Skip to main content

Cellulose from Lignocellulosic Waste

  • Reference work entry
  • First Online:
Polysaccharides

Abstract

Bioconversion of renewable lignocellulosic biomass to biofuel and value-added products is globally gaining significant importance. Lignocellulosic wastes are the most promising feedstock considering its great availability and low cost. Biomass conversion process involves mainly two steps: hydrolysis of cellulose in the lignocellulosic biomass to produce reducing sugars and fermentation of the sugars to ethanol and other bioproducts. However, sugars necessary for fermentation are trapped inside the recalcitrant structure of the lignocellulose. Hence, pretreatment of lignocellulosic wastes is always necessary to alter and/or remove the surrounding matrix of lignin and hemicellulose in order to improve the hydrolysis of cellulose. These pretreatments cause physical and/or chemical changes in the plant biomass in order to achieve this result. Each pretreatment has a specific effect on the cellulose, hemicellulose, and lignin fraction. Thus, the pretreatment methods and conditions should be chosen according to the process configuration selected for the subsequent hydrolysis steps. In general, pretreatment methods can be classified into four categories, including physical, physicochemical, chemical, and biological pretreatment. This chapter addresses different pretreatment technologies envisaging enzymatic hydrolysis and microbial fermentation for cellulosic ethanol production and other bioproducts. It primarily covers the structure of lignocellulosic wastes; the characteristics of different pretreatment methods; enzymatic hydrolysis; fermentation and bioproducts; and future research challenges and trends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BGL:

β-Glucosidase

CBH:

Cellobiohydrolase

CBP:

Consolidated bioprocessing

CF:

Co-fermentation

CMC:

Carboxymethylcellulose

CMCase:

Carboxymethylcellulase

DP:

Degree of polymerization

EG:

Endoglucanase

[emim][OAc]:

1-Ethyl-3-methylimidazolium acetate

FAO:

Food and Agriculture Organization of the United Nations

GRAS:

Generally recognized as safe

IUBMB:

International Union of Biochemistry and Molecular Biology

MFC:

Microfibrillated cellulose

PDLA:

Poly(d-lactic acid)

PLA:

Polylactic acid

PLLA:

Poly(l-lactic acid)

PW:

Primary wall

SHF:

Separate hydrolysis and fermentation

SSCF:

Simultaneous saccharification to co-fermentation

SSF:

Simultaneous saccharification and fermentation

SSF:

Solid-state fermentation

SSSF:

Semi-simultaneous saccharification and fermentation

SW:

Secondary wall

SW1:

Secondary wall inner layer

SW2:

Secondary wall middle layer

SW3:

Secondary wall outer layer

WHO:

World Health Organization

References

  • Abdel-Rahman MA, Tashiro Y, Sonomoto K (2011) Lactic acid production from lignocellulose derived sugars using lactic acid bacteria: overview and limits. J Biotechnol 156:286–301

    CAS  Google Scholar 

  • Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31:877–902

    CAS  Google Scholar 

  • Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979

    CAS  Google Scholar 

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685

    CAS  Google Scholar 

  • Aitken S (2012)Wood chemistry and secondary cell wall structure. FRST 210 – Forest Biology II. The University of British Columbia, Vancouver. http://frst210.forestry.ubc.ca/lecture/

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues – wheat straw and soy hulls. Bioresour Technol 99(6):1664–1671

    CAS  Google Scholar 

  • Alfaro A, López F, Pérez A, García JC, Rodríguez A (2010) Integral valorization of tagasaste (Chamaecytisus proliferus) under hydrothermal and pulp processing. Bioresour Technol 101:7635–7640

    CAS  Google Scholar 

  • Alves FF, Bose SK, Francis RC, Colodette JL, Iakovlev M, Heiningen AV (2010) Carbohydrate composition of eucalyptus, bagasse and bamboo by a combination of methods. Carbohyd Polym 82:1097–1101

    CAS  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    CAS  Google Scholar 

  • Andresen M, Johansson LS, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13(6):665–677

    CAS  Google Scholar 

  • Anwar Z, Gulfraz M, Irshad M (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Rad Res Appl Sci 7(2):163–173

    CAS  Google Scholar 

  • Aro N, Pakula T, Penttilä M (2005) Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 29(4):719–739

    CAS  Google Scholar 

  • Avci A, Saha BC, Kennedy GJ, Cotta MA (2013) High temperature dilute phosphoric acid pretreatment of corn stover for furfural and ethanol production. Ind Crops Prod 50:478–484

    CAS  Google Scholar 

  • Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energ Convers Manage 52:858–875

    CAS  Google Scholar 

  • Balat M, Balat H, Cahide OZ (2008) Progress in bioethanol processing. Prog Energ Combust 34:551–573

    CAS  Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    CAS  Google Scholar 

  • Bhattacharya D, Germinario LT, Winter WT (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr Polym 73(3):371–377

    CAS  Google Scholar 

  • Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK, Pandey A (2010) Bioethanol production from rice straw: an overview. Bioresour Technol 101:4767–4774

    CAS  Google Scholar 

  • Bos HL, Sanders JPM (2013) Raw material demand and sourcing options for the development of a bio-based chemical industry in Europe. Part 1: estimation of maximum demand. Biofuels Bioprod Bioref 7:246–259

    CAS  Google Scholar 

  • Boudet AM, Kajita S, Grima-Pettenati J, Goffner D (2003) Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Plant Sci 8(12):576–581

    CAS  Google Scholar 

  • Brett C, Waldron K (1996) Physiology and biochemistry of plant cell walls, 2nd edn. Chapman & Hall, London, p 72

    Google Scholar 

  • Budarin VL, Clark JH, Lanigan BA, Shuttleworth P, Macquarrie DJ (2010) Microwave assisted decomposition of cellulose: a new thermochemical route for biomass exploitation. Bioresour Technol 101:3776–3779

    CAS  Google Scholar 

  • Bussemaker MJ, Zhang D (2013) Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Ind Eng Chem Res 53:3563–3580

    Google Scholar 

  • Bussemaker MJ, Mu X, Zhang D (2013) Ultrasonic pretreatment of wheat straw in oxidative and nonoxidative conditions aided with microwave heating. Ind Eng Chem Res 52:12541–12522

    Google Scholar 

  • Cara C, Encarnación R, Oliva JM, Sáez F, Castro E (2008) Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresour Technol 99:1869–1876

    CAS  Google Scholar 

  • Castro AM, Pereira N Jr (2010) Produção, propriedades e aplicação de celulases na hidrólise de resíduos agroindustriais. Quim Nova 33(1):181–188

    Google Scholar 

  • Castro E, Nieves IU, Mullinnix MT, Sagues WJ, Hoffman RW, Férnandez-Sandoval MT, Tian Z, Rockwood DL, Tamang B, Ingram LO (2014) Optimization of dilute-phosphoric-acid steam pretreatment of Eucalyptus benthamii for biofuel production. Appl Energy 125:76–83

    CAS  Google Scholar 

  • Cavka A (2013) Biorefining of lignocelluloses: detoxification of inhibitory hydrolysates and potential utilization of residual streams for production of enzymes. VMC-KBC Umeå, Umeå

    Google Scholar 

  • Charlton A, Elias R, Fish S, Fowler P, Gallagher J (2009) The biorefining opportunities in Wales: understanding the scope for building a sustainable, biorenewable economy using plant biomass. Chem Eng Res Design 87:1147–1161

    CAS  Google Scholar 

  • Chen J, Fales SL, Varga GA, Royse DJ (1995) Biodegradation of cell wall components of maize stover colonized by white-rot fungi and resulting impact on in–vitro digestibility. J Sci Food Agric 68:91–98

    CAS  Google Scholar 

  • Chen WM, Tseng ZJ, Lee KS, Chang JS (2005) Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. Int J Hydrogen Energy 30:1063–1070

    CAS  Google Scholar 

  • Chen C-Y, Yang M-H, Yeh K-L, Chang J-S (2008) Biohydrogen production using sequential dark and photo fermentation processes. Int J Hydrogen Energy 33:4755–4762

    CAS  Google Scholar 

  • Chen WH, Tu YJ, Sheen HK (2011) Disruption of sugar cane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Appl Energy 88:2726–2734

    CAS  Google Scholar 

  • Chen Y, Stevens MA, Zhu Y, Holmes J, Xu H (2013) Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnol Biofuels 6:1–10

    CAS  Google Scholar 

  • Cheng JJ, Timilsina GR (2011) Status and barriers of advanced biofuel technologies: a review. Renew Energy 36:3541–3549

    CAS  Google Scholar 

  • Cherubini F, Ulgiati S (2010) Crop residues as raw materials for biorefinery systems – a LCA case study. Appl Energy 87:47–57

    CAS  Google Scholar 

  • Claassen PAM, van Lier JB, Lopez Contreras AM, van Niel EWJ, Sijtsma L, Stams AJM, Vries SS, Weusthuis RA (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52:741–755

    CAS  Google Scholar 

  • Cziple FA, Marques AJV (2008) Cell walls of wood, composition, structure and a few mechanical properties. Anal Universitatea “Eftimie Murgu” Resita 1:133–138

    Google Scholar 

  • Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int J Biol Sci 5(6):578–595

    CAS  Google Scholar 

  • Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies – a review. J Chem Technol Biotechnol 81:1119–1129

    CAS  Google Scholar 

  • Deepa B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102:1988–1997

    CAS  Google Scholar 

  • Deguchi S, Mukai S, Tsudome M, Horikoshi K (2006) Facile generation of fullerene nanoparticles by hand-grinding. Adv Mater 18(6):729–732

    CAS  Google Scholar 

  • Delgenes JP, Penaud V, Moletta R (2002) Pretreatment for the enhancement of anaerobic digestion of solid waster. In: Mata-Alvarez J (ed) Biomethanization of the organic fraction of municipal solid waste, IWA publishing, UK, pp. 201–228

    Google Scholar 

  • Demirbas A (2005) Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy Source 27:327–337

    CAS  Google Scholar 

  • Dhillon GS, Brar SK, Verma M, Tyagi RD (2011) Utilization of different agro-industrial wastes for sustainable bioproduction of citric acid by Aspergillus niger. Biochem Eng J 54:83–92

    CAS  Google Scholar 

  • Duff SJB, Murray WD (1996) Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour Technol 55:1–33

    CAS  Google Scholar 

  • Dunn S (2002) Hydrogen futures: toward a sustainable energy system. Int J Hydrogen Energy 27(3):235–264

    CAS  Google Scholar 

  • Eriksson K-EL, Bermek H (2009) Lignin, lignocellulose, ligninase. In: Schaechter M (ed) Encyclopedia of Microbiology, vol 1, 3rd ed, Elsevier, Oxford, United Kingdom, pp 373–384

    Google Scholar 

  • FitzPatrick M, Champagne P, Cunningham MF, Whitney RA (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101:8915–8922

    CAS  Google Scholar 

  • Fornell R, Berntsson T, Asblad A (2013) Techno-economic analysis of a kraft pulp-mill-based biorefinery producing both ethanol and dimethyl ether. Energy 50:83–92

    CAS  Google Scholar 

  • Forster-Carneiro T, Berni MD, Dorileo IL, Rostagno MA (2013) Biorefinery study of availability of agriculture residues and wastes for integrated biorefineries in Brazil. Resour Conserv Recy 77:78–88

    Google Scholar 

  • Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9:63–69

    CAS  Google Scholar 

  • Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628

    CAS  Google Scholar 

  • Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46:70–78

    CAS  Google Scholar 

  • García A, Alriols MG, Llano-Ponte R, Labidi J (2011) Ultrasound-assisted fractionation of the lignocellulosic material. Bioresour Technol 102:6326–6330

    Google Scholar 

  • García A, Alriols MG, Labidi J (2014a) Evaluation of different lignocellulosic raw materials as potential alternative feedstocks in biorefinery processes. Ind Crop Prod 53:102–110

    Google Scholar 

  • García A, Cara C, Moya M, Rapado J, Puls J, Castro E, Martín C (2014b) Dilute sulphuric acid pretreatment and enzymatic hydrolysis of Jatropha curcas fruit shells for ethanol production. Ind Crop Prod 53:148–153

    Google Scholar 

  • Garcia-Cubero MT, González-Benito G, Indacoechea I, Coca M, Bolado S (2009) Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresour Technol 100:1608–1613

    CAS  Google Scholar 

  • Garrote G, Domínguez H, Parajó JC (2002) Autohydrolysis of corncob: study of non-isothermal operation for xylooligosaccharides production. J Food Eng 52:211–218

    Google Scholar 

  • Garrote G, Falqué E, Domínguez H, Parajó JC (2007) Autohydrolysis of agricultural residues: study of reaction byproducts. Bioresour Technol 98:1951–1957

    CAS  Google Scholar 

  • Geng A, Xin F, Ip J-Y (2012) Ethanol production from horticultural waste treated by a modified organosolv method. Bioresour Technol 104:715–721

    CAS  Google Scholar 

  • Ghaderi M, Mousavi M, Yousefi H, Labbafi M (2014) All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohydr Polym 104:59–65

    CAS  Google Scholar 

  • Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    CAS  Google Scholar 

  • Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interface 9(76):2749–2766

    CAS  Google Scholar 

  • Gindl W, Keckes J (2005) All-cellulose nanocomposite. Polymer 46:10221–10225

    CAS  Google Scholar 

  • Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Google Scholar 

  • Gonçalves FA, Ruiz HA, Nogueira CC, Santos ES, Teixeira JA, Macedo GR (2014) Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies. Fuel 131:66–76

    Google Scholar 

  • González Alriols M, Tejado A, Blanco M, Mondragon I, Labidi J (2009) Agricultural palm oil tree residues as raw material for cellulose, lignin and hemicelluloses production by ethylene glycol pulping process. Chem Eng J 148:106–114

    Google Scholar 

  • Guo XM, Trably E, Latrille E, Carrère H, Steyer J-P (2010) Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrogen Energy 35:10660–10673

    CAS  Google Scholar 

  • Hamelinck CN, Van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410

    CAS  Google Scholar 

  • Herpoël-Gimbert I, Margeot A, Dolla A, Jan G, Mollé D, Lignon S, Mathis H, Sigoillot J-C, Monot F, Asther M (2008) Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol Biofuels 1:1–12

    Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    CAS  Google Scholar 

  • Hsu C-H, Chang K-S, Lai M-Z, Chang T-C, Chang Y-H, Jang H-D (2011) Pretreatment and hydrolysis of cellulosic agricultural wastes with a cellulase-producing Streptomyces for bioethanol production. Biomass Bioenergy 35:1878–1884

    CAS  Google Scholar 

  • Huber T, Mussig J, Curnow O, Pang S, Bickerton S, Staiger MP (2012) A critical review of all-cellulose composites. J Mater Sci 47:1171–1186

    CAS  Google Scholar 

  • Jahan MS, Sultana N, Rahman M, Quaiyyum A (2013) An integrated biorefinery initiative in producing dissolving pulp from agricultural wastes. Biomass Conv Bioref 3:179–185

    CAS  Google Scholar 

  • Jianlong W (2000) Enhancement of citric acid production by Aspergillus niger using n-dodecane as an oxygen-vector. Process Biochem 35:1079–1083

    Google Scholar 

  • Jiménez L, Sánchez IY, López F (1990) Characterization of Spanish agricultural residues with a view to obtaining cellulose pulp. TAPPI J 73(8):173–176

    Google Scholar 

  • Jiménez L, Pérez A, de la Torre MJ, Moral A, Serrano L (2007) Characterization of vine shoots, cotton stalks, Leucaena leucocephala and Chamaecytisus proliferus, and of their ethyleneglycol pulps. Bioresour Technol 98:3487–3490

    Google Scholar 

  • John F, Monsalve G, Medina de Perez VI, Ruiz Colorado AA (2006) Ethanol production of banana shell and cassava starch. Dyna Rev Fac Nac Minas 73:21–27

    Google Scholar 

  • John RP, Nampoothiri MK, Pandey A (2007a) Simultaneous saccharification and l-(+)-lactic acid fermentation of protease-treated wheat bran using mixed culture of lactobacilli. Biotechnol Lett 28(22):1823–1826

    Google Scholar 

  • John RP, Nampoothiri KM, Pandey A (2007b) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74:524–534

    CAS  Google Scholar 

  • Jorgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Bioref 1:119–134

    Google Scholar 

  • Kádár Z, Szengyel Z, Réczey K (2004) Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind Crop Prod 20:103–110

    Google Scholar 

  • Kajaste R (2014) Chemicals from biomass – managing greenhouse gas emissions in biorefinery production chains – a review. J Clean Prod 75:1–10

    CAS  Google Scholar 

  • Kapdan LK, Kaegi F (2006) Biohydrogen production from waste materials. Enz Microb Technol 38:569–582

    CAS  Google Scholar 

  • Karunanithy C, Muthukumarappan K, Gibbons WR (2012) Extrusion pretreatment of pine wood chips. Appl Biochem Biotechnol 167:81–99

    CAS  Google Scholar 

  • Kautto J, Realff MJ, Ragauskas AJ (2013) Design and simulation of an organosolv process for bioethanol production. Biomass Conv Bioref 3:199–212

    CAS  Google Scholar 

  • Kim TH, Taylor F, Hicks KB (2008) Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresour Technol 99:5694–5702

    CAS  Google Scholar 

  • Kim Y, Mosier NS, Ladisch MR (2009) Enzymatic digestion of liquid hot water pretreated hybrid poplar. Biotechnol Prog 25(2):340–348

    CAS  Google Scholar 

  • Kim Y, Ximenes E, Mosier NS, Ladisch MR (2011) Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enz Microb Technol 48:408–415

    CAS  Google Scholar 

  • Knauf M, Moniruzzaman M (2004) Lignocellulosic biomass processing: a perspective. Int Sugar J 106(1263):147–150

    CAS  Google Scholar 

  • Kotay SM, Das D (2007) Microbial hydrogen production with Bacillus coagulans IIT-BT s1 isolated from anaerobic sewage sludge. Bioresour Technol 98(6):1183–1190

    CAS  Google Scholar 

  • Koutinas AA, Xu Y, Wang R-H, Webb C (2007) Polyhydroxybutyrate production from a novel feedstock derived from a wheat-based biorefinery. Enz Microb Technol 40:1035–1044

    CAS  Google Scholar 

  • Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enz Res 2011:1–10

    Google Scholar 

  • Kumar D, Jain VJ, Shanker G, Srivastava A (2003) Utilisation of fruits waste for citric acid production by solid state fermentation. Process Biochem 38:1725–1729

    CAS  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    CAS  Google Scholar 

  • Labbé N, Kline LM, Moens L, Kim K, Kim PC, Hayes DG (2012) Activation of lignocellulosic biomass by ionic liquid for biorefinery fractionation. Bioresour Technol 104:701–707

    Google Scholar 

  • Lamsal B, Yoo J, Brijwani K, Alavi S (2010) Extrusion as a thermo-mechanical pre-treatment for lignocellulosic ethanol. Biomass Bioenergy 34:1703–1710

    CAS  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    CAS  Google Scholar 

  • Lavoine N, Desloges I, Bras J (2014) Microfibrillated cellulose coatings as new release systems for active packaging. Carbohydr Polym 103:528–537

    CAS  Google Scholar 

  • Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2008) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376

    Google Scholar 

  • Li MF, Sun SN, Xu F, Sun RC (2012) Sequential solvent fractionation of heterogeneous bamboo organosolv lignin for value-added application. Sep Purif Technol 101:18–25

    CAS  Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Comb Sci 38:449–467

    CAS  Google Scholar 

  • Lo Y-C, Bai MD, Chen WM, Chang JS (2008a) Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy. Bioresour Technol 99:8299–8303

    CAS  Google Scholar 

  • Lo Y-C, Chen S-D, Chen C-Y, Huang T-I, Lin C-Y, Chang J-S (2008b) Combining enzymatic hydrolysis and dark-photo fermentation processes for hydrogen production from starch feedstock: a feasibility study. Int J Hydrog Energy 33:5224–5233

    CAS  Google Scholar 

  • Lo Y-C, Saratale GD, Chen W-M, Bai M-D, Chang J-S (2009a) Isolation of cellulose-hydrolytic bacteria and applications of the cellulolytic enzymes for cellulosic biohydrogen production. Enz Microb Technol 44:417–425

    CAS  Google Scholar 

  • Lo Y-C, Su Y-C, Chen C-Y, Chen W-M, Lee K-S, Chang J-S (2009b) Biohydrogen production from cellulosic hydrolysate produced via temperature-shift-enhanced bacterial cellulose hydrolysis. Bioresour Technol 100:5802–5807

    CAS  Google Scholar 

  • Lu X, Zhang Y, Angelidaki I (2009) Optimization of H2SO4 catalyzed hydrothermal pretreatment of rape seed straw for bioconversion to ethanol: focusing on pretreatment at high solids content. Bioresour Technol 100:3048–3053

    CAS  Google Scholar 

  • Lundberg V, Bood J, Nilsson L, Axelsson E, Bertsson T, Svensson E (2014) Converting a kraft pulp mill into a multi-product biorefinery: techno-economic analysis of a case mill. Clean Technol Environ Policy. doi:10.1007/s10098-014-0741-8 (in press)

    Google Scholar 

  • Lynd LR, Grethlein HE, Wolkin RH (1989) Fermentation of cellulosic substrates in batch and continuous culture by Clostridium thermocellum. Appl Environ Microbiol 55(12):3131–3139

    CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    CAS  Google Scholar 

  • Magnusson L, Islam R, Sparling R, Levin D, Cicek N (2008) Direct hydrogen production from cellulosic waste materials with a single-step dark fermentation process. Int J Hydrog Energy 33:5398–5403

    CAS  Google Scholar 

  • McMillan JD (1994) Pretreatment of lignocellulosic biomass. In: Himmel ME, Baker JO, Overend RP (eds) Enzymatic conversion of biomass for fuels production. American Chemical Society, Washington, DC, pp 292–324

    Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Comb Sci 38:522–550

    CAS  Google Scholar 

  • Michelin M, Polizeli MLTM, Ruzene DS, Silva DP, Ruiz HA, Vicente AA, Jorge JA, Terenzi HF, Teixeira JA (2012) Production of xylanase and β-xylosidase from autohydrolysis liquor of corncob using two fungal strains. Bioprocess Biosyst Eng 35:1185–1192

    CAS  Google Scholar 

  • Michelin M, Polizeli MLTM, Ruzene DS, Silva DP, Teixeira JA (2013) Application of lignocellulosic residues in the production of cellulases and hemicellulases from fungi. In: Polizeli MLTM, Rai M (eds) Fungal enzymes. CRC Press/Taylor & Francis, Boca Raton, pp 31–64

    Google Scholar 

  • Mielenz JR (2001) Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol 4(3):324–329

    CAS  Google Scholar 

  • Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93

    Google Scholar 

  • Moreira N (2005) Growing expectations: new technology could turn fuel into a bump crop. Sci News Online 168(14):209–224

    Google Scholar 

  • Moshkelani M, Marinova M, Perrier M, Paris J (2013) The forest biorefinery and its implementation in the pulp and paper industry: energy overview. Appl Therm Eng 50:1427–1436

    CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    CAS  Google Scholar 

  • Mussato SI, Teixeira JA (2010) Lignocellulose as raw material in fermentation processes. In: Méndez-Vilas A (ed) Current research, technology and education. Topics in applied microbiology and microbial biotechnology, vol 2, Formatex Microbiology Series No 2. Badajós, Spain, pp 897–907

    Google Scholar 

  • Na FM, Chunyan Y, Hongbo X, Jianguo Y, Zhang WX (2010) Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresour Technol 101:9600–9604

    Google Scholar 

  • Nabarlatz D, Ebringerová A, Montané D (2007) Autohydrolysis of agricultural by-products for the production of xylo-oligosaccharides. Carbohydr Polym 69:20–28

    CAS  Google Scholar 

  • Nath K, Das D (2003) Hydrogen from biomass. Curr Sci 85(3):265–271

    CAS  Google Scholar 

  • Ng TK, Weimer TK, Zeikus JG (1977) Cellulolytic and physiological properties of Clostridium thermocellum. Arch Microbiol 114(1):1–7

    CAS  Google Scholar 

  • Nguyen CM, Kim J-S, Nguyen TN, Kim SK, Choi GJ, Choi YH, Jang KS, Kim J-C (2013) Production of l- and d-lactic acid from waste Curcuma longa biomass through simultaneous saccharification and cofermentation. Bioresour Technol 146:35–43

    CAS  Google Scholar 

  • Nikolic S, Mojovic L, Rakin M, Pejin D, Pejin J (2011) Utilization of microwave and ultrasound pretreatments in the production of bioethanol from corn. Clean Techn Environ Policy 13:587–594

    CAS  Google Scholar 

  • Ninomiya K, Kamide K, Takahashi K, Shimizu N (2010) Enhanced enzymatic saccharification of kenaf powder after ultrasonic pretreatment in ionic liquids at room temperature. Bioresour Technol 103:259–265

    Google Scholar 

  • Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687

    CAS  Google Scholar 

  • Oliveira FMV, Pinheiro IO, Souto-Maior AM, Martin C, Gonçalves AR, Rocha GJM (2013) Industrial-scale steam explosion pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production of second generation ethanol and value-added products. Bioresour Technol 130:168–173

    CAS  Google Scholar 

  • O-Thong S, Prasertsan P, Karakashev D, Angelidaki I (2008) 16s rRNA-targeted probes for specific detection of Thermoanaerobacterium spp. Thermoanaerobacterium thermosaccharolyticum, and Caldicellulosiruptor spp. by fluorescent in situ hybridization in biohydrogen producing systems. Int J Hydrog Energy 33(21):6082–6091

    CAS  Google Scholar 

  • Pan X, Arato C, Gilkes N, Gregg D, Mabbe W, Pye K, Xiao Z, Zhang X, Saddler J (2005) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90:473–481

    CAS  Google Scholar 

  • Pandey A (2003) Solid state fermentation. Biochem Eng J 13:81–84

    CAS  Google Scholar 

  • Pandey A (2009) Handbook of plant-based biofuels. CRC Press/Taylor & Francis Group, Boca Raton, p 316

    Google Scholar 

  • Parajó JC, Garrote G, Cruz JM, Dominguez H (2004) Production of xylooligosaccharides by autohydrolysis of lignocellulosic materials. Trends Food Sci Technol 15:115–120

    Google Scholar 

  • Patel SJ, Onkarappa R, Shobha KS (2007) Comparative study of ethanol production from microbial pretreated agricultural residues. J Appl Sci Environ Manage 11:137–141

    Google Scholar 

  • Pedersen M, Meyer AS (2010) Lignocellulose pretreatment severity – relating pH to biomatrix opening. New Biotechnol 27:739–750

    CAS  Google Scholar 

  • Peng H, Li H, Luo H, Xu J (2013) A novel combined pretreatment of ball milling and microwave irradiation for enhancing enzymatic hydrolysis of microcrystalline cellulose. Bioresour Technol 130:81–87

    CAS  Google Scholar 

  • Penna TCV (2001) Produção de ácidos. In: Lima UA, Aquarone E, Borzani W, Schmidell W (eds) Biotecnologia industrial – processos fermentativos e enzimáticos, vol 3. Edgard Blucher, São Paulo, pp 45–58

    Google Scholar 

  • Perez J, Dorado JM, Rubia TD, Martinez J (2002) Biodegradation and biological treatment of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63

    CAS  Google Scholar 

  • Petersson A, Thomsen MH, Hauggaard-Nielsen H, Thomsen A-B (2007) Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean. Biomass Bioenergy 31:812–819

    CAS  Google Scholar 

  • Pettersson K, Harvey S (2012) Comparison of black liquor gasification with other pulping biorefinery concepts-systems analysis of economic performance and CO2 emissions. Energy 37:136–153

    CAS  Google Scholar 

  • Philippidis GP, Smith TK, Wyman CE (1993) Study of the enzymatic hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process. Biotechnol Bioeng 41:846–853

    CAS  Google Scholar 

  • Phitsuwan P, Sakka K, Ratanakhanokchai K (2013) Improvement of lignocellulosic biomass in planta: a review of feedstocks, biomass recalcitrance, and strategic manipulation of ideal plants designed for ethanol production and processability. Biomass Bioenergy 58:390–405

    CAS  Google Scholar 

  • Prinsen P, Rencoret J, Gutiérrez A, Liitia T, Tamminen T, Colodette JL, Berbis MA, Jiménez-Barbero J, Martínez AT, Río JC (2013) Modification of the lignin structure during alkaline delignification of eucalyptus wood by kraft, soda-AQ, and soda–O2 cooking. Ind Eng Chem Res 52:15702–15712

    CAS  Google Scholar 

  • Qin L, Liu ZH, Dale BE, Yuan YJ (2012) Mass balance and transformation of corn stover by pretreatment with different dilute organic acids. Bioresour Technol 112:319–326

    CAS  Google Scholar 

  • Raven PH, Evert RF, Eichhorn SE (1999) Biology of plants. W.H. Freeman & Company, New York

    Google Scholar 

  • Rodriguez-Jasso RM, Mussato SI, Pastrana L, Aguilar CN, Teixeira JA (2011) Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydr Polym 30:1137–1144

    Google Scholar 

  • Rohr M, Kubicek CP, Kowinek J (1983) Citric acid. Biotechnology 3:419–454

    Google Scholar 

  • Romaní A, Garrote G, Ballesteros I, Ballesteros M (2013a) Second generation bioethanol from steam exploded Eucalyptus globulus wood. Fuel 111:66–74

    Google Scholar 

  • Romaní A, Ruiz HA, Pereira FB, Domingues L, Teixeira JA (2013b) Fractionation of Eucalyptus globulus wood by glycerol − water pretreatment: optimization and modeling. Ind Eng Chem Res 52:14342–14352

    Google Scholar 

  • Ruiz HA, Ruzene DS, Silva DP, Quintas MAC, Vicente AA, Teixeira JA (2011a) Evaluation of a hydrothermal process for pretreatment of wheat straw-effect of particle size and process conditions. J Chem Technol Biotechnol 86:88–94

    CAS  Google Scholar 

  • Ruiz HA, Ruzene DS, Silva DP, Silva FFM, Vicente AA, Teixeira JA (2011b) Development and characterization of an environmentally friendly process sequence (autohydrolysis and organosolv) for wheat straw delignification. Appl Biochem Biotechnol 164:629–641

    CAS  Google Scholar 

  • Ruiz HA, Vicente AA, Teixeira JA (2012a) Kinetic modeling of enzymatic saccharification using wheat straw pretreated under autohydrolysis and organosolv process. Ind Crop Prod 36:100–107

    CAS  Google Scholar 

  • Ruiz HA, Rodríguez-Jasso RM, Rodríguez R, Contreras-Esquivel JC, Aguilar CN (2012b) Pectinase production from lemon peel pomace as support and carbon source in solid-state fermentation column-tray bioreactor. Biochem Eng J 65:90–95

    CAS  Google Scholar 

  • Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013a) Hydrothermal processing as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sust Energ Rev 21:35–51

    CAS  Google Scholar 

  • Ruiz HA, Cerqueira MA, Silva HD, Rodríguez-Jasso RM, Vicente AA, Teixeira JA (2013b) Biorefinery valorization of autohydrolysis wheat straw hemicellulose to be applied in a polymer-blend film. Carbohydr Polym 92:2154–2162

    CAS  Google Scholar 

  • Ruiz E, Romero I, Moya M, Cara C, Vidal J, Castro E (2013c) Dilute sulfuric acid pretreatment of sunflower stalks for sugar production. Bioresour Technol 140:292–298

    CAS  Google Scholar 

  • Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700

    CAS  Google Scholar 

  • Sakaki T, Shibata M, Sumi T, Yasuda S (2002) Saccharification of cellulose using a hot-compressed water-flow reactor. Ind Eng Chem Res 41:661–665

    CAS  Google Scholar 

  • Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Google Scholar 

  • Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295

    CAS  Google Scholar 

  • Selig MJ, Vinzant TB, Himmel ME, Decker SR (2009) The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes. Appl Biochem Biotechnol 155:397–406

    CAS  Google Scholar 

  • Shafiei M, Zilouei H, Zamani A, Taherzadeh MJ, Karimi K (2013) Enhancement of ethanol production from spruce wood chips by ionic liquid pretreatment. Appl Energy 102:163–169

    CAS  Google Scholar 

  • Shi J, Sharma–Shivappa RR, Chinn M, Howell N (2009) Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenergy 33:88–96

    CAS  Google Scholar 

  • Singh P, Suman A, Tiwari P, Arya N, Gaur A, Shrivastava AK (2008) Biological pretreatment of sugar cane trash for its conversion to fermentable sugars. World J Microbiol Biotechnol 24:667–673

    CAS  Google Scholar 

  • Singhania RR (2009) Cellulolytic enzymes. In: Nigam PS, Pandey A (eds) Biotechnology for agro-industrial residues utilisation – utilisation of agro-residues, Springer Science + Business Media, B.V., pp 371–381

    Google Scholar 

  • Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enz Microb Technol 46:541–549

    CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765

    CAS  Google Scholar 

  • Soccol CR, Vandenberghe LPS, Medeiros ABP, Karp SG, Buckeridge M, Ramos LP, Pitarelo AP, Ferreira-Leitão V, Gottschalk LMF, Ferrara MA, Bon EPS, Moraes LMP, Araújo JA, Torres FAG (2010) Bioethanol from lignocelluloses: status and perspectives in Brazil. Bioresour Technol 101:4820–4825

    CAS  Google Scholar 

  • Song J-M, Wei D-Z (2010) Production and characterization of cellulases and xylanases of Cellulosimicrobium cellulans grown in pretreated and extracted bagasse and minimal nutrient medium M9. Biomass Bioenergy 34:1930–1934

    CAS  Google Scholar 

  • Soykeabkaew N, Sian C, Gea S, Nishino T, Peijs T (2009) All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose. Cellulose 16:435–444

    CAS  Google Scholar 

  • Stark A (2011) Ionic liquids in the biorefinery: a critical assessment of their potential. Energy Environ Sci 4:19–32

    CAS  Google Scholar 

  • Sukumaran RK, Singhania RR, Mathew GM, Pandey A (2009) Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energy 34:421–424

    CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    CAS  Google Scholar 

  • Tabka MG, Herpoël-Gimbert I, Monod F, Asther M, Sigoillot JC (2006) Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enz Microb Technol 39:897–902

    CAS  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    CAS  Google Scholar 

  • Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101:4744–4753

    CAS  Google Scholar 

  • Taniguchi M, Takahashi D, Watanabe D, Sakai K, Hoshino K, Kouya T, Tanaka T (2010) Effect of steam explosion pretreatment on treatment with Pleurotus ostreatus for the enzymatic hydrolysis of rice straw. J Biosci Bioeng 110:449–452

    CAS  Google Scholar 

  • Tay A, Yang S (2002) Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Biotechnol Bioeng 80(1):1–12

    CAS  Google Scholar 

  • Taylor G (2008) Biofuels and the biorefinery concept. Energy Policy 36(12):4406–4409

    Google Scholar 

  • Torre MJ, Moral A, Hernández MD, Cabeza E, Tijero A (2013) Organosolv lignin for biofuel. Ind Crop Prod 45:58–63

    Google Scholar 

  • Travaini R, Otero MDM, Coca M, Silva RD, Bolado S (2013) Sugarcane bagasse ozonolysis pretreatment: effect on enzymatic digestibility and inhibitory compound formation. Bioresour Technol 133:332–339

    CAS  Google Scholar 

  • Uffen RL (1997) Xylan degradation: a glimpse at microbial diversity. J Ind Microbiol Biotechnol 19:1–6

    CAS  Google Scholar 

  • Van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes – factors affecting enzymes, conversion and synergy. Biotechnol Advan 30:1458–1480

    Google Scholar 

  • Vandenberghe LPS, Soccol CR, Pandey A, Lebeault J-M (2000) Solid-state fermentation for the synthesis of citric acid by Aspergillus niger. Bioresour Technol 74:175–178

    CAS  Google Scholar 

  • Vázquez M, Oliva M, Téllez-Luis SJ, Ramírez JA (2007) Hydrolysis of sorghum straw using phosphoric acid: evaluation of furfural production. Bioresour Technol 98:3053–3060

    Google Scholar 

  • Vila C, Romero J, Francisco JL, Garrote G, Parajó JC (2011) Extracting value from Eucalyptus wood before kraft pulping: effects of hemicelluloses solubilization on pulp properties. Bioresour Technol 102:5251–5254

    CAS  Google Scholar 

  • Wan C, Li Y (2010) Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresour Technol 101:6398–6403

    CAS  Google Scholar 

  • Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966

    CAS  Google Scholar 

  • Yang S (2007) Bioprocessing – from biotechnology to biorefinery. In: Yang S (ed) Bioprocessing for value-added products from renewable resources. Elsevier B.V, Amsterdam, pp 1–24

    Google Scholar 

  • Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2:26–40

    CAS  Google Scholar 

  • Yuan T, Wang W, Xu F, Sun RC (2013) Synergistic benefits of ionic liquid and alkaline pretreatments of poplar wood. Part 1: effect of integrated pretreatment on enzymatic hydrolysis. Bioresour Technol 144:429–434

    CAS  Google Scholar 

  • Yuanxin SZ, Ziniu W, Jintao Y, Zhang LY (2005) Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochem 40:3082–3086

    Google Scholar 

  • Yuanxin SZ, Ziniu W, Qiming Y, Guiying C, Yu WF, Wang C, Jin S (2006) Microwave-assisted alkali pre-treatment of wheat straw and its enzymatic hydrolysis. Biosyst Eng 94:437–442

    Google Scholar 

  • Yunus R, Salleh SF, Abdullah N, Biak DRA (2010) Effect of ultrasonic pre-treatment on low temperature acid hydrolysis of oil palm empty fruit bunch. Bioresour Technol 101:9791–9796

    Google Scholar 

  • Zhang Y-HP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824

    CAS  Google Scholar 

  • Zhang Y-HP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Advan 24:452–481

    CAS  Google Scholar 

  • Zhao X, Zhou Y, Zheng G, Liu D (2010) Microwave pretreatment of substrates for cellulase production by solid-state fermentation. Appl Biochem Biotechnol 160:1557–1571

    CAS  Google Scholar 

  • Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energ Combust Sci 42:35–53

    Google Scholar 

  • Zhu S (2008) Use of ionic liquids for the efficient utilization of lignocellulosic materials. J Chem Technol Biotechnol 83:777–779

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Michelin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Michelin, M., Ruiz, H.A., Silva, D.P., Ruzene, D.S., Teixeira, J.A., Polizeli, M.L.T.M. (2015). Cellulose from Lignocellulosic Waste. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-16298-0_52

Download citation

Publish with us

Policies and ethics