Skip to main content

Light-Emitting Diode for Acne, Scars, and Photodamaged Skin

  • Reference work entry
  • First Online:
  • 2007 Accesses

Abstract

Light-emitting diode therapy was discovered in the late 1960s but only recently has it been widely applied in dermatology to treat a wide range of skin diseases including photoaging, scars, and acne. Since the introduction of photobiostimulation into medicine, the effectiveness and applicability of a variety of light sources have thoroughly been investigated. Light-emitting diode photomodulation is a nonthermal technology used to modulate cellular activity with light, and the photons are absorbed by mitochondrial chromophores in skin cells. Various beneficial effects of light-emitting diode at relatively low intensities have been reported, especially in indications where stimulation of healing, reduction of pain and inflammation, restoration of function, and skin rejuvenation are required. The light-emitting diode therapy is safe, nontoxic, and noninvasive with no side effects reported in the published literature.

This is a preview of subscription content, log in via an institution.

References

  • Anderson RR, Parrish JA. The optics of human skin. J Invest Dermatol. 1981;77:13–9.

    Article  CAS  PubMed  Google Scholar 

  • Ash C, Harrison A, Drew S, Whittall R. A randomized controlled study for the treatment of acne vulgaris using high-intensity 414 nm solid state diode arrays. J Cosmet Laser Ther. 2015;17(4):170–6.

    Article  PubMed  Google Scholar 

  • Avci P, Gupta GK, Clark J, Wikonkal N, Hamblin MR. Low-level laser (light) therapy (LLLT) for treatment of hair loss. Lasers Surg Med. 2013;9999:1.

    Google Scholar 

  • Babilas P, Karrer S, Sidoroff A, Landthaler M, Szeimies RM. Photodynamic therapy in dermatology – an update. Photodermatol Photoimmunol Photomed. 2005;21(3):142–9.

    Article  CAS  PubMed  Google Scholar 

  • Baez F, Reilly LR. The use of light emitting diode therapy in the treatment of photoaged skin. J Cosmet Dermatol. 2007;6(3):189–94.

    Article  PubMed  Google Scholar 

  • Barolet D. Light-emitting diodes (LEDs) in dermatology. Semin Cutan Med Surg. 2008;27:227–38.

    Article  CAS  PubMed  Google Scholar 

  • Barolet D, Boucher A. Prophylactic low-level light therapy for the treatment of hypertrophic scars and keloids: a case series. Lasers Surg Med. 2010;42(6):597–601.

    Article  PubMed  Google Scholar 

  • Barolet D, Roberge CJ, Auger FA, Boucher A, Germain L. Regulation of skin collagen metabolism in vitro using a pulsed 660 nm LED light source: clinical correlation with a single-blinded study. J Invest Dermatol. 2009;129:2751–9.

    Article  CAS  PubMed  Google Scholar 

  • Brondon P, Stadler I, Lanzafame RJ. Melanin density affects photobiomodulation outcomes in cell culture. Photomed Laser Surg. 2007;25(3):144–9.

    Article  CAS  PubMed  Google Scholar 

  • Calderhead RG. The photobiological basics behind light-emitting diode (LED) phototherapy. Laser Ther. 2007;16:97–108.

    Article  Google Scholar 

  • Calderhead RG, Kubota J, Trelles MA, Ohshiro T. One mechanism behind LED phototherapy for wound healing and skin rejuvenation: key role of the mast cell. Laser Ther. 2008;17:141–8.

    Article  Google Scholar 

  • Calderhead RG, Kim WS, Ohshiro T, Trelles MA, Vasily D. Adjunctive 830 nm light-emitting diode therapy can improve the results following aesthetic procedures. Laser Ther. 2015;24(4):277–89.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chabert R, Fouque L, Pinacolo S, Garcia Gimenez N, Bonnans M, Cucumel K, Domloge N. Evaluation of light-emitting diodes (LED) effect on skin biology (in vitro study). Skin Res Technol. 2015;21(4):426–36.

    Article  CAS  PubMed  Google Scholar 

  • Dai T, Gupta A, Murray CK, Vrahas MS, Tegos GP, Hamblin MR. Blue light for infectious diseases: propionibacterium acnes, Helicobacter pylori, and beyond? Drug Resist Updat. 2012;15(4):223–36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dincer I. Renewable energy and sustainable development: a crucial review. Renew Sust Energ Rev. 2000;4(2):157–75.

    Article  Google Scholar 

  • Evans DH, Abrahamse H. Efficacy of three different laser wavelengths for in vitro wound healing. Photodermatol Photoimmunol Photomed. 2008;24(4):199–210.

