Skip to main content

Cell Wall Evolution and Diversity

  • Reference work entry
  • First Online:
Polysaccharides

Abstract

Cell walls of green plants and other photosynthetic eukaryotes consist of complex polysaccharide-rich coverings that are central to cell growth, development, and defense. Most cell walls display a microarchitectural design consisting of a composite of fibrillar polysaccharides, such as cellulose, mannans, or xylans, tethered by other glycans (e.g., hemicelluloses) that are embedded in a matrix of polysaccharides and proteins. This design produces both remarkable strength and the capacity for controlled expansion. The biosynthesis and metabolism of the cell wall require a significant portion of the cell’s genetic machinery and the activities of coordinated subcellular pathways that are, in turn, responsive to developmental and environmental signals. The evolution of cell walls was critical to the exploitation of, and survival in, Earth’s diverse habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson CT, Carroll A, Akhmetova L, Somerville C (2010) Real-time imaging of cellulose reorientation during cell wall expansion in Arabidopsis roots. Plant Physiol 152:787–796

    CAS  Google Scholar 

  • Araki Y, Gonzalez EL (1998) V- and P-type Ca-stimulated ATPases in a calcifying strain of Pleurochrysis sp. (Haptophyceae). J Phycol 34:79–88

    CAS  Google Scholar 

  • Atmodjo MA, Hao Z, Mohnen D (2013) Evolving views of pectin biosynthesis. Ann Rev Plant Biol 64:747–779

    CAS  Google Scholar 

  • Baroja-Fernández E, Muñoz FJ, Li J, Bahaji A, Almagroa G, Montero M, Etxeberri E, Hidalgo M, Sesma MT, Pozueta-Romero J (2012) Sucrose synthase activity in the sus1/sus2/sus3/sus4 Arabidopsis mutant is sufficient to support normal cellulose and starch production. PNAS 109:321–326

    Google Scholar 

  • Bashline L, Li S, Anderson CT, Lei L, Gu Y (2013) The endocytosis of cellulose synthase in Arabidopsis is dependent on μ2, a clathrin-mediated endocytosis adaptin. Plant Physiol 163:150–160

    CAS  Google Scholar 

  • Baylson FA, Stevens BW, Domozych DS (2001) Composition and synthesis of the pectin and protein components of the cell wall of Closterium acerosum (Chlorophyta). J Phycol 37:796–809

    CAS  Google Scholar 

  • Becker B, Marin B (2009) Streptophyte algae and the origin of embryophytes. Ann Bot 103:999–1004

    CAS  Google Scholar 

  • Becker B, Marin B, Melkonian M (1994) Structure, composition, and biogenesis of prasinophyte scale coverings. Protoplasma 181:233–244

    Google Scholar 

  • Becker B, Lommerse JPM, Melkonian M, Kamerling JP, Vliegenthart JFG (1995) The structure of an acidic trisaccharide component from a cell wall polysaccharide preparation of the green alga Tetraselmis striata Butcher. Carbohydr Res 267:313–321

    CAS  Google Scholar 

  • Becker B, Perasso L, Kammann A, Salzburg M, Melkonian M (1996) Scale-associated glycoproteins of Scherffelia dubia (Chlorophyta) for high-molecular-weight complexes between scale layers and the flagellar membrane. Planta 199:503–510

    CAS  Google Scholar 

  • Berglin M, Delage I, Potin P, Vilter H, Elwing H (2004) Enzymatic cross-linking of a phenolic polymer extracted from the marine alga Fucus serratus. Biomacromolecules 5:2376–2383

    CAS  Google Scholar 

  • Bisgrove SR, Kropf DL (2001) Cell wall deposition during morphogenesis in fucoid algae. Planta 212:648–658

    CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    CAS  Google Scholar 

  • Bonawitz N, Chapple C (2010) The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu Rev Genet 2010(44):337–363

    Google Scholar 

  • Brabham C, DeBolt S (2013) Chemical genetics to examine cellulose biosynthesis. Front Plant Sci. doi:10.3389/fpls.2012.00309

    Google Scholar 

  • Braybrook SA, Hofte H, Peaucelle A (2012) Probing the mechanical contributions of the pectin matrix. Plant Signal Behav 7:1037–1041

    CAS  Google Scholar 

  • Brownlee C, Taylor A (2004) Calcification in coccolithophores: a cellular perspective. In: Thierstein HR, Young JR (eds) Coccolithophores: from molecular processes to global impacts. Springer, Heidelberg

    Google Scholar 

  • Burton RA, Fincher GB (2009) (1,3;1,4)-beta-d-glucans in cell walls of the Poaceae, lower plants, and fungi: a tale of two linkages. Mol Plant 2:873–82

    CAS  Google Scholar 

  • Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900

    CAS  Google Scholar 

  • Cai G, Faleri C, Del Casino C, Emons AMC, Cresti M (2011) Distribution of callose synthase, cellulose synthase, and sucrose synthase in tobacco pollen tube is controlled in dissimilar ways by actin filaments and microtubules. Plant Physiol 155:1169–1190

    CAS  Google Scholar 

  • Callow ME, Coughlan SJ, Evans LV (1978) The role of Golgi bodies in polysaccharide sulphation in Fucus zygotes. J Cell Sci 32:337–356

    CAS  Google Scholar 

  • Caño-Delgado A, Penfield S, Smith C, Catley M, Bevan M (2003) Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J 34:351–362

    Google Scholar 

  • Cock JM et al (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617–621

    CAS  Google Scholar 

  • Coelho SM, Scornet D, Rousvoal S, Peters NT, Dartevelle L, Peters AF, Cock JM (2012) Ectocarpus: a model organism for the brown algae. Cold Spring Harb Protoc. doi:10.1101/pdb.emo065821

    Google Scholar 

  • Corstjens PLM, González EL (2004) Effects of nitrogen and phosphorus availability on the expression of the coccolith-vesicle V-ATPase proton pump: cloning and immunolocalization. J Phycol 40:82–87

    CAS  Google Scholar 

  • Corstjens PLAM, Araki Y, González EL (2001) A coccolithophorid calcifying vesicle with a vacuolar–type ATPase proton pump: cloning and immunolocalization of the Vo subunit. J Phycol 37:31–38

    Google Scholar 

  • Craigie JS (1990) Cell walls. In: Cole KM, Sheath RG (eds) Biology of red algae. Cambridge University Press, Cambridge, pp 221–257

    Google Scholar 

  • Crowell EF, Timpano H, Desprez T, Franssen-Verheijen T, Emons A-E, Hofte H, Vernhettes S (2011) Differential regulation of cellulose orientation at the inner and outer face of epidermal cells in the Arabidopsis hypocotyl. Plant Cell 23:2592–2605

    CAS  Google Scholar 

  • Currie HA, Perry CC (2009) Chemical evidence for intrinsic ‘Si’ within Equisetum cell walls. Phytochemistry 17–18:2089–95

    Google Scholar 

  • da Costa RMF, Lee SG, Allison GG, Hazen SP, Winters A, Bosch M (2014) Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus. Ann Bot. doi:10.1093/aob/mcu054

    Google Scholar 

  • Davies JM (2014) Annexin-mediated calcium signaling in plants. Plants 3:128–140

    Google Scholar 

  • Ding S-Y, Liu Y-S, Zeng Y, Himmel ME, Baker JO, Bayer EA (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility. Science 338:1055–1060

    CAS  Google Scholar 

  • Domozych DS, Dairman M (1993) Synthesis of the inner cell wall of the chlamydomonad flagellate, Gloeomonas kupfferi. Protoplasma 176:1–13

    Google Scholar 

  • Domozych DS, Stewart KD, Mattox KR (1981) Development of the cell wall in Tetraselmis: role of the Golgi Apparatus and extracellular wall assembly. J Cell Sci 52:351–371

    Google Scholar 

  • Domozych DS, Wells B, Shaw P (1991) Basket scales of the green alga, Mesostigma viride: chemistry and ultrastructure. J Cell Sci 100:397–407

    CAS  Google Scholar 

  • Domozych DS, Roberts R, Danyow C, Flitter R, Smith B (2003) Plasmolysis, hectian strand formation and localized membrane wall adhesions in the desmids, Closterium acerosum (Chlorophyta). J Phycol 38:1194–1206

    Google Scholar 

  • Domozych DS, Serfis A, Kiemle SN, Gretz MR (2007a) The structure and biochemistry of charophycean cell walls I. Pectins of Penium margaritaceum. Protoplasma 230:99–115

    CAS  Google Scholar 

  • Domozych DS, Elliott L, Kiemle SN, Gretz MR (2007b) Pleurotaenium trabecula, a desmid of wetland biofilms: The extracellular matrix and adhesion mechanisms. J Phycol 43:1022–1038

    CAS  Google Scholar 

  • Domozych DS, Lambiasse L, Kiemle S, Gretz MR (2009) Cell-wall development and bipolar growth in the desmid Penium margaritaceum (Zygnematophyceae, Streptophyta). asymmetry in a symmetric world. J Phycol 45:879–893

    CAS  Google Scholar 

  • Domozych DS, Brechka H, Britton A, Toso M (2011) Cell wall growth and modulation dynamics in a model unicellular green alga- Penium margaritaceum: live cell labeling with monoclonal antibodies. J Bot. doi:10.1155/2011/632165

    Google Scholar 

  • Domozych DS, Ciancia M, Fangel JU, Mikkelsen MD, Ulvskov P, Willats WGT (2012) The cell walls of green algae: a journey through evolution and diversity. Front Plant Sci. doi:10.3389/fpls.2012.00082

    Google Scholar 

  • Domozych DS, Sørensen I, Popper ZA, Ochs J, Andreas A, Fangel JU, Pielach A, Sacks C, Brechka H, Willats WGT, Rose JKC (2014a) Pectin metabolism and assembly in the cell wall of the charophyte green alga Penium margaritaceum. Plant Physiol 165:105–118

    CAS  Google Scholar 

  • Domozych DS, Sørensen I, Sacks C, Brechka H, Andreas A, Fangel JU, Rose JKC, Willats WGT, Popper ZA (2014b) Disruption of the microtubule network alters cellulose deposition and causes major changes in pectin distribution in the cell wall of the green alga, Penium margaritaceum. J Exp Bot 65:465–479

    CAS  Google Scholar 

  • Dresher B, Dillaman RM, Taylor AR (2012) Coccolithogenesis in Scyphosphaera apsteinii (Prymnesiophyceae). J Phycol 48:1343–1361

    Google Scholar 

  • Driouich A, Follet-Gueye M-L, Bernard S, Kousar S, Chevalier L, Vicre’-Gibouin M, Lerouxel O (2012) Golgi-mediated synthesis and secretion of matrix polysaccharide of the primary cell wall of higher plants. Front Plant Sci. doi:10.3339/fpls.2012.00079

    Google Scholar 

  • Eder M, Lutz-Meindl U (2008) Pectin-like carbohydrates in the green alga Micrasterias characterized by cytochemical analysis and energy filtering TEM. J Microsc 231:210–214

    Google Scholar 

  • Eder M, Lutz-Meindl U (2010) Analyses and localization of pectin-like carbohydrates in cell wall and mucilage of the green alga Netrium digitus. Protoplasma 243:25–38

    CAS  Google Scholar 

  • Eder M, Tenhaken R, Driouich A, Lutz-Meindl U (2008) Occurrence and characterization of arabinogalactan-like proteins and hemicelluloses in Micrasterias (Streptophyta). J Phycol 44:1221–1234

    CAS  Google Scholar 

  • Ellis M, Egelund J, Schultz CJ, Bacic A (2010) Arabinogalactan proteins: key regulators at the cell surface. Plant Physiol 153:403–419

    Google Scholar 

  • Ertl H, Hallmann A, Wenzl S, Sumper M (1992) A novel extensin that may organize extracellular matrix biogenesis in Volvox carteri. EMBO J 11:2055–2062

    CAS  Google Scholar 

  • Estevez JM, Leonardi PL, Alberghina JS (2008) Cell wall carbohydrate epitopes in the green alga Oedogonium bharuchae F. minor (Oedogoniales, Chlorophyta. J Phycol 44:1257–1268

    CAS  Google Scholar 

  • Estevez JM, Kasuli L, Fernandez PV, Dupree P, Ciancia M (2009) Chemical in situ characterization of macromolecular components of the complex cell walls from the coenocytic green alga Codium fragile. Glycobiology 18:250–259

    Google Scholar 

  • Faik A (2010) Xylan biosynthesis: news from the grass. Plant Physiol 153:396–402

    CAS  Google Scholar 

  • Fangel JU, Ulvskov P, Knox JP, Mikkelsen MD, Harholt J, Popper ZA, Willats WG T (2012) Cell wall evolution and diversity. Front Plant Sci. doi:10.193389/fpls.2012.00152

    Google Scholar 

  • Fernandez PV, Ciancia M, Miravalles AB, Estevez JM (2010) Cell-wall polymer mapping in the coenocytic macroalga Codium vermilaria (Bryopsidales, Chlorophyta). J Phycol 46:456–465

    CAS  Google Scholar 

  • Fowler JE, Vejlupkova Z, Goodner BW, Lu G, Quatrano RS (2004) Localization to the rhizoid tip implicates a Fucus distichus Rho family GTPase in a conserved cell polarity pathway. Planta 219:856–866

    CAS  Google Scholar 

  • Franková L, Fry SC (2013) Biochemistry and physiological roles of enzymes that ‘cut and paste’ plant cell-wall polysaccharides. (Darwin review). J Exp Bot 64:3519–3550

    Google Scholar 

  • Fry SC (2000) The growing plant cell wall: chemical and metabolic analysis. Blackwell Press, Caldwell, 320 pp

    Google Scholar 

  • Giddings TH Jr, Brower DL, Staehelin LA (1980) Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls. J Cell Biol 84:327–339

