:27–36.CrossRefGoogle Scholar
  22. Duchêne JC, Queiroga H. Use of an intelligent CCD camera for the study of endogenous vertical migration rhythms in first zoeae of the crab Carcinus maenas. Mar Biol. 2001;139:901–9.CrossRefGoogle Scholar
  23. Duchêne JC, Rosenberg R. Marine benthic faunal activity patterns on a sediment surface assessed by video numerical tracking. Mar Ecol Prog Ser. 2001;223:113–9.CrossRefGoogle Scholar
  24. Duchêne JC, Jordana E, Charles F, Grémare A, Amouroux JM. Experimental study of filtration activity in Ditrupa arietina (Annelida Polychaeta) using an automated image analysis system. Oceanol Acta. 2000;23:805–17.CrossRefGoogle Scholar
  25. Forssén PE. Maximally stable colour regions for recognition and matching. In: Computer Vision and Pattern Recognition, 2007; CVPR‘07. IEEE conference. p. 1–8.Google Scholar
  26. Forward RB, Swanson J, Tankersley RA and JM Welch.Endogenous swimming rhytms of blue crab, Callinectes sapidus, megalopae: Effects of offshore and estuarine cues. Mar. Biol. 1997;127:621–628.Google Scholar
  27. Foster-Smith RL. Some mechanisms for the control of pumping activity in bivalves. Mar Behav Physiol. 1976;4:41–60.CrossRefGoogle Scholar
  28. Frank DM, Hamilton JF, Ward JE, Shumway SE. A fiber optic sensor for high resolution measurement and continuous monitoring of valve gaping in bivalve mollucs. J Shellfish Res. 2007;26:575–80.CrossRefGoogle Scholar
  29. Gili JM, Alva V, Coma R, Orejas C, Pages F, Ribes M, Zabala M, Arntz W, Bouillon J, Boero F, Hugues RG. Benthic suspension feeders in shallow marine ecosystems. Zool Verh Leiden. 1998;323:99–105.Google Scholar
  30. Grémare A, Duchêne JC, Rosenberg R, David E, Desmalades M. Feeding behaviour and functional response of Abra ovata and A. nitida compared by image analysis. Mar Ecol Prog Ser. 2004;267:195–208.CrossRefGoogle Scholar
  31. Guizien K, Orvain F, Duchêne JC, Le Hir P. Accounting for rough bed friction factors of mud beds as a result of biological activity in erosion experiments. J Hydraul Eng. 2012;138(11):979–84.CrossRefGoogle Scholar
  32. Haddon JF, Boyce JF. Co-occurrence matrices for image analysis. IEEE Electron Commun Eng J. 1993;5:71–83.CrossRefGoogle Scholar
  33. Herman PMJ, Scholten H. Can suspension-feeders stabilize estuarine ecosystems? In: Barnes M, Gibson RN, editors. Trophic relationships in the marine environment. Proceedings of 24th European marine biology symposium. Aberdeen: Aberdeen University Press; 1990. p. 104–16.Google Scholar
  34. Hollertz K, Duchêne JC. Burrowing behaviour and sediment reworking in the heart urchin Brissopsis lyrifera Forbes (Spatangoida). Mar Biol. 2001;139:951–7.CrossRefGoogle Scholar
  35. Hu MK. Visual pattern recognition by moment invariants. IRE Trans Inf Theory. 1962;IT-8:179–87.Google Scholar
  36. Job SD, Bellwood DR. Light sensitivity in larval fishes: implications for vertical zonation in the pelagic zone. Limnol Oceanogr. 2000;45:362–71.CrossRefGoogle Scholar
  37. Jones WJ, Preston CM, Marin III R, Scholin CA, Vrijenhoek RC. A robotic molecular method for in situ detection of marine invertebrate larvae. Mol Ecol Resour. 2008;8:540–50.CrossRefPubMedGoogle Scholar
  38. Jordana E, Duchêne JC, Charles F, Grémare A, Amouroux JM. Experimental study of suspension-feeding activity in the serpulid polychaete Ditrupa arietina (O.F. Müller). JEMBE. 2000;252:57–74.CrossRefGoogle Scholar
  39. Jorgensen CB, editor. Biology of suspension-feeding. Oxford: Pergamon Press; 1966. p. 357.Google Scholar
  40. Jou LJ, Lin SC, Chen BC, Chen WY, Liao CM. Synthesis and measurement of valve activities by an improved online clam-based behavioral monitoring system. Comput Electron Agric. 2013;90:106–18.CrossRefGoogle Scholar
  41. Kotta J, Orav-Kotta H, Vuorinen I. Field measurements on the variability in biodeposition and estimates of grazing pressure of suspension-feeding bivalves in the Northern Baltic Sea. In: The Comparative roles of suspension-feeders in ecosystems. Proceedings of the NATO advanced research workshop on the comparative roles of suspension-feeders in ecosystems Nida, Lithuania 4–9 Oct 2003. 2005. p. 11–29.Google Scholar
  42. Leonard AB. Functional response in Antedon mediterranea (Lamarck) (Echinodermata: Crinoidea): the interaction of prey concentration and current velocity on a passive suspension feeder. J Exp Mar Biol Ecol. 1989;84:81–103.CrossRefGoogle Scholar
  43. Maire O, Amouroux JM, Duchêne JC, Grémare A. Relationship between filtration activity and food availability in the Mediterranean mussel Mytilus galloprovincialis. Mar Biol. 2007a;152:1293–307.CrossRefGoogle Scholar
  44. Maire O, Duchêne JC, Amouroux JM, Gremare A. Activity patterns in the terebellid polychaete Eupolymnia nebulosa assessed using a new image analysis system. Mar Biol. 2007b;151:737–49.CrossRefGoogle Scholar
  45. Maire O, Duchêne JC, Bigot L, Grémare A. Linking feeding activity and sediment reworking in the deposit-feeding bivalve Abra ovata with image analysis, laser telemetry and luminophore tracers. Mar Ecol Prog Ser. 2007c;351:139–50.CrossRefGoogle Scholar
  46. Maire O, Lecroart P, Meysman FJR, Rosenberg R, Duchêne JC, Grémare A. Quantification of sediment reworking rates in bioturbation research: a review. Aquat Biol. 2008;2:219–38.CrossRefGoogle Scholar
  47. Mills DJ, Verdouw G, Frusher SD. Remote multi-camera system for in situ observations of behaviour and predator/prey interactions of marine benthic macrofauna. N Z J Mar Freshw Res. 2005;39:347–52.CrossRefGoogle Scholar
  48. Pinto AM, Moreira AP, Costa PG. Streaming image sequences for vision-based mobile robots. In: Moreira AP et al., editors. CONTROLO’2014 – proceedings of the 11th Portuguese conference on automatic control. Cham: Springer International; 2015. p. 637–46.Google Scholar
  49. Riisgård HU. On measurement of filtration rates in bivalves – the stony road to reliable data: review and interpretation. Mar Ecol Prog Ser. 2001;211:275–91.CrossRefGoogle Scholar
  50. Riisgård HU, Kinner C, Seerup DF. Regulation of opening state and filtration rate in filter-feeding bivalves (Cardium edule, Mytilus edulis, Mya arenaria) in response to low algal concentration. J Exp Mar Biol Ecol. 2003;284:105–27.CrossRefGoogle Scholar
  51. Riisgård HU, Lassen J, Kittner C. Valve-gape response times in mussels (Mytilus edulis) – effects of laboratory preceding-feeding conditions and in situ tidally induced variation in phytoplankton biomass. J Shellfish Res. 2006;25:901–11.CrossRefGoogle Scholar
  52. Robson A, Garcia de Leaniz C, Wilson RP, Halsey LG. Effect of anthropogenic feeding regimes on activity rhythms of laboratory mussels exposed to natural light. Hydrobiologia. 2010;655:197–204.CrossRefGoogle Scholar
  53. Romero-Ramirez A, Grémare A, Desmalades M, Duchêne JC. Semi-automatic analysis and interpretation of sediment profile images. Environ Model Software. 2013;47:42–54.CrossRefGoogle Scholar
  54. Rosenberg R. Suspension feeding in Abra alba (Mollusca). Sarsia. 1993;78:119–21.CrossRefGoogle Scholar
  55. Rosenberg R, Grémare A, Duchêne JC, Davey E, Frank M. 3D visualization and quantification of marine benthic biogenic structures and particle transport utilizing computer-aided tomography. Mar Ecol Prog Ser. 2008;363:171–82.CrossRefGoogle Scholar
  56. Rosten E, Porter R, Drummond T. Faster and better: a machine learning approach to corner detection. IEEE Trans Pattern Anal Mach Intell. 2010;32:105–19.CrossRefPubMedGoogle Scholar
  57. Saint-Béat B, Dupuy C, Agogué H, Carpentier A, Chalumeau J, Como S, David V, De Crignis M, Duchêne J-C, Fontaine C, Feunteun E, Guizien K, Hartmann H, Lavaud J, Lefebvre S, Lefrançois C, Mallet C, Montanié H, Mouget J-L, Orvain F, Ory P, Pascal P-Y, Radenac G, Richard P, Vézina AF, Niquil N. How does the resuspension of the biofilm alter the functioning of the benthos–pelagos coupled food web of a bare mudflat in Marennes-Oléron Bay (NE Atlantic)? J Sea Res. 2014;2:144–57.CrossRefGoogle Scholar
  58. Sanford E, Bermudez D, Bertness MD, Gaines SD. Flow, food supply and acorn barnacle population dynamics. Mar Ecol Prog Ser. 1994;104:49–62.CrossRefGoogle Scholar
  59. Sarda F, Aguzzi J. A review of burrow counting as an alternative to other typical methods of assessment of Norway lobster populations. Rev Fish Biol Fish. 2012;22:409–22.CrossRefGoogle Scholar
  60. Shaffer LR, Miller AC, Payne BS. Preliminary results on studies of mussel shell gape under different environmental conditions. Gulf Mex Sci. 1999;17:135–6.Google Scholar
  61. Shepherd TD, Costain KE, Litvak MK. Effect of development rate on the swimming, escape responses and morphology of the yolk-sac stage larval American plaice, Hippoglossoides platessoides. Mar Biol. 2000;137:737–45.CrossRefGoogle Scholar
  62. Sow M, Durrieu G, Briollais L, Ciret P, Massabuau JC. Water quality assessment by means of HFNI valvometry and high-frequency data modeling. Environ Monit Assess. 2011;182(1–4):155–70.CrossRefPubMedGoogle Scholar
  63. Sullivan BK, Suchman CL, Costello JH. Mechanisms of prey selection by ephyrae of the scyphomedusa Aurelia aurita. Mar Biol. 1997;130:213–22.CrossRefGoogle Scholar
  64. Thorin S, Bourdages H, Vincent B. Study of siphon activity in Mya arenaria (L.) in the intertidal zone by means of an underwater video camera. J Exp Mar Biol Ecol. 1998;224:205–44.CrossRefGoogle Scholar
  65. Tran D, Nadau A, Durrieu G, Ciret P, Parisot JP, Massabuau JC. Field chronobiology in a molluscan bivalve: how the moon and sun cycles interact to drive oyster activity rhythms. Chronobiol Int. 2011;28:307–17.CrossRefPubMedGoogle Scholar
  66. Ubertini M, Lefebvre S, Gangnery A, Grangeré K, Le Gendre R, Orvain F. Spatial variability of benthic-pelagic coupling in an estuary ecosystem: consequences for microphytobenthos resuspension phenomenon. PLoS ONE. 2012a; 7(8):e44155. doi:10.1371/journal.pone.0044155.Google Scholar
  67. Ubertini M, Orvain F, Rakotomalala C, Lavaud J, Lefebvre S, Duchêne J-C. Microphytobenthos resuspension: impact of sand-mud mixtures, biofilm age and bioturbation activity exerted by the cockle Cerastoderma edule. 50th symposium of the estuarine and coastal science association ECSA, Venice, July 2012b.Google Scholar
  68. Ubertini M, Orvain F, Rakotomalala C, Lefebvre S, Lavaud J, Duchêne JC. Assessment of the bioturbator Cerastoderma edule impact on sediment and microphytobenthos resuspension: a flume study. ASLO 2013, New Orleans.Google Scholar
  69. Ubertini M, Lefebvre S, Rakotomalala C, Orvain F. Impact of sediment grain-size and biofilm age on epipelic microphytobenthos resuspension. JEMBE. 2015;467:52–64.CrossRefGoogle Scholar
  70. Vedel A, Andersen BB, Riisgard HU. Field investigations of pumping activity of the facultatively filter-feeding polychaete Nereis diversicolor using an improved infrared phototransducer system. Mar Ecol Prog Ser. 1994;103:91–101.CrossRefGoogle Scholar
  71. Wikander PB. Quantitative aspects of deposit-feeding in Abra nitida (Müller) and A. longigallus (Scacchi) (Bivalvia, Tellinacea). Sarsia. 1980a;66:35–48.CrossRefGoogle Scholar
  72. Wikander PB. Biometry and behaviour in Abra nitida (Müller) and A. longicallus (Scacchi) (Bivalvia, Tellinacea). Sarsia. 1980b;65:255–68.CrossRefGoogle Scholar
  73. Yahel G, Marie D, Genin A. InEx – a direct in situ method to measure filtration rates, nutrition, and metabolism of active suspension feeders. Limnol Oceanogr Methods. 2005;3:46–58.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.CNRS, EPOC, UMR 5805TalenceFrance

Personalised recommendations