Skip to main content

Sensory Exploitation Hypothesis

  • Living reference work entry
  • First Online:
  • 142 Accesses

Synonyms

Sensory bias; Sensory drive; Sensory trap

Definition

Mating preference for a courtship signal trait evolves as a preexisting sensory bias from a nonmating context and is then exploited by the opposite sex, increasing mating opportunities.

Introduction

An important evolutionary driver of animal signal diversity is female mate choice. Throughout the animal kingdom, mating success between the sexes is asymmetric; most females in a population procure mates while some males mate multiply and many males fail to mate at all. This asymmetry results in differential selection on male traits and influences the evolution of male courtship signals (Andersson 1994). Virtually all mating systems include some component of communication whereby receivers must be able to detect and discriminate the sender’s courtship signal. This communication is critical for female mate choice, and in particular, females must be able to recognize members of their own species. Failure to perform this...

This is a preview of subscription content, log in via an institution.

References

  • Andersson, M. B. (1994). Sexual selection. Princeton: Princeton University Press.

    Google Scholar 

  • Basolo, A. L. (1990). Female preference predates the evolution of the sword in swordtail fish. Science, 250, 808–810.

    Article  PubMed  Google Scholar 

  • Baugh, A. T., Ryan, M. J., Bernal, X. E., Rand, A. S., & Bee, M. A. (2016). Female túngara frogs do not experience the continuity illusion. Behavioral Neuroscience, 130, 62–74.

    Article  PubMed  Google Scholar 

  • Bee, M. A. (2015). Treefrogs as animal models for research on auditory scene analysis and the cocktail party problem. International Journal of Psychophysiology, 95, 216–237.

    Article  PubMed  Google Scholar 

  • Bregman, A. S. (1990). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: MIT Press.

    Google Scholar 

  • Capranica, R. R., & Moffat, A. J. (1983). Neurobehavioral correlates of sound communication in anurans. In Advances in vertebrate neuroethology (pp. 701–730). New York: Springer.

    Chapter  Google Scholar 

  • Christy, J. H. (1995). Mimicry, mate choice, and the sensory trap hypothesis. American Naturalist, 146, 171–181.

    Article  Google Scholar 

  • Cummings, M. E. (2015). The mate choice mind: Studying mate preference, aversion and social cognition in the female poeciliid brain. Animal Behaviour, 103, 249–258.

    Article  Google Scholar 

  • Deily, J. A., & Schul, J. (2006). Spectral selectivity during phonotaxis: A comparative study in Neoconocephalus (Orthoptera: Tettigoniidae). Journal of Experimental Biology, 209, 1757–1764.

    Article  PubMed  Google Scholar 

  • Edwards, C. J., Alder, T. B., & Rose, G. J. (2002). Auditory midbrain neurons that count. Nature Neuroscience, 5, 934–936.

    Article  PubMed  Google Scholar 

  • Egger, B., Klaefiger, Y., Theis, A., & Salzburger, W. (2011). A sensory bias has triggered the evolution of egg-spots in cichlid fishes. PLoS One, 6, e25601.

    Article  PubMed  PubMed Central  Google Scholar 

  • Endler, J. A., & Basolo, A. L. (1998). Sensory ecology, receiver biases and sexual selection. Trends in Ecology & Evolution, 13, 415–420.

    Article  Google Scholar 

  • Farris, H. E., & Ryan, M. J. (2011). Relative comparisons of call parameters enable auditory grouping in frogs. Nature Communications, 2, 410.

    Article  PubMed  Google Scholar 

  • Farris, H. E., Rand, A. S., & Ryan, M. J. (2002). The effects of spatially separated call components on phonotaxis in túngara frogs: Evidence for auditory grouping. Brain, Behavior and Evolution, 60, 181–188.

    Article  PubMed  Google Scholar 

  • Fay, R. R. (1988). Hearing in vertebrates: A psychophysics databook (p. 621). Winnetka: Hill-Fay Associates.

    Google Scholar 

  • Frederick, K., & Schul, J. (2016). Character state reconstruction of call diversity in the Neoconocephalus katydids reveals high levels of convergence. PLoS Currents 8.

    Google Scholar 

  • Gerhardt, H. C., & Huber, F. (2002). Acoustic communication in insects and anurans: Common problems and diverse solutions. Chicago: University of Chicago Press.

    Google Scholar 

  • Guilford, T., & Dawkins, M. S. (1991). Receiver psychology and the evolution of animal signals. Animal Behaviour, 42, 1–14.

    Article  Google Scholar 

  • Hedwig, B. G. (2016). Sequential filtering processes shape feature detection in crickets: A framework for song pattern recognition. Frontiers in Physiology, 46, 1–15.

