Skip to main content
Book cover

Polysaccharides pp 1373–1395Cite as

Surface Properties of Polysaccharides

  • Reference work entry
  • First Online:
  • 6108 Accesses

Abstract

Polysaccharides are used in a wide range of applications across the medical, food, and material science spheres. Their applicability is in part a consequence of their specific surface properties and the nature of their interactions at interfaces. Intensive research into polysaccharide surface properties and methods to investigate these has been undertaken for decades. Due to the complicated structural, chemical, and physical features of polysaccharides, however, fully understanding their surface properties and developing effective methods for studying these properties are still challenging tasks. In this chapter methods frequently used for polysaccharide surface characterization, including sample preparation and surface analysis, are described and critically discussed. In addition to the traditionally used methods, several novel techniques of preparing polysaccharide model surfaces and description of advanced instrumentation for this purpose are presented. Several examples of how surface modification of polysaccharides measured using these methods may be practically applied are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AB:

Lewis acid-based

AFM:

Atomic force microscopy

APTT:

Activated partial thromboplastin time

BC:

Bacterial cellulose

CMC:

Carboxymethyl cellulose

FT-IR:

Fourier transformation infrared spectroscopy

GPC:

Gel permeation chromatography

ICP-MS:

Inductively coupled plasma mass spectroscopy

IR:

Infrared spectroscopy

LB:

Langmuir–Blodgett

LP:

Lacquer polysaccharide

LW:

Lifshitz–van der Waals

MALDI-TOF:

Matrix-assisted laser desorption/ionization and time-of-flight mass spectrometry

NMR:

Nuclear magnetic resonance spectroscopy

QCM:

Quartz crystal microbalance

SEM:

Scanning electron microscopy

TMSC:

Trimethylsilyl cellulose

XPS:

X-ray photoelectron spectroscopy

ZP:

Zeta potential

References

  • Ahola S, Turon X, Österberg M, Laine J, Rojas OJ (2008a) Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure. Langmuir 24:11592–11599

    Article  CAS  Google Scholar 

  • Ahola S, Salmi J, Johansson LS, Laine J, Österberg M (2008b) Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Biomacromolecules 9:1273–1282

    Article  CAS  Google Scholar 

  • Andrade JR, Raphael E, Pawlicka A (2009) Plasticized pectin-based gel electrolytes. Electrochim Acta 54:6479–6483

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A 142:75–82

    Article  CAS  Google Scholar 

  • Ausserre D, Valignat MP (2006) Wide-field optical imaging of surface nanostructures. Nano Lett 6:1384–1388

    Article  CAS  Google Scholar 

  • Bellona C, Drewes JE (2005) The role of membrane surface charge and solute physico-chemical properties in the rejection of organic acids by NF membranes. J Membr Sci 249:227–234

    Article  CAS  Google Scholar 

  • Belu AM, Davies MC, Newton JM, Patel N (2000) TOF-SIMS characterization and imaging of controlled-release drug delivery systems. Anal Chem 72:5625–5638

    Article  CAS  Google Scholar 

  • Belu AM, Graham DJ, Castner DG (2003) Time-of-flight secondary ion mass spectrometry: techniques and applications for the characterization of biomaterial surfaces. Biomaterials 24:3635–3653

    Article  CAS  Google Scholar 

  • Čakara D, Fras L, Bračič M, Stana-Kleinschek K (2009) Protonation behavior of cotton fabric with irreversibly adsorbed chitosan: a potentiometric titration study. Carbohyd Polym 78:36–40

    Article  Google Scholar 

  • Childress AE, Elimelech M (1996) Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes. J Membr Sci 119:253–268

    Article  CAS  Google Scholar 

  • Cybulska J, Vanstreels E, Ho QT, Courtin CM, Van Craeyveld V, Nicolaï B, Zdunek A, Konstankiewicz K (2010) Mechanical characteristics of artificial cell walls. J Food Eng 96:287–294

    Article  CAS  Google Scholar 

  • De Mesquita JP, Donnici CL, Pereira FV (2010) Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan. Biomacromolecules 11:473–480

    Article  Google Scholar 

  • Delcorte A (2006) Matrix-enhanced secondary ion mass spectrometry: the Alchemist’s solution? Appl Surf Sci 252:6582–6587

    Article  CAS  Google Scholar 

  • Doliška A, Willför S, Strnad S, Ribitsch V, Stana-Kleinschek K, Eklund P, Xu C (2012a) Antithrombotic properties of sulfated wood-derived galactoglucomannans. Holzforschung 66:149–154

