Skip to main content
Book cover

Polysaccharides pp 1219–1250Cite as

Production, Upgrading and Analysis of Bio-oils Derived from Lignocellulosic Biomass

  • Reference work entry
  • First Online:

Abstract

In view of the increase in global energy requirements, pyrolysis of lignocellulosic biomass gains significant impetus as a promising source of renewable energy and valuable chemicals. This pyrolysis oil is a complex mixture of simple organic, inorganic, and macromolecular compounds formed as a result of thermochemical breakdown of lignocellulosic biomass. It has high oxygen content and consequently a very low calorific value which renders it useless for fuel applications. As a result, appropriate upgrading is essential to make it a viable alternative to petroleum fuels. Analytical chemistry plays a key role in revealing compositional important information and helps in developing molecular-level understanding. Bio-oil production and upgrading research aimed at building up of commercial production and refining units concerns monitoring of quality and stability of initial and final products which rely strongly on analytical approaches. In the ensuing discussion, fundamental and practical aspects of research in this area have been presented. Chemical analysis with different state-of-the-art analytical techniques has been discussed in addition to the sample preparation methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AAS:

Atomic absorption spectroscopy

AES:

Atomic emission spectroscopy

APCI:

Atmospheric pressure chemical ionization

ASTM:

American Society for Testing and Materials

CI:

Chemical ionization

DART:

Direct analysis in real time

DEPT:

Distortionless Enhancement by Polarization Transfer

DESI:

Desorption electrospray ionization

DTG:

Differential thermogravimetry

EI:

Electron ionization

ESI:

Electrospray ionization

FAB:

Fast atom bombardment

FI:

Field ionization

FID:

Flame ionization detector

FT-ICR-MS:

Fourier transform ion cyclotron resonance mass spectrometry

FTIR:

Fourier transform infrared spectroscopy

GC:

Gas chromatography

GC × GC:

Two dimensional gas chromatography

GC–MS:

Gas chromatography–mass spectrometry

GPC:

Gel permeation chromatography

HPLC:

High-performance liquid chromatography

HPTLC:

High-performance thin layer chromatography

HRMS:

High-resolution mass spectrometry

HS-SPME:

Headspace solid-phase microextraction

ICP:

Inductively coupled plasma

LC–MS:

Liquid chromatography–mass spectrometry

LDI:

Laser desorption ionization

LLE:

Liquid–liquid extraction

MALDI:

Matrix-assisted laser desorption ionization

NMR:

Nuclear magnetic resonance

PAH:

Polycyclic aromatic hydrocarbon

Py-FI–MS:

Py-FI–MS

Py–GC–MS:

Pyrolysis–gas chromatography–mass spectrometry

SDME:

Single-drop microextraction

SEM:

Scanning electron microscopy

SFE:

Supercritical fluid extraction

SLE:

Solid-supported liquid–liquid extraction

SPE:

Solid-phase extraction

SPME:

Solid-phase microextraction

TCD:

Thermal conductivity detector

TGA:

Thermogravimetric analysis

TOF:

Time of flight

UV:

Ultraviolet spectroscopy

XRD:

X-ray diffraction

References

  • Adjaye JD, Sharma RK, Bakhshi NN (1992) Characterization stability analysis of wood-derived bio-oil. Fuel Process Technol 31:241–256

    Article  CAS  Google Scholar 

  • Amin S (2009) Review on biofuel oil and gas production processes from microalgae. Energy Convers Manage 50:1834–1840

    Article  CAS  Google Scholar 

  • Andersson T, Hyotylainen T, Riekkola ML (2000) Analysis of phenols in pyrolysis oils by gel permeation chromatography and multidimensional liquid chromatography. J Chromatogr A 896:343–349

    Article  CAS  Google Scholar 

  • Araujo RCS, Pasa VMD, Marriott PJ, Cardeal ZL (2010) Analysis of volatile organic compounds in polyurethane coatings based on eucalyptus sp. bio-oil pitch using comprehensive two-dimensional gas chromatography (GC × GC). J Anal Appl Pyrolysis 88:91–97

    Article  CAS  Google Scholar 

  • Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89

    Article  CAS  Google Scholar 

  • Austin GT (1984) Shreve’s chemical process industries, 5th edn. McGraw-Hill Book, New York, p 603

    Google Scholar 

  • Ben H, Ragauskas AJ (2011) Heteronuclear single-quantum correlation–nuclear magnetic resonance (HSQC-NMR) fingerprint analysis of pyrolysis oils. Energy Fuel 25:5791–5801

    Article  CAS  Google Scholar 

  • Bridgwater AV (1999) Principles and practice of biomass fast pyrolysis processes for liquids. J Anal Appl Pyrolysis 51:3–22

    Article  CAS  Google Scholar 

  • Bridgwater AV (2003) Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91:87–102

    Article  CAS  Google Scholar 

  • Bridgwater AV (2004) Biomass fast pyrolysis. Therm Sci 8:21–49

    Article  Google Scholar 

  • Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sustain Energy Rev 4:1–73

    Article  CAS  Google Scholar 

  • Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30:1479–1493

    Article  CAS  Google Scholar 

  • Bridgwater AV, Czernik S, Piskorz J (2001) An overview of fast pyrolysis In: Bridgwater AV (ed) Progress in thermochemical biomass conversion, vol 2. Blackwell Science, London, pp 977–997

    Chapter  Google Scholar 

  • Burlingame AL, Boyd RK, Gaskell SJ (1996) Mass spectrometry. Anal Chem 68:599–652

    Article  CAS  Google Scholar 

  • Chen Y, Guo Z, Wang X, Qiu C (2008) Sample preparation. J Chromatogr A 1184:191–219

    Article  CAS  Google Scholar 

  • Choi YJ, Lee SY (2013) Microbial production of short-chain alkanes. Nature 502:571–574

    Article  CAS  Google Scholar 

  • Demirbas A (1997) Calculation of higher heating values of biomass fuels. Fuel 76:431–434

    Article  CAS  Google Scholar 

  • Demirbas A (2011) Competitive liquid biofuels from biomass. Appl Energy 88:17–28

    Article  CAS  Google Scholar 

  • Diebold JP, Czernik S (1997) Additives to lower and stabilize the viscosity of pyrolysis oils during storage. Energy Fuel 11:1081–1091

    Article  CAS  Google Scholar 

  • Garcia-Perez M, Chaala A, Pakdel H, Kretschmer D, Rodrigue D, Roy C (2006) Multiphase structure of bio-oils. Energy Fuel 20:364–375

    Article  CAS  Google Scholar 

  • Garcia-Perez M, Chaala A, Pakdel H, Kretschmer D, Roy C (2007) Characterization of bio-oils in chemical families. Biomass Bioenerg 31:222–242

    Article  CAS  Google Scholar 

  • Gayubo AG, Valle B, Aguayo AT, Olazar M, Bilbao J (2009) Attenuation of catalyst deactivation by cofeeding methanol for enhancing the valorisation of crude bio-oil. Energy Fuel 23:4129–4136

    Article  CAS  Google Scholar 

  • Goyal HB, Diptendu S, Saxena RC (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sustain Energy Rev 12:504–517

    Article  CAS  Google Scholar 

  • Harris GA, Galhena AS, Fernandez FM (2011) Ambient sampling/ionization mass spectrometry: applications and current trends. Anal Chem 83:4508–4538

    Article  CAS  Google Scholar 

  • Jacobson K, Maheria KC, Dalai AK (2013) Bio-oil valorization: a review. Renew Sustain Energy Rev 23:91–106

    Article  CAS  Google Scholar 

  • Jena U, Das KC (2011) Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energy Fuel 25:5472–5482

    Article  CAS  Google Scholar 

  • Jiang X, Zhong Z, Ellis N, Wang Q (2011) Aging and thermal stability of the mixed product of the ether-soluble fraction of bio-oil and bio-diesel. Chem Eng Technol 34:727–736

    Article  CAS  Google Scholar 

  • Johnson RL, Liaw SS, Perez MG, Ha S, Lin SSY, McDonald AG, Chen S (2009) Pyrolysis gas chromatography mass spectrometry studies to evaluate high-temperature aqueous pretreatment as a way to modify the composition of bio-oil from fast pyrolysis of wheat straw. Energy Fuel 23:6242–6252

    Article  CAS  Google Scholar 

  • Kanaujia PK, Sharma YK, Agrawal UC, Garg MO (2013) Analytical approaches to characterizing pyrolysis oil from biomass. Trends Anal Chem 42:125–136

    Article  CAS  Google Scholar 

  • Kanaujia PK, Sharma YK, Garg MO, Tripathi D, Singh R (2014) Review of analytical strategies in the production and upgrading of bio-oils derived from lignocellulosic biomass. J Anal Appl Pyrolysis 105:55–74

    Article  CAS  Google Scholar 

  • Lede J, Broust F, Ndiaye FT, Ferrer M (2007) Properties of bio-oils produced by biomass fast pyrolysis in a cyclone reactor. Fuel 86:1800–1810

    Article  CAS  Google Scholar 

  • Li J, Wu L, Yang Z (2008) Analysis and upgrading of bio-petroleum from biomass by direct deoxy-liquefaction. J Anal Appl Pyrolysis 81:199–204

    Article  CAS  Google Scholar 

  • Lu Q, Yang XL, Zhu XF (2008) Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk. J Anal Appl Pyrolysis 82:191–198

    Article  CAS  Google Scholar 

  • Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15

    Article  CAS  Google Scholar 

  • Meier D, Faix O (1999) State of the art of applied fast pyrolysis of lignocellulosic materials-a review. Bioresour Technol 68:71–77

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU Jr, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20:848–889

    Article  CAS  Google Scholar 

  • Mortensen PM, Grunwaldt JD, Jensen PA, Knudsen KG, Jensen AD (2011) A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A 407:1–19

    Article  CAS  Google Scholar 

  • Mullen CA, Boateng AA (2011) Characterization of water insoluble solids isolated from various biomass fast pyrolysis oils. J Anal Appl Pyrolysis 90:197–203

    Article  CAS  Google Scholar 

  • Oasmaa A, Meier D (2005) Norms and standards for fast pyrolysis liquids: 1. Round robin test. J Anal Appl Pyrolysis 73:323–334

    Article  CAS  Google Scholar 

  • Oasmaa A, Peacocke C, Gust S, Meier D, McLellan R (2005) Norms and standards for pyrolysis liquids. End-user requirements and specifications. Energy Fuel 19:2155–2163

    Article  CAS  Google Scholar 

  • Ozbay N, Uzun BB, Varol EA, Putun AE (2006) Comparative analysis of pyrolysis oils and its subfractions under different atmospheric conditions. Fuel Process Technol 87:1013–1019

    Article  Google Scholar 

  • Pan L, Pawliszyn J (1997) Derivatization/solid-phase microextraction: new approach to polar analytes. Anal Chem 69:196–205

    Article  CAS  Google Scholar 

  • Peacocke GVC, Bridgwater AV (1996) Ablative fast pyrolysis of biomass for liquids: results and analyses In: Bridgwater AV, Hogan EH (eds) Bio-oil production and utilisation. CPL Press, Newbury, pp 35–48

    Google Scholar 

  • Qian Y, Zuo C, Tan J, He J (2007) Structural analysis of bio-oils from sub-and supercritical water liquefaction of woody biomass. Energy 32:196–202

    Article  CAS  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  CAS  Google Scholar 

  • Sfetsas T, Michailof C, Lappas A, Li Q, Kneale B (2011) Qualitative quantitative analysis of pyrolysis oil by gas chromatography with flame ionization detection and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. J Chromatogr A 1218:3317–3325

    Article  CAS  Google Scholar 

  • Smith EA, Lee YJ (2010) Petroleomic analysis of bio-oils from the fast pyrolysis of biomass: laser desorption ionization-linear ion trap-orbitrap mass spectrometry approach. Energy Fuel 24:5190–5198

    Article  CAS  Google Scholar 

  • Soltes EJ, Elder TJ (1981) Pyrolysis In: Goldstein IS (ed) Organic chemicals from biomass. CRC Press, Boca Raton, pp 63–95

    Google Scholar 

  • Sorrell S, Speirs J, Bentley R, Brandt A, Miller R (2010) Global oil depletion: a review of the evidence. Energy Policy 38:5290–5295

    Article  Google Scholar 

  • Souza BS, Paula A, Moreira D, Teixeira AMRF (2009) TG-FTIR coupling to monitor the pyrolysis products from agricultural residues. J Therm Anal Calorim 97:637–642

    Article  CAS  Google Scholar 

  • Strahan GD, Mullen CA, Boateng AA (2011) Characterizing biomass fast pyrolysis oils by 13C NMR and chemometric analysis. Energy Fuel 25:5452–5461

    Article  CAS  Google Scholar 

  • Tessini C, Vega M, Muller N, Bustamante L, Baer DV, Berg A, Mardones C (2011) High performance thin layer chromatography determination of cellobiosan and levoglucosan in bio-oil obtained by fast pyrolysis of sawdust. J Chromatogr A 1218:3811–3815

    Article  CAS  Google Scholar 

  • Tripathi MM, Hassan EBM, Yueh FY, Singh JP, Steele PH (2010) Study of the effect of ultraviolet exposure on bio-oil by laser-induced fluorescence spectroscopy. Energy Fuel 24:6187–6192

    Article  CAS  Google Scholar 

  • Vamvuka D (2011) Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes – an overview. Int J Energy Res 35:835–862

    Article  CAS  Google Scholar 

  • Venter A, Makgwane PR, Rohwer ER (2006) Group-type analysis of oxygenated compounds with a silica gel porous layer open tubular column and comprehensive two-dimensional supercritical fluid and gas chromatography. Anal Chem 78:2051–2054

    Article  CAS  Google Scholar 

  • Vitolo S, Ghetti P (1994) Physical and combustion characterization of pyrolytic oils derived from biomass material upgraded by catalytic hydrogenation. Fuel 73:1810–1812

    Article  CAS  Google Scholar 

  • Xu F, Xu Y, Lu R, Sheng GP, Yu HQ (2011) Elucidation of the thermal deterioration mechanism of bio-oil pyrolyzed from rice husk using fourier transform infrared spectroscopy. J Agric Food Chem 59:9243–9249

    Article  CAS  Google Scholar 

  • Zhou D, Zhang L, Zhang S, Fu H, Chen J (2010) Hydrothermal liquefaction of macroalgae enteromorpha prolifera to bio-oil. Energy Fuel 24:4054–4061

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj K. Kanaujia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Kanaujia, P.K. (2015). Production, Upgrading and Analysis of Bio-oils Derived from Lignocellulosic Biomass. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-16298-0_41

Download citation

Publish with us

Policies and ethics