    Google Scholar 

  • Hofmann, H. A., Beery, A. K., Blumstein, D. T., Couzin, I. D., Earley, R. L., Hayes, L. D., Hurd, P. L., Lacey, E. A., Phelps, S. M., Solomon, N. G., & Taborsky, M. (2014). An evolutionary framework for studying mechanisms of social behavior. Trends in Ecology & Evolution, 29, 581–589.

    Article  Google Scholar 

  • Makowicz, A. M., Tanner, J. C., Dumas, E., Siler, C. D., & Schlupp, I. (2015). Pre-existing biases for swords in mollies (Poecilia). Behavioral Ecology, 27, 175–184.

    Article  Google Scholar 

  • Partan, S., & Marler, P. (1999). Communication goes multimodal. Science, 283, 1272–1273.

    Article  PubMed  Google Scholar 

  • Patricelli, G. L., Krakauer, A. H., & Taff, C. C. (2016). Variable signals in a complex world: Shifting views of within-individual variability in sexual display traits. Advances in the Study of Behaviour, 48, 319–386.

    Article  Google Scholar 

  • Phelps, S. M., Rand, A. S., & Ryan, M. J. (2006). A cognitive framework for mate choice and species recognition. The American Naturalist, 167(1), 28–42.

    Article  PubMed  Google Scholar 

  • Rodd, F. H., Hughes, K. A., Grether, G. F., & Baril, C. T. (2002). A possible non-sexual origin of mate preference: Are male guppies mimicking fruit? Proceedings of the Royal Society of London B: Biological Sciences, 269, 475–481.

    Article  Google Scholar 

  • Ronald, K. L., Fernández-Juricic, E., & Lucas, J. R. (2012). Taking the sensory approach: How individual differences in sensory perception can influence mate choice. Animal Behaviour, 84, 1283–1294.

    Article  Google Scholar 

  • Ryan, M. J. (1985). The túngara frog: A study in sexual selection and communication. Chicago: University of Chicago Press.

    Google Scholar 

  • Ryan, M. J. (1990). Sexual selection, sensory systems and sensory exploitation. Oxford Surveys in Evolutionary Biology, 7, 157–195.

    Google Scholar 

  • Ryan, M. J., & Cummings, M. E. (2013). Perceptual biases and mate choice. Annual Review of Ecology, Evolution, and Systematics, 44, 437–459.

    Article  Google Scholar 

  • Schrode, K. M., Buerkle, N. P., Brittan-Powell, E. F., & Bee, M. A. (2014). Auditory brainstem responses in Cope’s gray treefrog (Hyla chrysoscelis): Effects of frequency, level, sex and size. Journal of Comparative Physiology A, 200, 221–238.

    Article  Google Scholar 

  • Seehausen, O., Terai, Y., Magalhaes, I. S., Carleton, K. L., Mrosso, H. D., Miyagi, R., van der Sluijs, I., Schneider, M. V., Maan, M. E., Tachida, H., & Imai, H. (2008). Speciation through sensory drive in cichlid fish. Nature, 455, 620–626.

    Article  PubMed  Google Scholar 

  • Shaw, K. (1995). Phylogenetic tests of the sensory exploitation model of sexual selection. Trends in Ecology & Evolution, 10, 117–120.

    Article  Google Scholar 

  • Taylor, R. C., & Ryan, M. J. (2013). Interactions of multisensory components perceptually rescue túngara frog mating signals. Science, 341, 273–274.

    Article  PubMed  Google Scholar 

  • ter Hofstede, H. M., Schöneich, S., Robillard, T., & Hedwig, B. (2015). Evolution of a communication system by sensory exploitation of startle behavior. Current Biology, 25, 3245–3252.

    Article  PubMed  Google Scholar 

  • Tinghitella, R. M., & Zuk, M. (2009). Asymmetric mating preferences accommodated the rapid evolutionary loss of a sexual signal. Evolution, 63, 2087–2098.

    Article  PubMed  Google Scholar 

  • Wilczynski, W., & Capranica, R. R. (1984). The auditory system of anuran amphibians. Progress in Neurobiology, 22, 1–38.

    Article  PubMed  Google Scholar 

  • Wyttenbach, R. A., & Farris, H. E. (2004). Psychophysics in insect hearing. Microscopy Research and Technique, 63, 375–387.

    Article  PubMed  Google Scholar 

  • Zuk, M., Simmons, L. W., & Cupp, L. (1993). Calling characteristics of parasitized and unparasitized populations of the field cricket Teleogryllus oceanicus. Behavioral Ecology and Sociobiology, 33, 339–343.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ryan C. Taylor or Kimberly L. Hunter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Taylor, R.C., Hunter, K.L. (2016). Sensory Exploitation Hypothesis. In: Weekes-Shackelford, V., Shackelford, T., Weekes-Shackelford, V. (eds) Encyclopedia of Evolutionary Psychological Science. Springer, Cham. https://doi.org/10.1007/978-3-319-16999-6_93-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16999-6_93-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-16999-6

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics