Skip to main content

Prey Choice

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Evolutionary Psychological Science
  • 185 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams, C. E., Woltering, C., & Alexander, G. (2003). Epigenetic regulation of trophic morphology through feeding behaviour in Arctic charr, Salvelinus alpinus. Biological Journal of the Linnean Society, 78, 43–49.

    Article  Google Scholar 

  • Brodie, E. D., Ridenhour, B. J., & Brodie, E. D. (2002). The evolutionary response of predators to dangerous prey: Hotspots and coldspots in the geographic mosaic of coevolution between garter snakes and newts. Evolution, 56(10), 2067–2082.

    Article  PubMed  Google Scholar 

  • Burghardt, G. M. (1993). The comparative imperative: Genetics and ontogeny of chemoreceptive prey responses in natricine snakes. Brain Behavior Evolution, 41, 138–146.

    Article  Google Scholar 

  • Burghardt, G. M., & Krause, M. A. (1999). Plasticity of foraging behavior in garter snakes (Thamnophis sirtalis) reared on different diets. Journal of Comparative Psychology, 113(3), 277–285.

    Article  Google Scholar 

  • Burghardt, G. M., Layne, D. G., & Konigsberg, L. (2000). The genetics of dietary experience in a restricted natural population. Psychological Science, 11(1), 69–72.

    Article  PubMed  Google Scholar 

  • Chakravarti, L. J., & Cotton, P. A. (2014). The effects of a competitor on the foraging behaviour of the shore crab Carcinus maenas. PloS One, 9(4), e93546.

    Article  PubMed  PubMed Central  Google Scholar 

  • Charnov, E. L. (1976). Optimal foraging, the marginal value theorem. Theoretical Population Biology, 9, 129–136.

    Article  PubMed  Google Scholar 

  • Elner, R. W., & Hughes, R. N. (1978). Energy maximization in the diet of the shore crab, Carcinus maenas. Journal of Animal Ecology, 47(1), 103–116.

    Article  Google Scholar 

  • Emlen, J. M. (1966). The role of time and energy in food preference. American Naturalist, 100, 611–617.

    Article  Google Scholar 

  • Fantino, E., & Abarca, N. (1985). Choice, optimal foraging, and the delay-reduction hypothesis. Behavioral and Brain Sciences, 8(2), 315–330.

    Article  Google Scholar 

  • Henschel, P., Hunter, L. B., Coad, L., Abernethy, K. A., & Muhlenberg, M. (2011). Leopard prey choice in the Congo Basin rainforest suggests exploitative competition with human bushmeat hunters. Journal of Zoology, 285(1), 11–20.

    Google Scholar 

  • Herrnstein, R. J. (1961). Relative and absolute strength of responses as a function of frequency of reinforcement. Journal of the Experimental Analysis of Behavior, 4, 267–272.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill, K., Kaplan, H., Hawkes, K., & Hurtado, A. M. (1987). Foraging decisions among Ache hunter-gatherers: New data and implications for optimal foraging models. Ecology, 63(5), 1232–1236.

    Google Scholar 

  • Houston, D. L., & Shine, R. (1993). Sexual dimorphism and niche divergence: Feeding habits of the Arafura filesnake. Journal of Animal Ecology, 62, 737–749.

    Article  Google Scholar 

  • Krause, M. A., & Burghardt, G. M. (2001). Neonatal plasticity and adult foraging behavior in garter snakes (Thamnophis sirtalis) from two nearby, but ecologically dissimilar, habitats. Herpetological Monographs, 15, 100–123.

    Article  Google Scholar 

  • Krause, M. A., & Burghardt, G. M. (2007). Sexual dimorphism of body and relative head sizes in neonatal common garter snakes. Journal of Zoology, 272, 156–164.

    Article  Google Scholar 

  • Krause, M. A., Burghardt, G. M., & Gillingham, J. C. (2003). Body size plasticity and local variation of relative head and body size sexual dimorphism in garter snakes (Thamnophis sirtalis). Journal of Zoology, 261, 399–407.

    Article  Google Scholar 

  • Krebs, J. R., & Davies, N. B. (1993). An introduction to behavioural ecology (3rd ed.). Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Lima, S. L. (1984). Downy woodpecker foraging behavior: Efficient sampling in simple stochastic environments. Ecology, 65, 166–174.

    Article  Google Scholar 

  • MacArthur, R. H., & Pianka, E. R. (1966). On optimal use of a patchy environment. The American Naturalist, 100, 603–609.

    Article  Google Scholar 

  • Milinski, M. (1979). An evolutionary stable feeding strategy in sticklebacks. Ethology, 51, 36–40.

    Google Scholar 

  • Phillips, B. L., & Shine, R. (2006). An invasive species induces rapid adaptive change in a native predator: Cane toads and black snakes in Australia. Proceedings of the Royal Society, 273, 1545–1550.

    Article  Google Scholar 

  • Richardson, H., & Verbeek, N. A. M. (1986). Diet selection and optimization by northwestern crows feeding on Japanese littleneck clams. Ecology, 67, 1219–1226.

    Article  Google Scholar 

  • Rossman, D. A., Ford, N. B., & Seigel, R. A. (1996). The garter snakes: Evolution and ecology. Norman: University of Oklahoma Press.

    Google Scholar 

  • Schoener, T. W. (1971). Theory of feeding strategy. Annual Review of Ecology and Systematics, 2, 369–404.

    Article  Google Scholar 

  • Shulz, S., & Finlayson, L. V. (2010). Large body and small brain and group sizes are associated with predator preferences for mammalian prey. Behavioral Ecology, 21, 1073–1079.

    Article  Google Scholar 

  • Sih, A., & Christensen, B. (2001). Optimal diet theory: When does it work, and when and why does it fail? Animal Behaviour, 61(2), 379–390.

    Article  Google Scholar 

  • Stenseth, N. C., Falck, W., Bjørnstad, O. N., & Krebs, C. J. (1997). Population regulation in snowshoe hare and Canadian lynx: Asymmetric food web configurations between hare and lynx. Proceedings of the National Academy of Sciences, 94, 5147–5152.

    Article  Google Scholar 

  • van Leeuwen, E., Brannstrom, A., Jansen, V. A., Dieckmann, U., & Rossberg, A. G. (2013). A generalized functional response for predators that switch between multiple prey species. Journal of Theoretical Biology, 328, 89–98.

    Article  PubMed  Google Scholar 

  • Waters, R. M., & Burghardt, G. M. (2013). Prey availability influences the ontogeny and timing of chemoreception-based prey shifting in the striped crayfish snake, Regina alleni. Journal of Comparative Psychology, 127, 49–55.

    Article  PubMed  Google Scholar 

  • Williams, W. A., & Fantino, E. (1994). Delay reduction and optimal foraging: Variable-ratio search in a foraging analogue. Journal of the Experimental Analysis of Behavior, 61(3), 465–477.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Krause .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Krause, M.A., Skopos, L. (2017). Prey Choice. In: Shackelford, T., Weekes-Shackelford, V. (eds) Encyclopedia of Evolutionary Psychological Science. Springer, Cham. https://doi.org/10.1007/978-3-319-16999-6_2649-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16999-6_2649-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16999-6

  • Online ISBN: 978-3-319-16999-6

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Prey Choice
    Published:
    13 September 2017

    DOI: https://doi.org/10.1007/978-3-319-16999-6_2649-2

  2. Original

    Prey Choice
    Published:
    10 April 2017

    DOI: https://doi.org/10.1007/978-3-319-16999-6_2649-1