Encyclopedia of Evolutionary Psychological Science

Living Edition
| Editors: Todd K. Shackelford, Viviana A. Weekes-Shackelford

Grouping and Predation

  • Christos IoannouEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-16999-6_2699-1

Synonyms

Introduction

The formation of groups is one of the most conspicuous and striking behaviors seen in animals. It is observed across a diverse range of living organisms, from colonies of multicell slime molds to human cities that rely on extensive and complex infrastructure. The reasons we may observe a set of individuals in closer proximity to one another than expected from a random distribution are varied. Animals that are usually asocial may aggregate around a food resource, such as brown bears (Ursus arctos) feeding on migrating salmon in rivers, or aggregation may emerge simply from a lack of dispersal, where offspring tend to be found in close proximity to their parents and other relatives. In many other cases, however, aggregations are a result of social attraction, where individuals actively seek out the company of others. Once such groups form, they can be very stable, with the group moving as a unit, synchronizing their activity...

Keywords

Predation Risk Individual Prey Prey Group Group Size Increase Reduce Predation Risk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Andersson, M., & Wiklund, C. G. (1978). Clumping versus spacing out: Experiments on nest predation in fieldfares (Turdus pilaris). Animal Behaviour, 26, 1207–1212. doi: 10.1016/0003-3472(78)90110-0.CrossRefGoogle Scholar
  2. Bauer, U., Federle, W., Seidel, H., Grafe, T. U., & Ioannou, C. C. (2015). How to catch more prey with less effective traps: Explaining the evolution of temporarily inactive traps in carnivorous pitcher plants. Proceedings of the Royal Society of London B: Biological Sciences, 282, 20142675. doi: 10.1098/rspb.2014.2675.CrossRefGoogle Scholar
  3. Beauchamp, G. (2004). Reduced flocking by birds on islands with relaxed predation. Proceedings of the Royal Society of London Series B: Biological Sciences, 271(1543), 1039–1042. doi: 10.1098/rspb.2004.2703.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cresswell, W., & Quinn, J. L. (2004). Faced with a choice, sparrowhawks more often attack the more vulnerable prey group. Oikos, 104, 71–76.CrossRefGoogle Scholar
  5. Foster, W. A., & Treherne, J. E. (1981). Evidence for the dilution effect in the selfish herd from fish predation on a marine insect. Nature, 293(5832), 466–467. doi: 10.1038/293466a0.CrossRefGoogle Scholar
  6. Graw, B., & Manser, M. B. (2007). The function of mobbing in cooperative meerkats. Animal Behaviour, 74(3), 507–517. doi: 10.1016/j.anbehav.2006.11.021.CrossRefGoogle Scholar
  7. Hamilton, W. D. (1971). Geometry for the selfish herd. Journal of Theoretical Biology, 31(2), 295–311.CrossRefPubMedGoogle Scholar
  8. Herbert-Read, J. E., Buhl, J., Hu, F., Ward, A. J. W., & Sumpter, D. J. T. (2015). Initiation and spread of escape waves within animal groups. Royal Society Open Science, 2(4), 140355. doi: 10.1098/rsos.140355.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hill, S. L., Burrows, M. T., & Hughes, R. N. (2003). The efficiency of adaptive search tactics for different prey distribution patterns: a simulation model based on the behaviour of juvenile plaice. Journal of Fish Biology, 63, 117–130.CrossRefGoogle Scholar
  10. Hoare, D. J., Couzin, I. D., Godin, J. G. J., & Krause, J. (2004). Context-dependent group size choice in fish. Animal Behaviour, 67(1), 155–164. doi: 10.1016/j.anbehav.2003.04.004.CrossRefGoogle Scholar
  11. Holling, C. S. (1959). Some characteristics of simple types of predation and parasitism. The Canadian Entomologist, 91(7), 385–398.CrossRefGoogle Scholar
  12. Hoogland, J. L., & Sherman, P. W. (1976). Advantages and disadvantages of bank swallow (Riparia riparia) coloniality. Ecological Monographs, 46(1), 33–58. doi: 10.2307/1942393.CrossRefGoogle Scholar
  13. Ioannou, C. C. (2017). Swarm intelligence in fish? The difficulty in demonstrating distributed and self-organised collective intelligence in (some) animal groups. Behavioural Processes. doi: 10.1016/j.beproc.2016.10.005.
  14. Ioannou, C. C., Ruxton, G. D., & Krause, J. (2008). Search rate, attack probability, and the relationship between prey density and prey encounter rate. Behavioral Ecology, 19(4), 842–846. doi: 10.1093/beheco/arn038.CrossRefGoogle Scholar
  15. Ioannou, C. C., Bartumeus, F., Krause, J., & Ruxton, G. D. (2011). Unified effects of aggregation reveal larger prey groups take longer to find. Proceedings of the Royal Society B: Biological Sciences, 278, 2985–2990. doi: 10.1098/rspb.2011.0003.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Landeau, L., & Terborgh, J. (1986). Oddity and the “confusion effect” in predation. Animal Behaviour, 34(5), 1372–1380. doi: 10.1016/s0003-3472(86)80208-1.CrossRefGoogle Scholar
  17. Milinski, M. (1984). A predator’s costs of overcoming the confusion-effect of swarming prey. Animal Behaviour, 32(4), 1157–1162.CrossRefGoogle Scholar
  18. Miller, R. C. (1922). The significance of the gregarious habit. Ecology, 3(2), 122–126.CrossRefGoogle Scholar
  19. Rieucau, G., Fernö, A., Ioannou, C. C., & Handegard, N. O. (2015). Towards of a firmer explanation of large shoal formation, maintenance and collective reactions in marine fish. Reviews in Fish Biology and Fisheries, 1–17.Google Scholar
  20. Roberts, G. (1996). Why individual vigilance declines as group size increases. Animal Behaviour, 51(5), 1077–1086.CrossRefGoogle Scholar
  21. Rode, N. O., Lievens, E. J. P., Flaven, E., Segard, A., Jabbour-Zahab, R., Sanchez, M. I., & Lenormand, T. (2013). Why join groups? Lessons from parasite-manipulated Artemia. Ecology Letters, 16(4), 493–501. doi: 10.1111/ele.12074.CrossRefPubMedGoogle Scholar
  22. Ruxton, G. D., Jackson, A. L., & Tosh, C. R. (2007). Confusion of predators does not rely on specialist coordinated behavior. Behavioral Ecology, 18, 590–596.CrossRefGoogle Scholar
  23. Seghers, B. H. (1974). Schooling behavior in the guppy (Poecilia reticulata): An evolutionary response to predation. Evolution, 28(3), 486–489. doi: 10.2307/2407174.PubMedGoogle Scholar
  24. Siegfried, W. R., & Underhill, L. G. (1975). Flocking as an anti-predator strategy in doves. Animal Behaviour, 23, 504–508.CrossRefGoogle Scholar
  25. Tosh, C. R., & Ruxton, G. D. (2010). Modelling perception with artificial neural networks. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  26. Treisman, M. (1975). Predation and the evolution of gregariousness. I. Models for concealment and evasion. Animal Behaviour, 23, 779–800.CrossRefGoogle Scholar
  27. Turner, G. F., & Pitcher, T. J. (1986). Attack abatement: A model for group protection by combined avoidance and dilution. American Naturalist, 128(2), 228–240.CrossRefGoogle Scholar
  28. Viscido, S. V., & Wethey, D. S. (2002). Quantitative analysis of fiddler crab flock movement: Evidence for “selfish herd” behaviour. Animal Behaviour, 63, 735–741.CrossRefGoogle Scholar
  29. Ward, A. J. W., Sumpter, D. J. T., Couzin, I. D., Hart, P. J. B., & Krause, J. (2008). Quorum decision-making facilitates information transfer in fish shoals. Proceedings of the National Academy of Sciences, 105(19), 6948–6953. doi: 10.1073/pnas.0710344105.CrossRefGoogle Scholar
  30. Ward, A. J. W., Krause, J., & Sumpter, D. J. T. (2012). Quorum decision-making in foraging fish shoals. PloS One, 7(3), e32411.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of BristolBristolUK

Section editors and affiliations

  • Russell Jackson
    • 1
  1. 1.University of IdahoMoscowUSA