    Google Scholar 

  • Goodenough UW, Heuser JE (1988) Molecular organization of cell-wall crystals from Chlamydomonas reinhardtii and Volvox carteri. J Cell Sci 90:717–733

    CAS  Google Scholar 

  • Graham LJ, Graham J, Wilcox L (2009) Algae, 2e. Benjamin Cummings (Pearson), San Francisco

    Google Scholar 

  • Guerriero G, Fugelstad J, Bulone V (2010) What do we really know about cellulose biosynthesis in higher plants? J Integr Plant Biol 52:61–175

    Google Scholar 

  • Gutierrez R, Lindeboom J, Paradez AR, Emons AM, Ehrhardt DW (2009) Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat Cell Biol 11:797–806

    CAS  Google Scholar 

  • Harholt J, Suttangkakul A, Scheller V (2010) Biosynthesis of pectin. Plant Physiol 153:384–395

    CAS  Google Scholar 

  • Harris D, Bulone V, Ding S-Y, DeBolt S (2010) Tools for cellulose analysis in plant cell walls. Plant Physiol 153:420–426

    CAS  Google Scholar 

  • Hayashi T, Kaida R (2011) Functions of xyloglucans in plants. Mol Plant 4:17–24

    CAS  Google Scholar 

  • Hepler PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17:2142–2155

    CAS  Google Scholar 

  • Hirokawa Y, Fujiwara S, Ysuzuki M (2005) Three types of acidic polysaccharides associated with coccolith of Pleurochrysis haptonemofera: comparison with Pleurochrysis carterae and analysis using fluorescein-isothiocyanate-labeled lectins. Mar Biotechnol 7:634–44

    CAS  Google Scholar 

  • Höhfeld I, Melkonian M (1992) Amphiesmal ultrastructure of dinoflagellates: a reevaluation of pellicle formation. J Phycol 28:82–89

    Google Scholar 

  • Holzinger A (2000) Aspects of cell development in Micrasterias muricata (Desmidiaceae) revealed by cryofixation and freeze substitution. Nova Hedw 70:275–288

    Google Scholar 

  • Imam SH, Buchanan MJ, Shin H-C, Snell WJ (1985) The Chlamydomonas cell wall characterization of the wall framework. J Cell Biol 101:1599–1607

    CAS  Google Scholar 

  • Jeon Y-J, Wijesinghe WAJP, Kim S-K (2011) Functional properties of brown algal sulfated polysaccharides, Fucoidans. Adv Food Nutr Res 64:163–178

    CAS  Google Scholar 

  • Katsaros C, Karyphyllis D, Galatis B (2003) F-actin cytoskeleton and cell wall morphogenesis in brown algae. Cell Biol Int 27:209–210

    CAS  Google Scholar 

  • Kayano K, Saruwatari K, Kogure T, Shiraiwa Y (2010) Effect of coccolith polysaccharides isolated from the coccolithophorid, Emiliania huxleyi, on calcite crystal formation in in vitro CaCO3 crystallization. Mar Biotechnol 13:83–92

    Google Scholar 

  • Keegstra K (2010) Plant cell walls. Plant Physiol 154:483–486

    CAS  Google Scholar 

  • Keskiaho K, Hieta R, Sornumen R, Myllyharju J (2007) Chlamydomonas reinhardtii has multiple prolyl 4-hydroxylases, one of which is essential for proper cell wall assembly. Plant Cell 19:256–269

    CAS  Google Scholar 

  • Kirk DL, Birchem R, King N (1986) The extracellular matrix of Volvox: a comparative study and proposed system of nomenclature. J Cell Sci 80:207–231

    Google Scholar 

  • Kloareg B, Quatrano RS (1988) Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr Mar Biol Annu Rev 26:259–315

    Google Scholar 

  • Kröger N, Poulsen N (2008) Diatoms—from cell wall biogenesis to nanotechnology. Annu Rev Genet 2:83–107

    Google Scholar 

  • Kwok ACM, Wong JTY (2003) Cellulose synthesis is coupled to cell cycle progression at G1 in the dinoflagellate Crypthecodinium cohnii. Plant Physiol 131:1681–1691

    CAS  Google Scholar 

  • Kwok ACM, Wong JTY (2010) The activity of a wall-bound cellulase Is required for and Is coupled to cell cycle progression in the dinoflagellate Crypthecodinium cohnii. Plant Cell 22:281–1298

    Google Scholar 

  • Lamport DTA, Kieliszewski MJ, Chen Y, Cannon MC (2011) Role of extensin super family in primary cell wall architecture. Plant Physiol 156:11–19

    CAS  Google Scholar 

  • Langer G, de Nooijer LJ, Oetjen K (2010) On the role of the cytoskeleton in coccolith morphogenesis: the effect of cytoskeleton inhibitors. J Phycol 46:1252–1256

    CAS  Google Scholar 

  • Law C, Exley C (2011) New insight into silica deposition in horsetail (Equisetum arvense). BMC Plant Biol. doi:10.1186/1471-2229-11-11

    Google Scholar 

  • Le Bail A, Billoud B, Kowalczyk N, Kowalczyk M, Gicquel M, Le Panse S, Stewart S, Scornet D, Cock JM, Ljung K, Charrier B (2011) Auxin metabolism and function in the multicellular brown alga Ectocarpus siliculosus. Plant Physiol 153:128–144

    Google Scholar 

  • Lee KJD, Sakata Y, Mau S-L, Pettolino F, Bacic A, Quatrano RS, Knight CD, Knox JP (2005) Arabinogalactan proteins are required for apical cell extension in the moss Physcomitrella patens. Plant Cell 17:3051–3065

    CAS  Google Scholar 

  • Leliaert L, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, De Clerck O (2012) Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci 31:1–46

    Google Scholar 

  • Lerouxel O, Cavalier DM, Liepman AH, Keegstra K (2006) Biosynthesis of plant cell walls- a complex process. Curr Opin Plant Biol 9:621–630

    CAS  Google Scholar 

  • Li L, Saga N, Mikami K (2008) Effects of cell wall synthesis on cell polarity in the red alga Porphyra yezoensis. Plant Signal Behav 3:1126–1128

    Google Scholar 

  • Lutz-Meindl U, Brosch-Salomon S (2000) Cell wall secretion in the green alga Micrasterias. J Microsc 198:208–217

    CAS  Google Scholar 

  • Mackinder L, Wheeler G, Schroeder D, Riebesell U, Brownlee C (2010) Molecular mechanisms underlying calcification in coccolithophores. Geomicrobiol J 27:585–95

    CAS  Google Scholar 

  • Marsh M (1999) Biomineralization in coccolithophores. Gravit Space Biol Bull 12:5–14

    CAS  Google Scholar 

  • Martone PT, Estevez JM, Lu F, Ruel K, Denny MW, Somerville C, Ralph J (2010) Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr Biol 19:169–175

    Google Scholar 

  • McCann M, Rose J (2010) Blueprint for building plant cell walls. Plant Physiol 153:365

    CAS  Google Scholar 

  • McCarthy TW, Der JP, Honaas LA, dePamphilis CW, Anderson CT (2014) Phylogenetic analysis of pectin-related gene families in Physcomitrella patens and nine other plant species yields evolutionary insights into cell walls. BMC Plant Biol 14:79

    Google Scholar 

  • McFadden GI, Melkonian M (1986) Golgi apparatus activity and membrane flow during scale biogenesis in the green flagellate Scherffelia dubia (Prasinohyceae). II. Cell wall secretion and assembly. Protoplasma 131:174–184

    Google Scholar 

  • McFarlane HE, Doring A, Persons S (2014) The cell biology of cellulose synthesis. Annu Rev Plant Physiol Plant Mol Biol 65:69–94

    CAS  Google Scholar 

  • Meindl U (1993) Micrasterias cells as a model system for research on morphogenesis. Microbiol Rev 57:415–433

    CAS  Google Scholar 

  • Meng X, Raugauskas AJ (2014) Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates. Curr Opin Biotechnol 27:150–158

    CAS  Google Scholar 

  • Mertens K, Lynn M, Aycard M, Lin H-L, Louwye S (2009) Coccolithophores as palaeological indicator for shifts of the ITCZ in the Cariaco Basin during the late quaternary. J Quat Sci 24:159–74

    Google Scholar 

  • Michel G, Tonon T, Scornet D, Cock JM, Kloareg B (2010) The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in eukaryotes. New Phytol 188:82–97

    CAS  Google Scholar 

  • Mizuta S, Brown RM Jr (1992) High resolution analysis of the formation of cellulose-synthesizing complexes in Vaucheria hamata. Protoplasma 166:187

    CAS  Google Scholar 

  • Moestrup O, Walne PL (1979) Studies on scale morphogenesis in the Golgi apparatus of Pyramimonas tetrarhynchus (Prasinophyceae). J Cell Sci 36:437–459

    CAS  Google Scholar 

  • Morrill LC, Loeblich AR (1983) Ultrastructure of the dinoflagellate amphiesma. Int Rev Cytol 82:151–180

    CAS  Google Scholar 

  • Nagasato C, Motomura T (2009) Effect of latrunculin B and brefeldin A on cytokinesis in the brown alga Scytosiphon lomentaria zygotes (Scytosiphonales, Phaeophyceae). J Phycol 45:404–412

    CAS  Google Scholar 

  • Nagasato C, Inoue A, Mizuno M, Kanazawa K, Ojima T, Okuda K, Motomura T (2010) Membrane fusion process and assembly of cell wall during cytokinesis in the brown alga, Silvetia babingtonii (Fucales, Phaeophyceae). Planta 232:287–298

    CAS  Google Scholar 

  • Nakishima J, Heathman A, Brown RM Jr (2006) Antibodies against a Gossypium hirsutum recombinant cellulose synthase (Ces A) specifically label cellulose synthase in Micrasterias denticulata. Cellulose 13:181–190

    Google Scholar 

  • Nguema-Ona E, Coimbra S, Vicre’-Gibouin M, Mollet J-C, Driouich A (2012) Arabinogalactan proteins in root and pollen tube cells: distribution and functional aspects. Ann Bot 110:383–404

    CAS  Google Scholar 

  • Niklas KJ (1992) Plant biomechanics: an engineering approach to plant form and function. University of Chicago Press, Chicago

    Google Scholar 

  • Niklas KJ (2004) The cell walls that bind the tree of life. Bioscience 54:831–841

    Google Scholar 

  • Ochs J, LaRue T, Tinaz B, Yongue C, Domozych DS (2014) The cortical cytoskeletal network and cell-wall dynamics in the unicellular charophycean green alga Penium margaritaceum. Ann Bot. doi:10.1093/aob/mcu013

    Google Scholar 

  • Painter TJ (1983) Algal polysaccharides. In: Aspinall GO (ed) The polysaccharides. Academic, NY, pp 195–285

    Google Scholar 

  • Paradez A, Somerville CR, Ehrhardt DW (2006) Dynamic visualisation of cellulose synthase demonstrates functional association with cortical microtubules. Science 312:1491–1495

    Google Scholar 

  • Pauly M, Keegstra K (2010) Plant cell wall polymers as precursors for biofuels. Curr Opin Plant Biol 13:304–311

    Google Scholar 

  • Pauly M, Gille S, Liu L, Mansoori N, de Souza A, Schultink A, Xiong G (2013) Hemicellulose biosynthesis. Planta 238:627–642

    CAS  Google Scholar 

  • Pflugl-Haill M, Vidali L, Vos JW, Hepler PK, Lutz-Meindl U (2000) Changes of the actin filament system in the green alga Micrasterias denticulata induced by different cytoskeleton inhibitors. Protoplasma 212:206–216

    CAS  Google Scholar 

  • Piršelová B, Matušíková I (2013) Callose: the plant cell wall polysaccharide with multiple biological functions. Acta Physiol Plant 35:635–64

    Google Scholar 

  • Popper ZA, Fry SC (2003) Primary cell wall composition of bryophytes and charophytes. Ann Bot 9:1–12

    Google Scholar 

  • Popper ZA, Fry SC (2004) Primary cell wall composition of pteridophytes and spermatophytes. New Phytol 164:165–174

    CAS  Google Scholar 

  • Popper ZA, Michel G, Herve C, Domozych DS, Willats WGT, Tuohy MG, Kloareg B, Stengel DB (2011) Evolution and diversity of pant cell walls: from algae to flowering plants. Ann Rev Plant Biol 62:567–590

    CAS  Google Scholar 

  • Pozdnyakov I, Skarlato S (2012) Dinoflagellate amphiesma at different stages of the life cycle. Protistology 7:108–115

    Google Scholar 

  • Proseus TE, Boyer JS (2007) Tension required for pectate chemistry to control growth in Chara corallina. J Exp Bot 58:4283–4292

    CAS  Google Scholar 

  • Proseus TE, Boyer JS (2008) Calcium pectate chemistry causes growth to be stored in Chara corallina: a test of the pectate cycle. Plant Cell Environ 31:1147–1155

    CAS  Google Scholar 

  • Proseus TE, Boyer JS (2012) Calcium deprivation disrupts enlargement of Chara corallina cells: further evidence for the calcium pectate cycle. J Exp Bot 63:3953–3958

    CAS  Google Scholar 

  • Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH et al (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem Rev 3:29–60

    CAS  Google Scholar 

  • Ramus J (1972) The production of extracellular polysaccharide by the unicellular red alga Porphyridium aerugineum. J Phycol 8:97–111

    CAS  Google Scholar 

  • Ray B, Lahaye M (1995) Cell-wall polysaccharides from the marine green alga Ulva ‘rigida” (Ulvales, Chlorophyta). Chemical structure of ulvan. Carbohr Res 274:313–318

    CAS  Google Scholar 

  • Rinaudo M (2007) In: Kamerling JP (ed) Comprehensive glycoscience. From chemistry to systems biology, vol 2. Elsevier, NY, pp 691–735

    Google Scholar 

  • Roberts K (1974) Crystalline glycoprotein cell walls of algae: their structure, composition and assembly. Philos Trans R Soc Lond B Biol Sci 268:129–146

    CAS  Google Scholar 

  • Roberts AW, Roberts E (2007) Evolution of the Cellulose Synthase (CesA) gene family: insights from green algae and seedless plants. In: Brown RM Jr, Saxena IM (eds) Cellulose: molecular and structural biology. Springer, Dordrecht, pp 17–34

    Google Scholar 

  • Roberts K, Grief C, Hills GJ, Shaw PJ (1985) Cell wall glycoproteins: structure and function. J Cell Sci Suppl 2:105–127

    CAS  Google Scholar 

  • Roberts AW, Roberts EM, Delmer DP (2002) Cellulase synthase (CesA) genes in the green alga Mesotaenium caldariorum. Eukaryot Cell 1:847–855

    CAS  Google Scholar 

  • Sampathkumar A, Gutierrez R, McFarlane HE, Bringmann M, Lideboom J, Emons AM, Samuels L, Ketelaar T, Ehrhardt DW, Persson S (2013) Patterning and lifetime of plasma membrane-localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells. Plant Physiol 162:675–688

    CAS  Google Scholar 

  • Sarkar P, Bosneaga E, Auer M (2009) Plant cell walls throughout evolution: towards a molecular understanding of their design principles. J Exp Bot 60:3615–3635

    CAS  Google Scholar 

  • Saxena IM, Brown RM Jr (2005) Cellulose biosynthesis: current views and evolving concepts. Ann Bot 96:9–21

    CAS  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Ann Rev Plant Biol 61:263–289

    CAS  Google Scholar 

  • Shoenwaelder MEA, Wiencke C (2000) Phenolic compounds in the embryo development of several northern hemisphere fucoids. Plant Biol 2:24–33

    Google Scholar 

  • Showalter AM (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 58:1399–1417

    CAS  Google Scholar 

  • Shroeder DC, Biggi GF, Hall M, Davy J, Martinez JM, Richardson AJ, Malin G, Wilson WH (2005) A genetic marker to separate Emiliania huxleyi (Prymnesiophyceae) morphotypes. J Phycol 41:874–9

    Google Scholar 

  • Somerville C (2006) Cellulose synthesis in higher plants. Ann Rev Cell Dev Biol 22:53–78

    CAS  Google Scholar 

  • Sørensen I, Domozych DS, Willats WGT (2010) How have plant cells evolved? Plant Physiol 153:366–372

    Google Scholar 

  • Sørensen I, Pettolino FA, Bacic A, Ralph J, Lu F, O’Neill MA, Fei Z, Rose JKC, Domozych DS, Willats WGT (2011) The charophycean green algae provide insights into the early origins of plant cell walls. Plant J 68:201–211

    Google Scholar 

  • Sumper M, Hallmann A (1998) Biochemistry of the extracellular matrix of Volvox. Int Rev Cytol 180:51–85

    CAS  Google Scholar 

  • Tan L, Eberhard S, Pattahil S, Warder C, Glushka J, Yuan C, Hao Z, Zhu X, Avci U, Miller JS, Baldwin D, Pham C, Orlando R, Darvill A, Hahn MG, Kieliszewski MJ, Mohnen D (2013) An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell 25:270–287

    CAS  Google Scholar 

  • Taylor NG (2008) Cellulose biosynthesis and deposition in higher plants. New Phytol 178:239–252

    CAS  Google Scholar 

  • Taylor AR, Russell MA, Harper GM, Collins TFT, Brownlee C (2007) Dynamics of formation and secretion of heterococcoliths by Coccolithus pelagicus ssp. Brarudii. Eur J Phycol 42:125–36

    Google Scholar 

  • Terauchi M, Nagasat C, Kajimura N, Mineyuki Y, Okuda K, Katsaros C, Motomura T (2012) Ultrastructural study of plasmodesmata in the brown alga Dictyota dichotoma (Dictyotales, Phaeophyceae). Planta 236:1013–1026

    CAS  Google Scholar 

  • Tronchet M, Balagué C, Kroj T, Jouanin L, Roby D (2010) Cinnamyl alcohol dehydrogenases C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Mol Plant Pathol 11:83–92

    CAS  Google Scholar 

  • Tsekos I (1981) Growth and differentiation of the golgi apparatus and wall germination during carposporogenesis in the red alga, Gigartina teedii (Roth) Lamour. J Cell Sci 52:71–84

    CAS  Google Scholar 

  • Tsekos I (1999) The sites of cellulose synthesis in algae: diversity and evolution of cellulose-synthesizing enzyme complexes. J Phycol 35:635–655

    CAS  Google Scholar 

  • Ulvskov P, Paiva DS, Domozych D, Harholt J (2013) Classification, naming and evolutionary history of glycosyltransferases from sequenced green and red algal genomes. PLOSOne. doi:10.1371/journal.pone.0076511

    Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905

    CAS  Google Scholar 

  • Vannerum K, Abe J, Sekimoto H, Inzé D, Vyverman W (2010) Intracellular localization of an endogenous cellulose synthase of Micrasterias denticulata (Desmidiales, Chlorophyta) by means of transient genetic transformation. J Phycol 46:839–845

    CAS  Google Scholar 

  • Vannerum K, De Rycke R, Pollier J, Goosens A, Inze D, Vyverman W (2012) Characterization of a RABE (RAS gene from rat brain E) GTPase expressed during morphogenesis in the unicellular green alga Micrasterias denticulata (Zygnematophyceae, Streptophyta). J Phycol 48:682–692

    Google Scholar 

  • Velasquez SM, Ricardi MM, Dorosz JG, Fernandez PV, Nadra AD, Pol-Fachin L, Egelund J, Harholdt J, Gille S, Ciancia M, Verli H, Pauly M, Bacic A, Olsen CE, Ulvskov P, Petersen BL, Somerville C, Iusem ND, Estevez JM (2011) Essential role of O-glycosylated cell wall proteins in polarized root hair growth. Science 332:1401–1403

    CAS  Google Scholar 

  • Verhaeghe EF, Fraysse A, Guerquin-Kern JL, Wu TD, Deves G, Mioskowski C, Leblanc C, Ortega R, Ambroise Y, Potin P (2008) Microchemical imaging of iodine distribution in the brown alga Laminaria digitata suggests a new mechanism for its accumulation. J Biol Inorg Chem 13:257–269

    CAS  Google Scholar 

  • Vidaurre D, Bonetta D (2012) Accelerating forward genetics for cell wall deconstruction. Front Plant Sci 3:119. doi:10.3389/fpls.2012.00119

    CAS  Google Scholar 

  • Vierkotten L, Simon A, Becker B (2004) Preparation and characterization of protoplasts obtained from the prasinophyte Scherffelia dubia (Chlorophyta). J Phycol 40:1106–1111

    Google Scholar 

  • Voight J, Frank R (2003) 14-3-3 proteins are constituent of the insoluble glycoprotein framework of the Chlamydomonas cell wall. Plant Cell 15:1399–1413

    Google Scholar 

  • Weiss TL, Roth R, Goodson C, Vitha S, Black I, Azadi P, Rusch J, Holzenburg A, Devarenne TP T, Goodenough U (2012) Colony organization in the green alga Botryococcus braunii (race B) is specified by a complex extracellular matrix. Eukaryot Cell 12:1424–1440

    Google Scholar 

  • Wightman R, Turner SR (2008) The roles of the cytoskeleton during cellulose deposition at the secondary cell wall. Plant J 54:794–805

    Google Scholar 

  • Willats WGT, Knox JP (1996) A role for arabinogalactan-proteins in plant cell expansion: evidence from studies on the interaction of β-glucosyl Yariv reagent with seedlings of Arabidopsis. Plant J 9:919–925

    CAS  Google Scholar 

  • Wilson LG, Fry JC (2006) Extensin—a major cell wall glycoprotein. Plant Cell Environ 9:239–260

    Google Scholar 

  • Woessner JP, Goodenough UW (1994) Volvocine cell walls and their constituent glycoproteins: an evolutionary perspective. Protoplasma 181:245–258

    Google Scholar 

  • Wolf S, Greiner S (2012) Growth control by cell wall pectins. Protoplasma 249:S169–S175

    Google Scholar 

  • Yapo BM (2011) Pectic substances: from simple pectic polysaccharides to complex pectins- a new hypothetical model. Carbohydr Polym 86:373–385

    CAS  Google Scholar 

  • Yin Y, Huang J, Xu Y (2009) The cellulose synthase superfamily in fully sequenced plants and algae. BMC Plant Biol. doi:10.1186/1471-2229-9-99

    Google Scholar 

  • York WS, O’Neill MA (2008) Biochemical control of xylan biosynthesis: which end is up? Curr Opin Plant Biol 11:258–265

    CAS  Google Scholar 

  • Zabotina O, Malm E, Drakakaki G, Bulone V, Raikhel N (2008) Identification and preliminary characterization of new chemical affecting glucosyltransferase activities involved in plant cell wall biosynthesis. Mol Plant 1:977–989

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Science Foundation (NSF) grants NSF-MCB-0919925 and NSF-MRI-0922805.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Domozych .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Domozych, D.S. (2015). Cell Wall Evolution and Diversity. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-16298-0_71

Download citation

Publish with us

Policies and ethics