Demography of Animal Forests: The Example of Mediterranean Gorgonians

  • L. Bramanti
  • M. C. Benedetti
  • R. Cupido
  • S. Cocito
  • C. Priori
  • F. Erra
  • M. Iannelli
  • G. Santangelo
Living reference work entry


Gorgonian corals may form dense canopies, resembling miniature forests. Similarly to terrestrial forests, gorgonian canopies can increase local complexity and biodiversity. The demographic study of gorgonian populations can supply valuable tools to our understanding of their complex, long-lasting life cycles. In this chapter we report on the demographic history of two Mediterranean gorgonian corals provided of opposite reproductive strategies: Paramuricea clavata and Corallium rubrum. The two study cases show how a demographic approach can be applied to study the effects of disturbances (mass mortality in P. clavata and harvesting in C. rubrum) on long-lived species. The population of P. clavata, object of our study, dwells at the edge of the summer thermocline in the NW Mediterranean Sea. It has been strongly affected by two high mortality events in 1999 and 2003, associated with an anomalous high temperature of the water column. Long-term data (12 years) allowed the analysis of the population structure before and after the mortality events which killed 78 % of the colonies. Nowadays the population is recovering, exhibiting a fivefold increase in recruitment density despite the reproductive output reduced to 7.25 %. Our observations support the hypothesis of an over abundant reproductive output of the species and a strict density-dependence control of recruitment operated by larger colonies in crowded, stable P. clavata populations.

C. rubrum is a long-lived, slow-growing, and low reproductive gorgonian, whose populations living in the shallower part of the species bathymetric distribution range (between 20 and 50 m depth) are mainly composed by crowded colonies having a small size/early age at first reproduction and high recruitment rates. Deep populations (deeper than 50 m), mainly composed by large colonies, are the main target of commercial fishing nowadays. The minimum harvestable colony size is 7 mm of colony basal diameter, according to General Fisheries Commission for the Mediterranean (GFCM) Scientific Advisory Committee (SAC). Report of the transversal workshop on red coral Ajaccio (Corsica) (5–7 Oct 2011) stated that sexual maturity is reached at an age of about 30–35 years. The assessment of population structure in size/age classes of reproductive and survival rates allowed to project population structure over time.


Octocorals Mesophotic corals Paramuricea clavata Corallium rubrum Demography Population dynamics Mediterranean Sea 



We would like to thank J.M. Gili, S. Rossi, G. Tsounis, I. Vielmini, the Italian Research Group on Red Coral, the researchers and technicians of ISPRA, ENEA S. Teresa (La Spezia), the Portofino and Cap de Creus MAP authorities, the Astrea R/V crew, T. Garcia, R. Rinaldi, and A. Ferrucci for their invaluable and friendly help in collecting deep-dwelling red coral colonies. These studies have been funded by the UNIPI-CISC (Italy-Spain) research project, by the Italian PRIN project 2009–2011, the Italian project on deep-dwelling red coral populations, MedSea, and the COREM European Projects. L. Bramanti’s work has been funded by a Marie Curie Intra-European fellowship. The researches leading to these results has received funding from the European Community’s Seventh Framework Programme under grant agreement 265103 (Project MedSeA).


  1. Angiolillo M, Gori A, Canese S, Bo M, Priori C, Bavestrello G, Salvati E, Erra F, Greenacre M, Santangelo G. Distribution and population structure of deep-dwelling red coral in the Northwest Mediterranean. Mar Ecol. 2015;1:1–17.Google Scholar
  2. Arizmendi-Mejía R, Linares C, Garrabou J, Antunes A, Ballesteros E, Cebrian E, et al. Combining genetic and demographic data for the conservation of a mediterranean marine habitat-forming species. PLoS One. 2015;10(3), e0119585. doi:10.1371/journal.pone.0119585.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Babcock RC. Comparative demography of three species of scleractinian corals using age- and size-dependent classifications. Ecol Monogr. 1991;61:225–44.CrossRefGoogle Scholar
  4. Ballesteros E. Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanogr Mar Biol annu rev. 2006;44:123–95.CrossRefGoogle Scholar
  5. Benayahu Y, Loya Y. Settlement and recruitment of a soft coral: why is Xenia macrospiculata a successful colonizer? Bull Mar Sci. 1985;36:177–88.Google Scholar
  6. Benedetti MC, Priori C, Erra F, Santangelo G. Growth patterns in mesophotic octocorals: timing the branching process in the highly-valuable Mediterranean Corallium rubrum. Estuarine, Coastal and Shelf science. 2016; 171: doi:10.1016/j.ecss.2015.12.026.Google Scholar
  7. Bo M, Canese S, Spiaggiari C, Pusceddu A, Bert Angiolillo M, Giusti M, Loreto M, Salvati E, Greco S, Bavestrello G. Deep coral oases in the South Tyrrhenian Sea. PLoS One. 2012;7(11), e49870.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bramanti L, Edmunds PJ. Density-associated recruitment mediates coral population dynamics on a coral reef. Coral reefs. 2016. doi:10.1007/s00338-016-1413-4.Google Scholar
  9. Bramanti L, Magagnini G, DeMaio L, Santangelo G. Recruitment, early survival and growth of the Mediterranean red coral Corallium rubrum (L 1758), a four-year study. J Exp Mar Biol Ecol. 2005;314:69–78.CrossRefGoogle Scholar
  10. Bramanti L, Rossi S, Tsounis G, Gili JM, Santangelo G. Settlement and early survival of red coral on artificial substrates in different geographic areas: some clues for demography and restoration. Hydrobiologia. 2007;580:219–24.CrossRefGoogle Scholar
  11. Bramanti L, Iannelli M, Santangelo G. Mathematical modelling for conservation and management of gorgonian corals: youngs and olds, could they coexist? Ecol Model. 2009;220:2851–6.CrossRefGoogle Scholar
  12. Bramanti L, Vielmini I, Rossi S, Tsounis G, Iannelli M, Cattaneo-Vietti R, Priori C, Santangelo G. Demographic parameters of two populations of red coral (Corallium rubrum L. 1758) in the North Western Mediterranean. Mar Biol. 2014;161:1015–26.CrossRefGoogle Scholar
  13. Carpine C, Grasshoff M. Les gorgonaires de la Mediterranée, Bulletin de l’Institut Océanographique, vol. 71. Monaco: Musée océanographique; 1975.Google Scholar
  14. Caswell H. Matrix population models: construction, analysis and interpretation. 2nd ed. Sunderland: Sinauer Associates; 2001.Google Scholar
  15. Cau A, Bramanti L, Cannas R, Follesa MC, Angiolillo M, Canese S, Bo M, Cucco D, Guizien K. Habitat constraints and self-thinning shape Mediterranean red coral deep population structure: implication for conservation practice. Sci Rep. 2016. doi:10.1038/srep23322.PubMedPubMedCentralGoogle Scholar
  16. Cerrano C, Bavestrello G, Bianchi CN, Cattaneo-Vietti R, Bava S, Morganti C, Morri C, Picco P, Sara G, Schiapparelli S, Siccardi A, Sponga F. A catastrophic mass mortality episode of gorgonians and other organisms in the Ligurian Sea, summer 1999. Ecol Lett. 2000;3:284–93.CrossRefGoogle Scholar
  17. Cerrano C, Arillo A, Azzini A, Calcinai B, Castellano L, Muti C, Valisano L, Zega G, Bavestrello G. Gorgonian population recovery after a mass mortality event. Aquat Conserv Mar Freshwat Ecosyst. 2005;15:147–57.CrossRefGoogle Scholar
  18. Chadwick-Furman NE, Goffredo S, Loya Y. Growth and population dynamic model of the reef coral Fungia granulosa Klunzinger, 1879 at Eilat, northern Red Sea. J Exp Mar Biol Ecol. 2000;249:199–218.CrossRefPubMedGoogle Scholar
  19. Cicogna F, Cattaneo-Vietti R. Red coral in the Mediterranean Sea, art, history and science. Roma: Ministero Risorse Agricole, Alimentari e Forestali; 1993.Google Scholar
  20. Coma R, Ribes M, Zabala M, Gili JM. Reproduction and cycle of gonadal development in the Mediterranean gorgonian Paramuricea clavata. Mar Ecol Prog Ser. 1995;117:173–83.CrossRefGoogle Scholar
  21. Costantini F, Taviani M, Remia A, Pintus E, Schembrini PJ, Abbiati M. Deep-water Corallium rubrum (L.,1758) from the Mediterranean sea: preliminary genetic characterization. Mar Ecol. 2010;31:261–9.CrossRefGoogle Scholar
  22. Costantini F, Rossi S, Pintus E, Cerrano C, Gili JM, Abbiati M. Low connectivity and declining genetic variability along a depth gradient in Corallium rubrum populations. Coral Reefs. 2011;30:991–1003.CrossRefGoogle Scholar
  23. Cupido R, Cocito S, Sgorbini S, Bordone A, Santangelo G. Response of a gorgonian (Paramuricea clavata) population to mortality events: recovery or loss? Aquat Conserv Mar Freshwat Ecosyst. 2008;18:984–92.CrossRefGoogle Scholar
  24. Cupido R, Cocito S, Barsanti M, Sgorbini S, Peirano A, Santangelo G. Unexpected long-term population dynamics in a canopy-forming gorgonian following mass mortality. Mar Ecol Prog Ser. 2009;394:195–200.CrossRefGoogle Scholar
  25. Cupido R, Cocito S, Manno V, Ferrando S, Peirano A, Iannelli M, Bramanti L, Santangelo G. Sexual structure of a highly reproductive, recovering gorgonian population: quantifying reproductive output. Mar Ecol Prog Ser. 2012;469:25–36.CrossRefGoogle Scholar
  26. Doughty CL, Quattrini AM, Cordes EE. Insights into the population dynamics of the deep-sea coral genus Paramuricea in the Gulf of Mexico. Deep Sea Res II. 2014;99:71–82.CrossRefGoogle Scholar
  27. Edmunds PJ. The population biology of Porites astreoides and Diploria strigosa on a shallow Caribbean reef. Mar Ecol Prog Ser. 2010;418:87–104.CrossRefGoogle Scholar
  28. Gallmetzer I, Haselmair A, Velimirov B. Slow growth and early sexual maturity: bane and boon for the red coral Corallium rubrum. Estuar Coast Shelf Sci. 2010;90:1–10.CrossRefGoogle Scholar
  29. Garrabou J, Harmelin JG. A 20-year study on life-history traits of a harvested long-lived temperate coral in NW Mediterranean: insights into conservation and management needs. J Anim Ecol. 2002;71:966–78.CrossRefGoogle Scholar
  30. Garrabou J, Perez T, Santoretto S, Harmelin JC. Mass mortality event in red coral Corallium rubrum populations in the Provence region (France, NW Mediterranean). Mar Ecol Prog Ser. 2001;217:263–72.CrossRefGoogle Scholar
  31. Garrabou J, Coma R, Bensoussan N, Bally M, Chevaldonné P, Cigliano M, Diaz D, Harmelin JG, Gambi CM, Kersting DK, Ledoux JB, Lejeusne C, Linares C, Marschal C, Perez T, Ribes M, Romano C, Serrano E, Teixido N, Torrents O, Zabala M, Zuberer F, Cerrano C. Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob Chang Biol. 2009;15(5):1090–103.CrossRefGoogle Scholar
  32. GFCM (General Fisheries Commission for the Mediterranean Scientific Advisory Committee SAC). Report of the transversal workshop on red coral Ajaccio (Corsica). 5–7 Oct 2011.Google Scholar
  33. Gili JM, Coma R. Benthic suspension feeders: their paramount role in littoral marine food webs. Trends Ecol Evol. 1998;13:316–21.CrossRefPubMedGoogle Scholar
  34. Goffredo S, Chadwick-Furman NE. Comparative demography of mushroom corals (Scleractinia: Fungiidae) at Eilat, northern Red Sea. Mar Biol. 2003;142:411–8.CrossRefGoogle Scholar
  35. Grigg RW. Demography of population dynamics of two gorgonian corals. Ecology. 1977;58:278–90.CrossRefGoogle Scholar
  36. Grigg RW. Recruitment limitation of a deep benthic hard-bottom octocoral population in the Hawaiian Islands. Mar Ecol Prog Ser. 1988;48:121–6.CrossRefGoogle Scholar
  37. Kipson S, Linares C, Čižmek H, Cebrián E, Ballesteros E, Bakran-Petricioli T, Garrabou J. Population structure and conservation status of the red gorgonian Paramuricea clavata (Risso, 1826) in the Eastern Adriatic Sea. Mar Ecol. 2014;36(4):982–93.CrossRefGoogle Scholar
  38. Kwit C, Horvitz CC, Platt WJ. Conservation of slow-growing, long-lived tree species: input from the demography of a rare understory conifer, Taxus floridana. Cons Biol. 2004;18:432–43.CrossRefGoogle Scholar
  39. Lartaud F, Galli G, Raza A, Priori C, Benedetti MC, Cau A, Santangel G, Iannelli M, Solidoro C, Bramanti L. Growth patterns in long-lived coral species. Marine Animal Forests. 2016; pp. 1–32. doi:10.1007/978-3-319-17001-5_15-1.Google Scholar
  40. Lasker HR. Population growth of a gorgonian coral: equilibrium and nonequilibrium sensitivity to changes in life history variables. Oecologia. 1991;86:503–9.CrossRefGoogle Scholar
  41. Lasker HR, Kim K, Cofforth MA. Production, settlement and survival of plexaurid gorgonian recruits. Mar Ecol Prog Ser. 1998;162:111–23.CrossRefGoogle Scholar
  42. Ledoux JB, Garrabou J, Bianchimani O, Drap P, Féral JP, Aurelle D. Fine-scale genetic structure and inferences on population biology in the threatened Mediterranean red coral, Corallium rubrum. Mol Ecol. 2010;19:4204–16.CrossRefPubMedGoogle Scholar
  43. Linares C, Doak DF. Forecasting the combined effects of disparate disturbances on the persistence of long-lived gorgonians: a case study of Paramuricea clavata. Mar Ecol Prog Ser. 2010;402:59–68.CrossRefGoogle Scholar
  44. Linares C, Doak D, Coma R, Diaz D, Zabala M. Life history and viability of a long-lived marine invertebrate: the octocoral Paramuricea clavata. Ecology. 2007;88:918–28.CrossRefPubMedGoogle Scholar
  45. Linares C, Coma R, Mariani S, Díaz D, Hereu B, Zabala M. Early life history of the Mediterranean gorgonian Paramuricea clavata: implications for population dynamics. Invertebr Biol. 2008;127:1–11.CrossRefGoogle Scholar
  46. Linares C, Bianchimani O, Torrents O, Marschal C, Drap P, Garrabou J. Marine protected areas and the conservation of long-lived marine invertebrates: the Mediterranean red coral. Mar Ecol Prog Ser. 2010;402:69–79.CrossRefGoogle Scholar
  47. Marschal C, Garrabou J, Harmelin JC, Pichon M. A new method for measuring growth and age in the precious red coral Corallium rubrum (L). Coral Reefs. 2004;23:423–32.CrossRefGoogle Scholar
  48. Mokhtar-Jamai K, Pascual M, Ledoux JM, Coma R, Féral JP, Garrabou J, Aurelle D. From global to local genetic structuring in the red gorgonian Paramuricea clavata: the interplay between oceanographic conditions and limited larval dispersal. Mol Ecol. 2011;20(16):3291–305.CrossRefPubMedGoogle Scholar
  49. Montero-Serra I, Linares C, García M, Pancaldi F, Frleta-Vali M, Ledoux J-B, et al. Harvesting effects, recovery mechanisms, and management strategies for a long-lived and structural precious coral. PLoS One. 2015;10(2), e0117250. doi:10.1371/journal.pone.0117250.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Öztürk B, Aktan Y, Topaloğlu B, Keskin Ç, Öztürk AA, Dede A, Türkozan O. Marine life of Turkey in the Aegean & Mediterranean Seas. Marine Education Series. Istambul, Turkish Marine Research Foundation (TUDAV) Publications; 2004. 10. 200 ppGoogle Scholar
  51. Padrón M. Evaluation of conservation efficiency for gorgonian species at a regional scale based on an existing Marine Protected Area network and modeling scenarios accounting for hydrodynamics. PhD thesis. Université Pierre et Marie Curie, University of Bologna. 2015.Google Scholar
  52. Padrón M, Guizien K. Modelling the effect of demographic traits and connectivity on the genetic structuration of marine metapopulations of sedentary benthic invertebrates. ICES J Mar Sci. 2015. doi:10.1093/icesjms/fsv158.Google Scholar
  53. Pilczynska J, Cocito S, Boavida J, Serrão E, Queiroga H. Genetic diversity and local connectivity in the Mediterranean Red Gorgonian Coral after Mass Mortality Events. PLoS One. 2016;11(3), e0150590. doi:10.1371/journal.pone.0150590.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Priori C, Mastascusa V, Erra F, Angiolillo M, Canese S, Santangelo G. Demography of deep-dwelling red coral populations: age and reproductive structure of a highly valued marine species. Estuar Coast Shelf Sci. 2013;118:43–9.CrossRefGoogle Scholar
  55. Roark EB, Guilderson TP, Dumbar RB, Ingram BL. Radiocarbon-basedages and growth rates of Hawaiian deep-sea corals. Mar Ecol Prog Ser. 2006;327:1–14.CrossRefGoogle Scholar
  56. Roark EB, Guilderson TP, Dunbar RB, Fallon SJ, Mucciarone DA. Extreme longevity in proteinaceous deep-sea corals. Proc Natl Acad Sci U S A. 2009;106:5204–8.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Rossi S. The destruction of the “animal forests” in the ocean: towards an over-simplification of benthic ecosystems. Ocean Coast Manag. 2013;84:77–85.CrossRefGoogle Scholar
  58. Rossi S, Tsounis G, Orejas C, Padrón T, Gili JM, Bramanti L, Teixidó N, Gutt J. Survey of deep-dwelling red coral (Corallium rubrum) populations at Cap de Creus (NW Mediterranean). Mar Biol. 2008;154:533–45.CrossRefGoogle Scholar
  59. Santangelo G, Abbiati M. Red coral: conservation and management of an overexploited Mediterranean species. Aquat Conserv Mar Freshwat Ecosyst. 2001;11:253–9.CrossRefGoogle Scholar
  60. Santangelo G, Bramanti L. Quantifying the decline in Corallium rubrum populations. Mar Ecol Prog Ser. 2010;418:295–7.CrossRefGoogle Scholar
  61. Santangelo G, Abbiati M, Giannini G, Cicogna F. Red coral fishing trends in the Western Mediterranean Sea during the period 1981–1991. Scientia Marina. 1993;57:139–43.Google Scholar
  62. Santangelo G, Carletti E, Maggi E, Bramanti L. Reproduction and population sexual structure of the overexploited Mediterranean red coral Corallium rubrum. Mar Ecol Prog Ser. 2003;248:99–108.CrossRefGoogle Scholar
  63. Santangelo G, Bramanti L, Iannelli M. Population dynamics and conservation biology of the over-exploited Mediterranean red coral. J Theor Biol. 2007;244:416–23.CrossRefPubMedGoogle Scholar
  64. Santangelo G, Bramanti L, Rossi S, Tsounis G, Vielmini I, Lott C, Gili JM. Patterns of variation in recruitment and post-recruitment processes of the Mediterranean precious gorgonian coral Corallium rubrum. J Exp Mar Biol Ecol. 2012;411:7–13.CrossRefGoogle Scholar
  65. Santangelo G, Cupido R, Cocito s, Bramanti L, Priori C, Erra F Iannelli M. Effects of increased mortality on gorgonian corals (Cnidaria, Octocorallia): different demographic features may lead affected populations to unexpected recovery and new equilibrium points. Hydrobiologia. 2015; 759:171–187. Available from:
  66. Soulé ME, Estes JA, Berger J, Del Rio CM. Ecological effectiveness, conservation goals for interactive species. Conserv Biol. 2003;17:1238–50.CrossRefGoogle Scholar
  67. Torrents O, Garrabou J. Fecundity of red coral Corallium rubrum (L) populations inhabiting in contrasting environmental conditions in the NW Mediterranean. Mar Biol. 2011;158:1019–28.CrossRefGoogle Scholar
  68. Torrents O, Garrabou J, Marschal C, Harmelin JG. Age and size at first reproduction in the commercially exploited red coral Corallium rubrum (L.) in the Marseilles area (France, NW Mediterranean). Biol Conserv. 2005;121:391–7.CrossRefGoogle Scholar
  69. Tsounis G, Rossi S, Aranguren M, Gili JM, Arntz W. Effects of spatial variability and colony size on the reproductive output and gonadal development cycle of the Mediterranean red coral (Corallium rubrum L.). Mar Biol. 2006;148:513–27.CrossRefGoogle Scholar
  70. Tsounis G, Rossi S, Gili JM, Arntz E. Red coral fishery at the Costa Brava (NW Mediterranean): case study of an overharvested precious coral. Ecosystems. 2007;10:975–86.CrossRefGoogle Scholar
  71. Tsounis G, Rossi S, Grigg R, Santangelo G, Bramanti L, Gili JM. The exploitation and conservation of precious corals. Oceanogr Mar Biol Annu Rev. 2010;48:161–212.CrossRefGoogle Scholar
  72. Tsounis G, Rossi S, Bramanti L, Santangelo G. Management hurdles for sustainable harvesting of Corallium rubrum. Mar Policy. 2013;39:361–4.CrossRefGoogle Scholar
  73. Viladrich N, Bramanti L, Tsounis G, Chocarro B, Martínez-Quitana A, Ambroso S, Madurell T, Rossi S. Variation in lipid and free fatty acid content during spawning in two temperate octocorals with different reproductive strategies: surface versus internal brooder. Coral reefs. 2016;35:1033–45.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • L. Bramanti
    • 1
    • 2
  • M. C. Benedetti
    • 3
  • R. Cupido
    • 4
  • S. Cocito
    • 4
  • C. Priori
    • 3
  • F. Erra
    • 3
  • M. Iannelli
    • 5
  • G. Santangelo
    • 3
  1. 1.Laboratoire d’Ecogeochimie des Environnements Benthiques, LECOBUniversity Paris VI – CNRS, UMR8222Banyuls sur merFrance
  2. 2.Department of BiologyCalifornia State University NorthridgeNorthridgeUSA
  3. 3.Dipartimento di BiologiaUniversità di PisaPisaItaly
  4. 4.ENEA Marine Environment Research CentreLa SpeziaItaly
  5. 5.Dipartimento di MatematicaUniversità di TrentoPOVOItaly

Personalised recommendations