    Google Scholar 

  • Doliška A, Strnad S, Stana J, Martinelli E, Ribitsch V, Stana-Kleinschek K (2012b) In vitro haemocompatibility evaluation of PET surfaces using the quartz crystal microbalance technique. J Biomater Sci Polym Ed 23:697–714

    Article  Google Scholar 

  • Ducker WA, Senden TJ (1992) Measurement of forces in liquids using a force microscope. Langmuir 8:1831–1836

    Article  CAS  Google Scholar 

  • Earle MJ, Seddon KR (2000) Ionic liquids: green solvents for the future. Pure Appl Chem 72:1391–1398

    Article  CAS  Google Scholar 

  • Ebner G, Schiehser S, Potthast A, Rosenau T (2008) Side reaction of cellulose with common 1-alkyl-3-methylimidazolium-based ionic liquids. Tetrahedron Lett 49:7322–7324

    Article  CAS  Google Scholar 

  • Eriksson M, Notley SM, Wågberg L (2007) Cellulose thin films: degree of cellulose ordering and its influence on adhesion. Biomacromolecules 8:912–920

    Article  CAS  Google Scholar 

  • Fasl H, Stana J, Stropnik D, Strnad S, Stana-Kleinschek K, Ribitsch V (2010) Improvement of the hemocompatibility of PET surfaces using different sulphated polysaccharides as coating materials. Biomacromolecules 11:377–381

    Article  CAS  Google Scholar 

  • Filson PB, Dawson-Andoh BE, Schwegler-Berry D (2009) Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem 11:1808–1814

    Article  CAS  Google Scholar 

  • Finch CA (1996) Industrial water soluble polymers. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Fras L, Laine J, Stenius P, Stana-Kleinschek K, Ribitsch V, Doleček V (2004) Determination of dissociable groups in natural and regenerated cellulose fibers by different titration methods. J Appl Polym Sci 92:3186–3195

    Article  CAS  Google Scholar 

  • Gray DG, Weller M, Ulkem N, Lejeune A (2010) Composition of lignocellulosic surfaces: comments on the interpretation of XPS spectra. Cellulose 17:117–124

    Article  CAS  Google Scholar 

  • Gustafsson J, Lehto JH, Tienvieri T, Ciovica L, Peltonen J (2003) Surface characteristics of thermomechanical pulps; the influence of defibration temperature and refining. Colloid Surf A 225:95–104

    Article  CAS  Google Scholar 

  • Habibi Y, Foulon L, Aguié-Béghin V, Molinari M, Douillard R (2007) Langmuir-Blodgett films of cellulose nanocrystals: preparation and characterization. J Colloid Interface Sci 316:388–397

    Article  CAS  Google Scholar 

  • Hitrik M, Gutkin V, Lev O, Mandler D (2011) Preparation and characterization of mono- and multilayer films of polymerizable 1,2-polybutadiene using the Langmuir-Blodgett technique. Langmuir 27:11889–11898

    Article  CAS  Google Scholar 

  • Indest T, Laine J, Ribitsch V, Johansson LS, Stana-Kleinschek K, Strnad S (2008) Adsorption of chitosan on PET films monitored by quartz crystal microbalance. Biomacromolecules 9:2207–2214

    Article  CAS  Google Scholar 

  • Jacobasch HJ, Bauböck G, Schurz J (1985) Problems and results of zeta-potential measurements on fibers. Colloids Polym Sci 263:3–24

    Article  CAS  Google Scholar 

  • Johansson LS, Campbell JM (2004) Reproducible XPS on biopolymers: cellulose studies. Surf Interface Anal 36:1018–1022

    Article  CAS  Google Scholar 

  • Johansson LS, Campbell JM, Fardim P, Hulten AH, Boisvert JP, Ernstsson M (2005) An XPS round robin investigation on analysis of wood pulp fibres and filter paper. Surf Sci 584:126–132

    Article  CAS  Google Scholar 

  • Kadokawa J, Takegawa A, Mine S, Prasad K (2011) Preparation of chitin nanowhiskers using an ionic liquid and their composite materials with poly(vinyl alcohol). Carbohyd Polym 84:1408–1412

    Article  CAS  Google Scholar 

  • Katsikogianni M, Missirlis YF (2004) Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur Cell Mater 8:37–57

    CAS  Google Scholar 

  • Krässig HA (1996) Cellulose – structure, accessibility and reactivity. Gordon and Breach Science Publishers, Amsterdam

    Google Scholar 

  • Laine J, Buchert J, Viikari L, Stenius P (1996) Characterization of unbleached kraft pulps by enzymatic treatment, potentiometric titration and polyelectrolyte adsorption. Holzforschung 50:208–214

    Article  CAS  Google Scholar 

  • Lee SH, Lee HL, Youn HJ (2014) Adsorption and viscoelastic properties of cationic xylan on cellulose film using QCM-D. Cellulose. doi:10.1007/s10570-014-0186-6

    Google Scholar 

  • Liesiene J (2010) Synthesis of water-soluble cationic cellulose derivatives with tertiary amino groups. Cellulose 17:167–172

    Article  CAS  Google Scholar 

  • Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4:3274–3294

    Article  CAS  Google Scholar 

  • Lindgren J, Öhman LS (2000) Characterization of acid/base properties for bleached softwood fibers as influenced by ionic salt medium. Nord Pulp Pap Res J 15:18–23

    Article  CAS  Google Scholar 

  • Liu YL, Su YH, Lai JY (2004) In situ crosslinking of chitosan and formation of chitosan–silica hybrid membranes with using γ-glycidoxypropyltrimethoxysilane as a crosslinking agent. Polymer 45:6831–6837

    Article  CAS  Google Scholar 

  • Losurdo M, Bergmair M, Bruno G, Cattelan D, Cobet C, de Martino A, Fleischer K, Dohcevic-Mitrovic Z, Esser N, Galliet M, Gajic R, Hemzal D, Hingerl K, Humlicek J, Ossikovski R, Popovic ZV, Saxl O (2009) Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: State-of-the-art, potential, and perspectives. J Nanopart Res 11:1521–1554

    Article  CAS  Google Scholar 

  • Lu P, Hsieh YL (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohyd Polym 82:329–336

    Article  Google Scholar 

  • MacArtain P, Jacquier JC, Dawson KA (2003) Physical characteristics of calcium induced κ-carrageenan networks. Carbohyd Polym 53:395–400

    Article  CAS  Google Scholar 

  • Man Z, Muhammad N, Sarwono A, Bustam MA, Kumar MV, Rafiq S (2011) Preparation of cellulose nanocrystals using an ionic liquid. J Polym Environ 19:726–731

    Article  CAS  Google Scholar 

  • Marx KA (2003) Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules 4:1099–1120

    Article  CAS  Google Scholar 

  • Maximova N, Osterberg M, Koljonen K, Stenius P (2001) Lignin adsorption on cellulose fibre surfaces: effect on surface chemistry, surface morphology and paper strength. Cellulose 8:113–125

    Article  CAS  Google Scholar 

  • Mikkelsen D, Gidley MJ, Williams BA (2011) In vitro fermentation of bacterial cellulose composites as model dietary fibers. J Agric Food Chem 59:4025–4032

    Article  CAS  Google Scholar 

  • Mohan T, Kargl R, Doliška A, Vesel A, Köstler S, Ribitsch V, Stana-Kleinschek K (2011) Wettability and surface composition of partly and fully regenerated cellulose thin films from trimethylsilyl cellulose. J Colloid Interface Sci 358:604–610

    Article  CAS  Google Scholar 

  • Mohan T, Spirk S, Kargl R, Doliška A, Vesel A, Salzmann I, Resel R, Ribitsch V, Stana-Kleinschek K (2012a) Exploring the rearrangement of amorphous cellulose model thin films upon heat treatment. Soft Matter 8:9807–9815

    Article  CAS  Google Scholar 

  • Mohan T, Spirk S, Kargl R, Doliška A, Ehmann HMA, Köstler S, Ribitsch V, Stana-Kleinschek K (2012b) Watching cellulose grow-kinetic investigations on cellulose thin film formation at the gas-solid interface using a quartz crystal microbalance with dissipation (QCM-D). Colloid Surf A 400:67–72

    Article  CAS  Google Scholar 

  • Morra M, Cassineli C (1999) Non-fouling properties of polysaccharide-coated surfaces. J Biomat Sci-Polym E 10:1107–1124

    Article  CAS  Google Scholar 

  • Notley SM, Wågberg L (2005) Morphology of modified regenerated model cellulose II surfaces studied by atomic force microscopy: effect of carboxymethylation and heat treatment. Biomacromolecules 6:1586–1591

    Article  CAS  Google Scholar 

  • Pan C, Xu S, Zhou H, Fu Y, Ye M, Zou H (2007) Recent developments in methods and technology for analysis of biological samples by MALDI-TOF-MS. Anal Bioanal Chem 387:193–204

    Article  CAS  Google Scholar 

  • Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191–1206

    Article  CAS  Google Scholar 

  • Quero F, Nogi M, Yano H, Abdulsalami K, Holmes SM, Sakakini BH, Eichhorn SJ (2010) Optimization of the mechanical performance of bacterial cellulose/poly(l-lactic) acid composites. ACS Appl Mater Inter 2:321–330

    Article  CAS  Google Scholar 

  • Räsänen E, Stenius P, Tervola P (2001) Model describing Donnan equilibrium, pH and complexation equilibria in fibre suspensions. Nord Pulp Pap Res J 16:130–139

    Article  Google Scholar 

  • Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  CAS  Google Scholar 

  • Schaub M, Wenz G, Wegner G, Sfein A, Kfemrn D (1993) Ultrathin films of cellulose on silicon wafers. Adv Mater 5:919–922

    Article  CAS  Google Scholar 

  • Song J, Birbach NL, Hinestroza JP (2012) Deposition of silver nanoparticles on cellulosic fibers via stabilization of carboxymethyl groups. Cellulose 19:411–424

    Article  CAS  Google Scholar 

  • Spirk S, Findenig G, Doliška A, Reichel VE, Swanson NL, Kargl R, Ribitsch V, Stana-Kleinschek K (2013) Chitosan-silane sol–gel hybrid thin films with controllable layer thickness and morphology. Carbohyd Polym 93:285–290

    Article  CAS  Google Scholar 

  • Stana-Kleinschek K, Ehmann HMA, Spirk S, Doliška A, Fasl H, Fras-Zemljič L, Kargl R, Mohan T, Breitwieser D, Ribitsch V (2012) Cellulose and other polysaccharides surface properties and their characterization. In: Navard P (ed) The European polysaccharide network of excellence (EPNOE). Springer, Wien, pp 215–251

    Chapter  Google Scholar 

  • Suzuki T, Mizushima Y (1997) Characteristics of silica-chitosan complex membrane and their relationships to the characteristics of growth and adhesiveness of L-929 cells cultured on the biomembrane. J Ferment Bioeng 84:128–132

    Article  CAS  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  Google Scholar 

  • Tan MSF, Wang Y, Dykes GA (2013) Attachment of bacterial pathogens to a bacterial cellulose-derived plant cell wall model: a proof of concept. Foodborne Pathog Dis 10:992–994

    Article  CAS  Google Scholar 

  • Tian D, Dubois PH, Grandfile CH, Jermome P, Viville P, Lazzaroni R, Bredas JL, Leprince P (1997) A novel biodegradable and biocompatible ceramer prepared by the sol–gel process. Chem Mater 9:871–874

    Article  CAS  Google Scholar 

  • Van Oss CJ, Good RJ, Chaudhury MK (1988) Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir 4:884–891

    Article  Google Scholar 

  • Wågberg L, Odberg L, Glad-Nordmark G (1989) Charge determination of porous substrates by polyelectrolyte adsorption part 1. Carboxymethylated, bleached cellulosic fibers. Nord Pulp Pap Res J 2:71–76

    Article  Google Scholar 

  • Wang Y, Lee SM, Dykes GA (2014) The physicochemical process of bacterial attachment to abiotic surfaces: challenges for mechanistic studies, predictability and the development of control strategies. Crit Rev Microbiol. doi:10.3109/1040841X.2013.866072

    Google Scholar 

  • Warning A, Datta AK (2013) Interdisciplinary engineering approaches to study how pathogenic bacteria interact with fresh produce. J Food Eng 114:426–448

    Article  Google Scholar 

  • Yang J, Du Y (2003) Chemical modification, characterization and bioactivity of Chinese lacquer polysaccharides from lac tree Rhus vernicifera against leukopenia induced by cyclophosphamide. Carbohyd Polym 52:405–410

    Article  CAS  Google Scholar 

  • Yasuda T, Okuno T (1994) Contact angle of water on polymer surfaces. Langmuir 10:2435–2439

    Article  CAS  Google Scholar 

  • Zeronian SH, Inglesby MK (1995) Bleaching peroxide of cellulose by hydrogen. Cellulose 2:265–272

    Article  CAS  Google Scholar 

  • Zhang Y, Sjögren B, Engstrand P, Htun M (1994) Determination of charged groups in mechanical pulp fibres and their influence on pulp properties. J Wood Chem Technol 14:83–102

    Article  CAS  Google Scholar 

  • Zih-Perényi K, Lásztity A, Horváth Z, Lévai A (1998) Use of a new type of 8-hydroxyquinoline-5-sulphonic acid cellulose (sulphoxine cellulose) for the preconcentration of trace metals from highly mineralised water prior their GFAAS determination. Talanta 47:673–679

    Article  Google Scholar 

Download references

Acknowledgment

We would like to acknowledge Michelle Sze-Fan Tan for the preparation of the bacterial cellulose composites for SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary A. Dykes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Wang, Y., Dykes, G.A. (2015). Surface Properties of Polysaccharides. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-16298-0_9

Download citation

Publish with us

Policies and ethics