    Article  PubMed  Google Scholar 

  • Fournier N, Fritz K, Mordon S. Use of nonthermal blue (405- to 420-nm) and near-infrared light (850- to 900-nm) dual-wavelength system in combination with glycolic acid peels and topical vitamin C for skin photorejuvenation. Dermatol Surg. 2006;32(9):1140–6.

    CAS  PubMed  Google Scholar 

  • Ghazizadeh M, Tosa M, Shimizu H, et al. Functional implications of the IL-6 signaling pathway in keloid pathogenesis. J Invest Dermatol. 2007;127:98–110.

    Article  CAS  PubMed  Google Scholar 

  • Gold MH, Bradshaw VL, Boring MM, et al. Split face comparison of photodynamic therapy with 5-aminolevulinic acid and intense pulsed light versus intense pulsed light alone for photodamage. Dermatol Surg. 2006;32:795–803.

    CAS  PubMed  Google Scholar 

  • Goldberg DJ, Russel BA. Combination blue (415 nm) and red (633 nm) LED phototherapy in the treatment of mild to severe acne vulgaris. J Cosmet Laser Ther. 2006;8:71–5.

    Article  PubMed  Google Scholar 

  • Goldberg DJ, Amin S, Russell BA, Phelps R, et al. Combined 633-nm and 830-nm led treatment of photoaging skin. J Drugs Dermatol. 2006;5:748–53.

    PubMed  Google Scholar 

  • Hamblin MR, Demidova TN. Mechanisms for Low-Light Therapy. IN Hamblin MR, Waynant R and Anders J (eds), Proceedings of the SPIE. 2006;6140:1–12.

    Google Scholar 

  • Hamblin MR, Pires de Sousa MV, Arany PR, Carroll JD, Patthoff D. Low-level laser (light) therapy and photobiomodulation: the path forward. Proc SPIE. 2015;9309:930902.

    Article  Google Scholar 

  • Huang YY, Sharma SK, Carroll J, Hamblin MR. Biphasic dose response in low level light therapy – an update. Dose-Response. 2011;9:602–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Issa MCA, Piñeiro-Maceira J, et al. Immunohistochemical expression of matrix metalloproteinases in photodamaged skin by photodynamic therapy. Br J Dermatol. 2009;161:647–53.

    Article  CAS  Google Scholar 

  • Joo Y, Kang H, Choi EH, Nelson JS, Jung B. Characterization of a new acne vulgaris treatment device combining light and thermal treatment methods. Skin Res Technol. 2012;18(1):15–21.

    Article  PubMed  Google Scholar 

  • Karrer S, Bosserhoff A, Weiderer P, Landthaler M, Szeimies RM. Influence of 5-aminolevulinic acid and red light on collagen metabolism of human dermal fibroblasts. J Invest Dermatol. 2003;120:325–31.

    Article  CAS  PubMed  Google Scholar 

  • Karrer S, Kohl E, Feise K, et al. Photodynamic therapy for skin rejuvenation: review and summary of the literature – results of a consensus conference of an expert group for aesthetic photodynamic therapy. J Dtsch Dermatol Ges. 2013;11(2):137–48.

    PubMed  Google Scholar 

  • Karu TI. Photobiological fundamentals of low-power laser therapy. J Quantum Electron. 1987;23:1703–17.

    Article  Google Scholar 

  • Karu T. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B. 1999;49:1–17.

    Article  CAS  PubMed  Google Scholar 

  • Karu, T. Identification of the photoreceptors. In: Ten lectures on basic science of laser phototherapy. Grangesberg: Prima Books AB; 2007.

    Google Scholar 

  • Karu TI, Pyatibrat LV, Afanasyeva NI. Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers Surg Med. 2005;36:307–14.

    Article  PubMed  Google Scholar 

  • Kim JM, Kim NH, Tian YS, Lee AY. Light-emitting diodes at 830 and 850 nm inhibit melanin synthesis in vitro. Acta Derm Venereol. 2012;92(6):674–9.

    Article  Google Scholar 

  • Kwon HH, Lee JB, Yoon JY, et al. The clinical and histological effect of home-use, combination blue-red LED phototherapy for mild-to-moderate acne vulgaris in Korean patients: a double-blind, randomized controlled trial. Br J Dermatol. 2013;168:1088–94.

    Article  CAS  PubMed  Google Scholar 

  • Lam TS, Abergel RP, Meeker CA, Castel JC, Dwyer RM, Uitto J. Laser stimulation of collagen synthesis in human skin fibroblast cultures. Lasers Life Sci. 1986;1(1):61–77.

    Google Scholar 

  • Lee SY, Park KH, Choi JW, Kwon JK, Lee DR, Shin MS, et al. A prospective, randomized, placebo-controlled, double-blinded, and split-face clinical study on LED phototherapy for skin rejuvenation: clinical, profilometric, histologic, ultrastructural, and biochemical evaluations and comparison of three different treatment settings. J Photochem Photobiol B Biol. 2007a;88(1):51–67.

    Article  CAS  Google Scholar 

  • Lee SY, You CE, Park MY. Blue and red light combination LED phototherapy for acne vulgaris in patients with skin phototype IV. Lasers Surg Med. 2007b;39:180–8.

    Article  PubMed  Google Scholar 

  • Lev-Tov H, Brody N, Siegel D, Jagdeo J. Inhibition of fibroblast proliferation in vitro using low-level infrared light-emitting diodes. Dermatol Surg. 2012;39:422–5.

    Article  PubMed  Google Scholar 

  • Mahmoud BH, Hexsel CL, Hamzavi IH, Lim HW. Effects of visible light on the skin. Photochem Photobiol. 2008;84(2):450–62.

    Article  CAS  PubMed  Google Scholar 

  • Mamalis AD, Lev-Tov H, Nguyen DH, Jagdeo JR. Laser and light-based treatment of keloids – a review. J Eur Acad Dermatol Venereol. 2014;28(6):689–99.

    Article  CAS  PubMed  Google Scholar 

  • Mamalis A, Garcha M, Jagdeo J. Light emitting diode-generated blue light modulates fibrosis characteristics: fibroblast proliferation, migration speed, and reactive oxygen species generation. Lasers Surg Med. 2015;47:210–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mester E, Ludany G, Sellyei M, Szende B, Gyenes G, Tota GJ. Studies on the inhibiting and activating effects of laser beams. Langenbecks Arch Chir. 1968;322:1022–7.

    Article  CAS  PubMed  Google Scholar 

  • Morton CA, Brown SB, Collins S, et al. Guidelines for topical photodynamic therapy: report of a workshop of the British photodermatology group. Br J Dermatol. 2002;146:552–67.

    Article  CAS  PubMed  Google Scholar 

  • Morton CA, Scholefield RD, Whitehurst C, Birch J. An open study to determine the efficacy of blue light in the treatment of mild to moderate acne. J Dermatol Treat. 2005;16:219–23.

    Article  CAS  Google Scholar 

  • Nie Z, Bayat A, Behzad F, Rhodes L. Positive response of a recurrent keloid scar to topical methyl aminolevulinate-photodynamic therapy. Photodermatol Photoimmunol Photomed. 2010;26:330–2.

    Article  PubMed  Google Scholar 

  • Opel DR, Hagstrom E, Pace AK, Sisto K, Hirano-Ali SA, Desai S, Swan J. Light-emitting diodes: a brief review and clinical experience. J Clin Aesthet Dermatol. 2015;8(6):36.

    PubMed  PubMed Central  Google Scholar 

  • Papageorgiou P, Katsambas A, Chu A. Phototherapy with blue (415 nm) and red (660 nm) light in the treatment of acne vulgaris. Br J Dermatol. 2000;142:973–8.

    Article  CAS  PubMed  Google Scholar 

  • Park KY, Choi SY, Mun SK, Kim BJ, Kim MN. Combined treatment with 578/511 nm copper bromide laser and light-emitting diodes for postlaser pigmentation: a report of two cases. Dermatol Ther. 2014;27(2):121–5.

    Article  PubMed  Google Scholar 

  • Russell BA, Kellett N, Reilly LR. A study to determine the efficacy of combination LED light therapy (633 nm and 830 nm) in facial skin rejuvenation. J Cosmet Laser Ther. 2005;7(3–4):196–200.

    Article  CAS  PubMed  Google Scholar 

  • Sadick NS. Handheld LED array device in the treatment of acne vulgaris. J Drugs Dermatol. 2008;7:347–50.

    PubMed  Google Scholar 

  • Sakamoto FH, Izikson L, Tannous Z, et al. Surgical scar remodeling after photodynamic therapy using aminolevulinic acid or its methyl ester: a retrospective, blinded study of patients with field cancerization. Br J Dermatol. 2012;166:413–6.

    Article  CAS  PubMed  Google Scholar 

  • Sauder DN. Light-emitting diodes: their role in skin rejuvenation. Int J Dermatol. 2010;49(1):12–6.

    Article  PubMed  Google Scholar 

  • Sawhney MK, Hamblin MR. Low-level light therapy (LLLT) for cosmetics and dermatology. Proc. SPIE 8932, Mechanisms for Low-Light Therapy IX, 89320X (February 18, 2014).

    Google Scholar 

  • Shalita AR, Harth Y, Elman M, Slatkine M, Talpalariu G, Rosenberg Y, Korman A, Klein A. Acne phototherapy using UV-free high intensity narrow band blue light: a three-centers clinical study. Proc SPIE. 2001;4244:61–73.

    Article  Google Scholar 

  • Shnitkind E, Yaping E, Geen S, Shalita AR, Lee WL. Antiinflammatory properties of narrow-band blue light. J Drugs Dermatol. 2006;5:605–10.

    PubMed  Google Scholar 

  • Szeimies RM, Torezan L, Niwa A, Valente N, Unger P, Kohl E, et al. Clinical, histopathological and immunohistochemical assessment of human skin field cancerization before and after photodynamic therapy. Br J Dermatol. 2012;167(1):150–9.

    Article  CAS  PubMed  Google Scholar 

  • Tian YS, Kim NH, Lee AY. Antiphotoaging effects of light emitting diode irradiation on narrow band ultraviolet B – exposed cultured human skin cells. Dermatol Surg. 2012;38(10):1695–703.

    Article  CAS  PubMed  Google Scholar 

  • Trelles MA. Phototherapy in anti-aging and its photobiologic basics: a new approach to skin rejuvenation. J Cosmet Dermatol. 2006;5:87–91.

    Article  PubMed  Google Scholar 

  • Tremblay JF, Sire DJ, Lowe NJ, Moy RL. Light-emitting diode 415 nm in the treatment of inflammatory acne: an open-label, multicentric, pilot investigation. J Cosmet Laser Ther. 2006;8:31–3.

    Article  CAS  PubMed  Google Scholar 

  • Ud-Din S, Thomas G, Morris J, Bayat A. Photodynamic therapy: an innovative approach to the treatment of keloid disease evaluated using subjective and objective non-invasive tools. Arch Dermatol Res. 2013;305(3):205–14.

    Article  CAS  PubMed  Google Scholar 

  • Uitto J. IL-6 signaling pathway in keloids: a target for pharmacologic intervention? J Invest Dermatol. 2007;127:6–8.

    Article  CAS  PubMed  Google Scholar 

  • Uitto J, Kouba D. Cytokine modulation of extracellular matrix gene expression: relevance to fibrotic skin diseases. J Dermatol Sci. 2000;24((suppl)):S60–9.

    Article  CAS  PubMed  Google Scholar 

  • Vecchio D, Pam Z, Pam N, Hamblin MR. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg. 2013;32:41–52.

    PubMed  PubMed Central  Google Scholar 

  • Weinstabl A, Hoff-Lesch S, Merk HF, von Felbert V. Prospective randomized study on the efficacy of blue light in the treatment of psoriasis vulgaris. Dermatology. 2011;223:251–9.

    Article  PubMed  Google Scholar 

  • Weiss RA, McDaniel DH, Geronemus RG, et al. Clinical experience with light emitting diode (LED) photomodulation. Dermatol Surg. 2005;31:1199–205.

    Article  CAS  PubMed  Google Scholar 

  • Whelan HT, Houle JM, Whelan NT, et al. The NASA light-emitting diode medical program progress in space flight and terrestrial applications. Space Technol Appl Intell Forum. 2000;504:37–43.

    Google Scholar 

  • Whelan HT, Buchmann EV, Dhokalia A, Kane MP, Whelan NT, Wong-Riley MTT, et al. Effect of NASA light-emitting diode irradiation on molecular changes for wound healing in diabetic mice. J Clin Laser Med Surg. 2003;21(April):67–74.

    Article  PubMed  Google Scholar 

  • Wunsch A, Matuschka KA. Controlled trial to determine the efficacy of red and near-infrared light treatment in patient satisfaction, reduction of fine lines, wrinkles, skin roughness, and intradermal collagen density increase. Photomed Laser Surg. 2014;32(2):93–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Song S, Fong CC, et al. cDNA microarray analysis of gene expression profiles in human fibroblast cells irradiated with red light. J Invest Dermatol. 2003;120:849–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiza Pitassi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pitassi, L. (2018). Light-Emitting Diode for Acne, Scars, and Photodamaged Skin. In: Issa, M., Tamura, B. (eds) Lasers, Lights and Other Technologies. Clinical Approaches and Procedures in Cosmetic Dermatology. Springer, Cham. https://doi.org/10.1007/978-3-319-16799-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16799-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16798-5

  • Online ISBN: 978-3-319-16799-2

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics