Skip to main content

Energetics, Particle Capture, and Growth Dynamics of Benthic Suspension Feeders

Abstract

Marine benthic communities are dominated by suspension feeders, including those actively pumping water, passively encountering particles, or some combination of the two. The mechanisms by which particles are encountered and retained are now well known for a range of water flow conditions and organism morphologies. Recent research has attempted to quantify the energetic components of suspension feeding, including intake of particles, pumping rates, and metabolic costs of these activities. Energetic models depend strongly on environmental conditions, including temperature, flow speed, and food availability, for example. The effects of these variables have been combined for realistic scenarios using dynamic energy budget (DEB) models, and related models to examine components of fitness (growth, reproduction, population increase), for both existing conditions and for conditions expected for future environments. Detailed examples are provided from recent research on bivalve mollusks, cnidarians including sea anemones and corals, and barnacles. These examples cover several major phyla that are often important components of intertidal and subtidal benthic communities. All common phyla of benthic suspension feeders are discussed, though less extensively, especially given the paucity of energetics studies for some of these phyla.

This is a preview of subscription content, log in via an institution.

References

  • Anderson DT, Southward AJ. Cirral activity of barnacles. In: Barnacle biology. Rotterdam, Netherlands: A.A. Balkema Press; 1987. p. 135–74.

    Google Scholar 

  • Anthony KRN, Fabricius KE. Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Biol Ecol. 2000;252:221–53.

    Article  PubMed  Google Scholar 

  • Arsenault DJ, Marchinko KB, Palmer AR. Precise tuning of barnacle leg length to coastal wave action. Proc R Soc Lond B Biol Sci. 2001;268:2149–54.

    Article  CAS  Google Scholar 

  • Bayne BL, Widdows J. The physiological ecology of two populations of Mytilus edulis L. Oecologia. 1978;37:137–62.

    Article  Google Scholar 

  • Berkes F. Implementing ecosystem-based management: evolution or revolution? Fish Fish. 2012;13:465–76.

    Article  Google Scholar 

  • Bertness MD, Gaines S, Yeh SM. Making mountains out of barnacles: the dynamics of acorn barnacle hummocking. Ecology. 1998;79:1382–94.

    Article  Google Scholar 

  • Bingham BL, Dimond JL, Muller-Parker G. Symbiotic state influences life-history strategy of a clonal cnidarian. Proc R Soc B. 2014;281:20140548. doi:10.1098/rspb.2014.0548.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buckeridge JS. Opportunism and the resilience of barnacles (Cirripedia: Thoracica) to environmental change. Integr Zool. 2012;7:137–46.

    Article  PubMed  Google Scholar 

  • Carrington E, Waite HJ, Sarà G, Sebens KP. Mussels as a model system for integrative ecomechanics. Ann Rev Mar Sci. 2015;7:9.10–27.

    Article  Google Scholar 

  • Castilla JC, Guinez RG, Alvarado JL, Pacheco C, Varas M. Distribution, population structure, population biomass and morphological characteristics of the tunicate Pyura stolonifera in the Bay of Antofagasta, Chile. Mar Ecol. 2000;21:161–74.

    Article  Google Scholar 

  • Chapman DS, et al. Modelling the introduction and spread of non-native species: international trade and climate change drive ragweed invasion. Glob Chang Biol. 2016. doi:10.1111/gcb.13220.

    Google Scholar 

  • Coma R, Gili JM, Zabala M, Riera T. Feeding and prey capture cycles in the aposymbiotic gorgonian Paramuricea clavata. Mar Ecol Prog Ser. 1994;115:257–70.

    Article  Google Scholar 

  • Coma R, Ribes M, Gili JM, Zabala M. An energetic approach to the study of life-history traits of two modular colonial benthic invertebrates. Mar Ecol Prog Ser. 1998;162:89–103.

    Article  Google Scholar 

  • Denny MW. Biology and the mechanics of the wave-swept environment. Princeton: Princeton University Press; 1988, 344 pp.

    Book  Google Scholar 

  • Fabricius KE, Yahel G, Genin A. In situ depletion of phytoplankton by an azooxanthellate soft coral. Limnol Oceanogr. 1998;43:354–6.

    Article  Google Scholar 

  • Ferrier-Pagès C, Witting J, Tambutté E, Sebens KP. Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs. 2003;22:229–40.

    Article  Google Scholar 

  • Galloway AWE, Lowe AT, Sosik EA, Yeung YS, Duggins DO. Fatty acid and stable isotope biomarkers suggest microbe-induced differences in benthic food webs between depths. Limnol Oceanogr. 2013;58:1452–62.

    Article  Google Scholar 

  • Geierman C, Emlet R. Feeding behavior, cirral fan anatomy, Reynolds numbers, and leakiness of Balanus glandula, from post-metamorphic juvenile to the adult. J Exp Mar Biol Ecol. 2009;379:68–76.

    Article  Google Scholar 

  • Gilman S, Wong J, Chen S. Oxygen consumption in relation to body size and cirral beat behavior in the barnacle, Balanus glandula. J Crustac Biol. 2013;33:317–22.

    Article  Google Scholar 

  • Hamaoui-Laguel L, et al. Effects of climate change and seed dispersal on airborne ragweed pollen loads in Europe. Nat Clim Chang. 2015;5:766–71.

    Article  Google Scholar 

  • Helmuth BST, Sebens KP, Daniel TL. Morphological variation in coral aggregations: branch spacing and mass flux to coral tissues. J Exp Mar Biol Ecol. 1997;209:233–59.

    Article  Google Scholar 

  • Houlbrèque F, Ferrier-Pagès C. Heterotrophy in tropical scleractinian corals. Biol Rev Camb Philos Soc. 2009;84:1–17. doi:10.1111/j.1469-185X.2008.00058.x.

    Article  PubMed  Google Scholar 

  • Houlbrèque F, Reynaud S, Godinot C, Oberhänsli F, Rodolfo-Metalpa R, Ferrier-Pagès C. Ocean acidification reduces feeding rates in the scleractinian coral Stylophora pistillata: Acidification and Stylophora nutrition. Limnol Ocean. 2015;60:89–99.

    Google Scholar 

  • Hughes RN, Lewis AH. On the spatial distribution, feeding and reproduction of the vermetid gastropod Dendropoma maximum. J Zool. 2009;172:531–47. doi:10.1111/j.1469-7998.1974.tb04383.x.

    Article  Google Scholar 

  • Jumars P. Concepts in biological oceanography; an interdisciplinary primer. Oxford: Oxford University Press; 1993, 368 pp.

    Google Scholar 

  • Koehl MAR, Strickler JR. Copepod feeding currents: food capture at low Reynolds number. Limnol Oceanogr. 1981;26:1062–73.

    Article  Google Scholar 

  • Kooijman SALM. Dynamic energy budget theory for metabolic organisation. 3rd ed. Cambridge: Cambridge University Press; 2010, 508pp.

    Google Scholar 

  • LaBarbera M. Feeding currents and particle capture mechanisms in suspension feeding animals. Am Zool. 1984;24:71–84.

    Article  Google Scholar 

  • Lang JC, Chornesky EA. Competition between scleractinian reef corals- a review of mechanisms and effects. In: Dubinsky Z, editor. Coral reefs, Ecosystems of the World 25. Amsterdam: Elsevier; 1990. p. 209–52.

    Google Scholar 

  • Li NK, Denny MW. Limits to phenotypic plasticity: flow effects on barnacle feeding appendages. Biol Bull. 2004;206:121–4.

    Article  PubMed  Google Scholar 

  • Matzelle A, Montalto V, Sarà G, Zippay M, Helmuth B. Application of the covariation method for Dynamic Energy Budget model parameterization of the bivalve Mytilus californianus. J Sea Res. 2014;94:105–10.

    Article  Google Scholar 

  • Mills MM, Sebens KP. Ingestion and assimilation of nitrogen from benthic sediments by three species of corals. Mar Biol. 2005;145:1097–106.

    Article  Google Scholar 

  • Munroe DM, Klinck JM, Hofmann EE, Powell EN. The role of larval dispersal in metapopulation gene flow: local population dynamics matter. J Mar Res. 2012;70:441–67.

    Article  Google Scholar 

  • Neufeld CJ, Rankine C. Cuticle and muscle variation underlying phenotypic plasticity in barnacle feeding leg and penis form. Invertebr Biol. 2012;131:96–109.

    Google Scholar 

  • Nishizaki MT, Carrington E. Behavioral responses to water flow and temperature influence feeding in the barnacle, Balanus glandula. Mar Ecol Prog Ser. 2014a;507:207–18.

    Article  Google Scholar 

  • Nishizaki MT, Carrington E. The effect of water temperature and flow on respiration in barnacles: patterns of mass transfer versus kinetic limitation. J Exp Biol. 2014b;217:2101–9.

    Article  PubMed  Google Scholar 

  • Nishizaki MT, Carrington E. The effect of water temperature and velocity on barnacle growth: quantifying the impact of multiple environmental stressors. J Therm Biol. 2015. doi:10.1016/j.jtherbio.2015.02.002.

    PubMed  Google Scholar 

  • Okamura B, Partridge JC. Suspension feeding adaptations to extreme flow environments in a marine bryozoan. Biol Bull. 1999;196:205–15.

    Article  Google Scholar 

  • Pacifici M, Foden WB, Visconti P, Watson JEM, Butchart SHM, Kovacs KM, Scheffers BR, Hole DG, Martin TG, Akçakaya HR, Corlett RT, Huntley B, Bickford D, Carr JA, Hoffmann AA, Midgley GF, Pearce-Kelly P, Pearson RG, Williams SE, Willis SG, Young B, Rondinini C. Assessing species vulnerability to climate change. Nat Clim Chang. 2015;5:215–24.

    Article  Google Scholar 

  • Palardy JE, Grottoli AG, Matthews KA. Effect of naturally changing zooplankton concentrations on feeding rates of two coral species in the Eastern Pacific. J Exp Mar Biol Ecol. 2006;331:99–107.

    Article  Google Scholar 

  • Patterson MR, Sebens KP. Forced convection modulates gas exchange in cnidarians. Proc Natl Acad Sci. 1989;86:8833–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson MR, Sebens KP, Olson RR. In situ measurements of forced convection on primary production and dark respiration in reef corals. Limnol Oceanogr. 1991;36:936–48.

    Article  CAS  Google Scholar 

  • Pikitch EK, et al. Ecosystem-based fishery management. Science. 2004;305:346–7.

    Google Scholar 

  • Pusceddu A, Dell’Anno A, Danovaro R, Manini E, Sarà G, Fabiano M. Enzymatically hydrolyzable protein and carbohydrate sedimentary pools as indicators of the trophic state of detritus sink systems: a case study in a Mediterranean coastal lagoon. Estuaries. 2003;26:641–50.

    Article  CAS  Google Scholar 

  • Ribes M, Coma R, Gili JM. Heterotrophic feeding by gorgonian corals with symbiotic zooxanthella. Limnol Oceanogr. 1998;43:1170–9.

    Article  Google Scholar 

  • Richter R, et al. How to account for habitat suitability in weed management programmes? Biol Invasions. 2013;15:657–69.

    Article  Google Scholar 

  • Romero MR, Kelstrup HCP, Strathmann RR. Capture of particles by direct interception by cilia during feeding of a gastropod veliger. Biol Bull. 2010;218:145–59.

    Article  PubMed  Google Scholar 

  • Rubenstein DI, Koehl MAR. The mechanisms of filter feeding: some theoretical considerations. Am Nat. 1977;111:981–94.

    Article  Google Scholar 

  • Sanford E. The feeding, growth, and energetics of two rocky intertidal predators (Pisaster ochraceus and Nucella canaliculata) under water temperatures simulating episodic upwelling. J Exp Mar Biol Ecol. 2002;273:199–218.

    Article  Google Scholar 

  • Sanford E, Menge BA. Spatial and temporal variation in barnacle growth in a coastal upwelling system. Mar Ecol Prog Ser. 2001;209:143–57.

    Article  Google Scholar 

  • Sarà G, Kearney M, Helmuth B. Combining heat-transfer and energy budget models to predict local and geographic patterns of mortality in Mediterranean intertidal mussels. Chem Ecol. 2011;27:135–45.

    Article  Google Scholar 

  • Sarà G, Reid G, Rinaldi A, Palmeri V, Troell M, Kooijman SALM. Growth and reproductive simulation of candidate shellfish species at fish cages in the southern Mediterranean: Dynamic Energy Budget (DEB) modelling for integrated multi-trophic aquaculture. Aquaculture. 2012;324–325:259–66.

    Article  Google Scholar 

  • Sarà G, Palmeri V, Montalto V, Rinaldi A, Widdows J. Parameterisation of bivalve functional traits for mechanistic eco-physiological Dynamic Energy Budget (DEB) models. Mar Ecol Prog Ser. 2013a;480:99–117.

    Article  Google Scholar 

  • Sarà G, Palmeri V, Rinaldi A, Montalto V, Helmuth B. Predicting biological invasions in marine habitats through eco-physiological mechanistic models: a study case with the bivalve Brachidontes pharaonis. Divers Distrib. 2013b;19:1235–47.

    Article  Google Scholar 

  • Sarà G, Milanese M, Prusina I, Sarà A, Angel DL, Glamuzina B, Nitzan T, Freeman S, Rinaldi A, Palmeri V, Montalto V, Lo Martire M, Gianguzza P, Arizza V, Lo Brutto S, De Pirro M, Helmuth B, Murray J, De Cantis S, Williams GA. The impact of climate change on Mediterranean intertidal communities: losses in coastal ecosystem integrity and services. Reg Environ Chang. 2014a;14:5–17.

    Article  Google Scholar 

  • Sarà G, Rinaldi A, Montalto V. Thinking beyond organism energy use: a trait based bioenergetic mechanistic approach for predictions of life history traits in marine organisms. Mar Ecol. 2014b;35:506–15.

    Article  Google Scholar 

  • Sebens KP. The energetics of asexual reproduction and colony formation in benthic marine intertebrates. Am Zool. 1979;19:683–97.

    Article  Google Scholar 

  • Sebens KP. The limits to indeterminate growth: an optimal size model applied to passive suspension feeders. Ecology. 1982;82:209–22.

    Article  Google Scholar 

  • Sebens KP. Chapter 4: Coelenterate energetics. In: Pandian TJ, Vernberg FJ, editors. Animal energetics. New York: Academic; 1987a. p. 55–120.

    Google Scholar 

  • Sebens KP. The ecology of indeterminate growth in animals. Annu Rev Ecol Syst. 1987b;18:371–407.

    Article  Google Scholar 

  • Sebens KP, Koehl MAR. Predation on zooplankton by the benthic anthozoans Alcyonium siderium (Alcyonacea) and Metridium senile (Actiniaria) in the New England subtidal. Mar Biol. 1984;81:255–74.

    Article  Google Scholar 

  • Sebens KP, Witting J, Helmuth B. Effects of water flow and aggregation on particle capture by the reef coral Madracis mirabilis. J Exp Mar Biol Ecol. 1996a;211:1–28.

    Article  Google Scholar 

  • Sebens KP, Vandersall K, Savina L, Graham K. Zooplankton capture by two scleractinian corals, Madracis mirabilis and Montastrea cavernosa, in a field enclosure. Mar Biol. 1996b;127:303–18.

    Article  Google Scholar 

  • Sebens, KP. Adaptive responses to water flow: morphology, energetics, and distribution of reef corals. Proceedings of the 8th International Coral Reef Symposium, Panama City (1996); 1997; 2:1053–8.

    Google Scholar 

  • Sebens KP, Grace S, Helmuth B, Maney E, Miles J. Water flow and prey capture by three scleractinian corals, Madracis mirabilis, Montastrea cavernosa and Porites porites in a field enclosure. Mar Biol. 1998;131:347–60.

    Article  Google Scholar 

  • Sebens KP. Energetic constraints, size gradients and size limits in benthic marine invertebrates. Integr Comp Biol. 2002;42:853–61.

    Article  PubMed  Google Scholar 

  • Sebens KP, Helmuth B, Carrington E, Agius B. Effects of water flow on growth and energetics of the scleractinian coral Agaricia tenuifolia, in Belize. Coral Reefs. 2003;22:35–47.

    Google Scholar 

  • Shimeta J, Jumars PA. Physical-mechanisms and rates of particle capture by suspension-feeders. Oceanogr Mar Biol. 1991;29:191–257.

    Google Scholar 

  • Trager GC, Hwang JS, Strickler JR. Barnacle suspension-feeding in variable flow. Mar Biol. 1990;105:117–27.

    Article  Google Scholar 

  • Verberk WCEP, Atkinson D. Why polar gigantism and Palaeozoic gigantism are not equivalent: effects of oxygen and temperature on the body size of ectotherms. Funct Ecol. 2013;27:1275–85.

    Article  Google Scholar 

  • Vogel S. Life in moving fluids: the physical biology of flow, 2nd rev ed. Princeton: Princeton Paperbacks; 1996. 484 pp.

    Google Scholar 

  • Warren CE, Davis GE. Laboratory studies on the feeding, bioenergetics, and growth of fish. In: Gerking SD, editor. The biological basis of freshwater fish production. Oxford: Blackwell; 1967. p. 175–214.

    Google Scholar 

  • Wellington GM. An experimental analysis of the effects of light and zooplankton on coral zonation. Oecologia. 1982;52:311–20.

    Article  Google Scholar 

  • Wildish D, Kristmanson D. Benthic suspension feeders and flow. Cambridge: Cambridge University Press; 2005, 424 pp.

    Google Scholar 

  • Wu RSS. Effects of crowding on the energetics of the barnacle Balanus glandula Darwin. Can J Zool. 1980;58:559–66.

    Article  Google Scholar 

Download references

Acknowledgments

The University of Washington Friday Harbor Laboratories and Department of Biology supplied facilities for this research. PRIN TETRIS 2010 grant (n. 2010PBMAXP_003) funded to Gianluca Sarà by the Italian Minister of Research and University (MIUR) supported this research. NSF grant OCE 0850809 supported research by K. Sebens.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kenneth Sebens , Gianluca Sarà or Michael Nishizaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Sebens, K., Sarà, G., Nishizaki, M. (2016). Energetics, Particle Capture, and Growth Dynamics of Benthic Suspension Feeders. In: Rossi, S., Bramanti, L., Gori, A., Orejas Saco del Valle, C. (eds) Marine Animal Forests. Springer, Cham. https://doi.org/10.1007/978-3-319-17001-5_17-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17001-5_17-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-17001-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Energetics, Particle Capture, and Growth Dynamics of Benthic Suspension Feeders
    Published:
    08 April 2017

    DOI: https://doi.org/10.1007/978-3-319-17001-5_17-3

  2. Marine Animal Forests
    Published:
    27 January 2017

    DOI: https://doi.org/10.1007/978-3-319-17001-5_17-2

  3. Original

    Energetics, Particle Capture, and Growth Dynamics of Benthic Suspension Feeders
    Published:
    28 July 2016

    DOI: https://doi.org/10.1007/978-3-319-17001-5_17-1