Skip to main content

Importance of Recruitment Processes in the Dynamics and Resilience of Coral Reef Assemblages

  • Living reference work entry
  • First Online:
Book cover Marine Animal Forests

Abstract

Recruitment is now widely recognized as a fundamental process governing spatial patterns, dynamics, and maintenance of marine invertebrate communities. Moreover, recruitment is a critical factor for successful recovery following disturbances and thus resilience of ecosystems. Over the last decades, tropical coral reefs, which are one of the most diverse ecosystems on Earth and provide goods and services to ~500 million people, have been confronted with various types of natural and anthropogenic disturbances, causing widespread mortality of reef-building coral species. In this context, understanding processes of coral recruitment and their patterns in time and space is a fundamental step to understand, detect, and predict the effects of climate change on reef ecosystems. Despite major advancements in the last three decades, our understanding of some critical phases of coral recruitment processes remains too limited for their integration into management and conservation actions that are urgently needed for this unique ecosystem. Here, we synthesize and analyze existing literature on coral recruitment to determine the state of knowledge, identify knowledge gaps, and suggest future lines of research. We particularly focus on the spatiotemporal variability of recruitment and its controlling factors, the relative importance of pre- and post-settlement events and life strategies in the maintenance of adult assemblages, and the critical role of recruitment for the recovery and resilience of disturbed reef communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adjeroud M, Penin L, Carroll A. Spatio-temporal heterogeneity in coral recruitment around Moorea, French Polynesia: implications for population maintenance. J Exp Mar Biol Ecol. 2007;341:204–18.

    Article  Google Scholar 

  • Adjeroud M, Michonneau F, Edmunds PJ, Chancerelle Y, Lison de Loma T, Penin L, Thibaut L, Vidal-Dupiol J, Salvat B, Galzin R. Recurrent disturbances, recovery trajectories, and resilience of coral assemblages on a South Central Pacific reef. Coral Reefs. 2009;28:775–80.

    Article  Google Scholar 

  • Anthony KR, Marshall PA, Abdulla A, Beeden R, Bergh C, Black R, Eakin CM, Game ET, Gooch M, Graham NA, Green A, Heron SF, van Hooidonk R, Knowland C, Mangubhai S, Marshall N, Maynard JA, McGinnity P, McLeod E, Mumby PJ, Nyström M, Obura D, Oliver J, Possingham HP, Pressey RL, Rowlands GP, Tamelander J, Wachenfeld D, Wear S. Operationalizing resilience for adaptive coral reef management under global environmental change. Glob Chang Biol. 2015;21:48–61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Babcock RC, Baird AH, Piromvaragorn S, Thomson DP, Willis BL. Identification of Scleractinian coral recruits from Indo-Pacific reefs. Zool Stud. 2003;42:211–26.

    Google Scholar 

  • Baskett ML, Nisbet RM, Kappel CV, Mumby PJ, Gaines SD. Conservation management approaches to protecting the capacity for corals to respond to climate change: a theoretical comparison. Glob Chang Biol. 2010;16:1229–46.

    Article  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nyström M. Confronting the coral reef crisis. Nature. 2004;429:827–33.

    Article  CAS  PubMed  Google Scholar 

  • Caley MJ, Carr MH, Hixon MA, Hughes TP, Jones GP, Menge BA. Recruitment and the local dynamics of open marine populations. Annu Rev Ecol Syst. 1996;27:477–500.

    Article  Google Scholar 

  • Cowen RK, Sponaugle S. Larval dispersal and marine population connectivity. Ann Rev Mar Sci. 2009;1:443–66.

    Article  PubMed  Google Scholar 

  • Cowen RK, Lwiza KMM, Sponaugle S, Paris CB, Olson DB. Connectivity of marine populations: open or closed? Science. 2000;287:857–9.

    Article  CAS  PubMed  Google Scholar 

  • De’ath G, Fabricius KE, Sweatman H, Puotine M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci U S A. 2012;109:17995–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixson DL, Abrego D, Hay ME. Chemically mediated behavior of recruiting corals and fishes: a tipping point that may limit reef recovery. Science. 2014;345:892–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doropoulos C, Ward S, Roff G, González-Rivero M, Mumby PJ. Linking demographic processes of juvenile corals to benthic recovery trajectories in two common reef habitats. PLoS One. 2015;10:e0128535.

    Article  PubMed  PubMed Central  Google Scholar 

  • Edmunds PJ, Leichter JJ, Adjeroud M. Landscape-scale variation in coral recruitment in Moorea, French Polynesia. Mar Ecol Prog Ser. 2010;414:75–89.

    Article  Google Scholar 

  • Edmunds PJ, Adjeroud M, Baskett ML, Baums IB, Budd AF, Carpenter RC, Fabina NS, Fan TY, Franklin EC, Gross K, Han X, Jacobson L, Klaus JS, McClanahan TR, O’Leary JK, van Oppen MJH, Pochon X, Putnam HM, Smith TB, Stat M, Sweatman H, van Woesik R, Gates RD. Persistence and change in community composition of reef corals through present, past, and future climates. PLoS One. 2014;9:e107525.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fisk DA, Harriott VJ. Spatial and temporal variation in coral recruitment on the Great Barrier Reef: implications for dispersal hypotheses. Mar Biol. 1990;107:485–90.

    Article  Google Scholar 

  • Gilmour JP, Smith LD, Heyward AJ, Baird AH, Pratchett MS. Recovery of an isolated coral reef system following severe disturbance. Science. 2013;340:69–71.

    Article  CAS  PubMed  Google Scholar 

  • Gosselin LA, Qian PY. Juvenile mortality in benthic marine invertebrates. Mar Ecol Prog Ser. 1997;146:265–82.

    Article  Google Scholar 

  • Grigg RW, Dollar SJ. Natural and anthropogenic disturbance on coral reefs. In: Dubinsky Z, editor. Ecosystems of the world: coral reefs. Amsterdam: Elsevier; 1990.

    Google Scholar 

  • Harrington L, Fabricius K, De’Ath G, Negri A. Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology. 2004;85:3428–37.

    Article  Google Scholar 

  • Harrison PL, Booth DJ. Coral reefs: naturally dynamic and increasingly disturbed ecosystems. In: Connell SD, Gillanders BM, editors. Marine ecology. Melbourne: Oxford University Press; 2007.

    Google Scholar 

  • Harrison PL, Wallace CC. Reproduction, dispersal and recruitment of scleractinian corals. In: Dubinsky Z, editor. Ecosystems of the world: coral reefs. Amsterdam: Elsevier; 1990.

    Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME. Coral reefs under rapid climate change and ocean acidification. Science. 2007;318:1737–42.

    Article  CAS  PubMed  Google Scholar 

  • Hsu C-M, de Palmas S, Kuo C-Y, Denis V, Chen CA. Identification of Scleractinian coral recruits using fluorescent censusing and DNA barcoding techniques. PLoS One. 2014;9:e107366.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughes TP, Connell JH. Multiple stressors on coral reefs: a long-term perspective. Limnol Oceanogr. 1999;44:932–40.

    Article  Google Scholar 

  • Hughes TP, Jackson JBC. Population dynamics and life histories of foliaceous corals. Ecol Monogr. 1985;55:141–66.

    Article  Google Scholar 

  • Hughes TP, Tanner JE. Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology. 2000;81:2250–63.

    Article  Google Scholar 

  • Hughes TP, Baird AH, Dinsdale EA, Moltschaniwskyj NA, Pratchett MS, Tanner JE, Willis BL. Patterns of recruitment and abundance of corals along the Great Barrier Reef. Nature. 1999;397:59–63.

    Article  CAS  Google Scholar 

  • Hughes TP, Baird AH, Dinsdale EA, Moltschaniwskyj NA, Pratchett MS, Tanner JE, Willis BL. Supply-side ecology works both ways: the link between benthic adults, fecundity, and larval recruits. Ecology. 2000;81:2241–9.

    Article  Google Scholar 

  • Hughes TP, Baird AH, Dinsdale EA, Harriott VJ, Moltschaniwskyj NA, Pratchett MS, Tanner JE, Willis BL. Detecting regional variation using meta-analysis and large-scale sampling: latitudinal patterns in recruitment. Ecology. 2002;83:436–51.

    Article  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J. Climate change, human impacts, and the resilience of coral reefs. Science. 2003;301:929–33.

    Article  CAS  PubMed  Google Scholar 

  • Hunte W, Wittenberg M. Effects of eutrophication and sedimentation on juvenile corals. II. Settlement. Mar Biol. 1992;114:625–31.

    Article  Google Scholar 

  • Kayal M, Vercelloni J, Lison de Loma T, Bosserelle P, Chancerelle Y, Geoffroy S, Stievenart C, Michonneau F, Penin L, Planes S, Adjeroud M. Predator Crown-of-Thorns Starfish (Acanthaster planci) outbreak, mass mortality of corals, and cascading effects on reef fish and benthic communities. PLoS One. 2012;7:e47363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayal M, Vercelloni J, Wand MP, Adjeroud M. Searching for the best bet in life-strategy: a quantitative approach to individual performance and population dynamics in reef-building corals. Ecol Complex. 2015;23:73–84.

    Article  Google Scholar 

  • Kuffner IB, Walters LJ, Becerro MA, Paul VJ, Ritson-Williams R, Beach KS. Inhibition of coral recruitment by macroalgae and cyanobacteria. Mar Ecol Prog Ser. 2006;323:107–17.

    Article  Google Scholar 

  • Madin JS, Hughes TP, Connolly SR. Calcification, storm damage and population resilience of tabular corals under climate change. PLoS ONE. 2012;7:e46637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason B, Beard M, Miller M. Coral larvae settle at a higher frequency on red surfaces. Coral Reefs. 2011;30:667–76.

    Article  Google Scholar 

  • Moberg F, Folke C. Ecological goods and services of coral reef ecosystems. Ecol Econ. 1999;29:215–33.

    Article  Google Scholar 

  • Muko S, Arakaki S, Tamai R, Sakai K. An individual-based model for population viability analysis of the brooding coral Seriatopora hystrix. Ecol Model. 2014;277:68–76.

    Article  Google Scholar 

  • Mumby PJ. Bleaching and hurricane disturbances to populations of coral recruits in Belize. Mar Ecol Prog Ser. 1999;190:27–35.

    Article  Google Scholar 

  • Mumby PJ, Steneck RS. Coral reef management and conservation in light of rapidly evolving ecological paradigms. Trends Ecol Evol. 2008;23:555–63.

    Article  PubMed  Google Scholar 

  • Mumby PJ, Harborne AR, Williams J, Kappel CV, Brumbaugh DR, Micheli F, Holmes KE, Dahlgren CP, Paris CB, Blackwell PG. Trophic cascade facilitates coral recruitment in a marine reserve. Proc Natl Acad Sci U S A. 2007;104:8362–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penin L, Michonneau F, Baird AH, Connolly SR, Pratchett MS, Kayal M, Adjeroud M. Early post-settlement mortality and the structure of coral assemblages. Mar Ecol Prog Ser. 2010;408:55–64.

    Article  Google Scholar 

  • Penin L, Michonneau F, Carroll A, Adjeroud M. Effects of predators and grazers exclusion on early post-settlement coral mortality. Hydrobiologia. 2011;663:259–64.

    Article  Google Scholar 

  • Riegl BM, Purkis SJ. Model of coral population response to accelerated bleaching and mass mortality in a changing climate. Ecol Model. 2009;220(2):192–208.

    Article  Google Scholar 

  • Ritson-Williams R, Arnold SZ, Fogarty ND, Steneck RS, Vermeij MJA, Paul VJ. New perspectives on ecological mechanisms affecting coral recruitment on reefs. Smithson Contrib Mar Sci. 2009;38:437–57.

    Article  Google Scholar 

  • Roth L, Muller EM, van Woesik R. Tracking Acropora fragmentation and population structure through thermal-stress events. Ecol Model. 2013;263:223–32.

    Article  Google Scholar 

  • Rotjan RD, Lewis SM. Impact of coral predators on tropical reefs. Mar Ecol Prog Ser. 2008;367:73–91.

    Article  Google Scholar 

  • van Oppen MJH, Lutz A, De’ath G, Peplow L, Kininmonth S. Genetic traces of recent long-distance dispersal in a predominantly self-recruiting coral. PLoS One. 2008;3:e3401.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vermeij MJA, Sandin SA. Density-dependent settlement and mortality structure the earliest life phases of a coral population. Ecology. 2008;89:1994–2004.

    Article  PubMed  Google Scholar 

  • Vermeij MJA, Marhaver KL, Huijbers CM, Nagelkerken I, Simpson SD. Coral larvae move toward reef sounds. PLoS One. 2010;5:e10660.

    Article  PubMed  PubMed Central  Google Scholar 

  • Warner RR, Chesson PL. Coexistence mediated by recruitment fluctuations: a field guide to the storage effect. Am Nat. 1985;125:769–87.

    Article  Google Scholar 

Download references

Acknowledgment

The authors are thankful to Maureen Ho and Andrew G. Carroll for improvements on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Adjeroud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Adjeroud, M., Kayal, M., Penin, L. (2016). Importance of Recruitment Processes in the Dynamics and Resilience of Coral Reef Assemblages. In: Rossi, S., Bramanti, L., Gori, A., Orejas Saco del Valle, C. (eds) Marine Animal Forests. Springer, Cham. https://doi.org/10.1007/978-3-319-17001-5_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17001-5_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-17001-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics