Skip to main content

Inulin and Health Benefits

  • Reference work entry
  • First Online:

Abstract

Inulin-type fructans are prebiotic dietary fibers, naturally occurring in numerous plants. The chicory root with its high content of inulin-type fructans is the most common basis for gaining inulin from the plant. The process applied is a hot water extraction. This means, contrary to a number of commercially available dietary fibers, inulin is not synthesized but occurs naturally and was eaten by mankind 100,000 years ago. The colon, the main place of action of inulin-type fructans, is a highly active metabolic organ, containing an excessively complex collection of microbes. Inulin-type fructans are nondigestible in the small intestine and fermented in the large intestine, resulting in modifications in the colonic microbiota composition, towards a healthier pattern, and in the production of several metabolites. Thereby, they are among the very few scientifically proven prebiotics. Several health effects are related to this activity in the colon. They may range from local effects, starting with improvement of bowel movement, effects related to local immunity, to more systemic benefits for the body, as a result of the metabolic events, like weight and blood sugar management and bone health. This book chapter aims at providing a comprehensive review of the physiology related to inulin-type fructans and the health benefits related to this. Current developments in understanding the role of the microbiota in health and disease will probably also further contribute to understanding these complex influences originating from the gut and the role “colonic nutrients” such as prebiotic dietary fibers may play therein.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BB-12:

Bifidobacterium animalis subsp. lactis BB12

BMC:

Bone mineral content

BMD:

Bone mineral density

BMI:

Body mass index

CHD:

Coronary heart disease

DPP-4:

Dipeptidyl peptidase-4

EFSA:

European food safety authority

EU:

European union

FOS:

Fructooligosaccharides

GALT:

Gut-associated lymphoid tissue

GDP:

Gross domestic product

GLP-1:

Glucagon-like peptide-1

GLP-2:

Glucagon-like peptide 2

GPR41 43:

G protein-coupled receptors 41, 43

GR:

Glycemic response

HOMA-IR:

Homeostasis model assessment of insulin resistance

hs-CRP:

High-sensitivity C-reactive protein

IASO:

International Association for the Study of Obesity

IBD:

Inflammatory bowel disease

IGN:

Intestinal gluconeogenesis

IOF:

International Osteoporosis Foundation

IoM:

Institute of medicine

IOTF:

International Obesity Task Force

ISAPP:

International Scientific Association for probiotics and prebiotics

Lc:

Long chain

LPS:

Lipopolysaccharide

MAF:

Mucosa associated flora

NASH:

Nonalcoholic steatohepatitis

NCDs:

Noncommunicable diseases

NDA:

Dietetic products nutrition and allergies

NEC:

Necrotizing enterocolitis

PYY:

Peptide YY

Sc:

Short chain

SCFA:

Short-chain fatty acid

TH1 2:

T-helper 1, 2

TNF-α:

Tumor necrosis factor-alpha

US:

United States

WHO:

World Health Organization

References

  • Abrams SA, Griffin IJ, Hawthorne KM, Liang L, Gunn SK, Darlington G, Ellis KJ (2005) A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralisation in young adolescents. Am J Clin Nutr 82:471–476

    CAS  Google Scholar 

  • Abrams SA, Griffin IJ, Hawthorne KM, Ellis KJ (2007a) Effect of prebiotic supplementation and calcium intake on body mass index. J Pediatr 151(3):293–298

    CAS  Google Scholar 

  • Abrams SA, Hawthorne KM, Aliu O, Hicks PD, Chen Z, Griffin IJ (2007b) An inulin-type fructan enhances calcium absorption primarily via an effect on colonic absorption in humans. J Nutr 137:2208–2212

    CAS  Google Scholar 

  • Anderson JW, Baird P, Davis RH, Ferreri S, Knudtson M, Koraym A, Waters V, Williams CL (2009) Health benefits of dietary fiber. Nutr Rev 67:188–205

    Google Scholar 

  • Bäckhed F, Fraser CM, Ringel Y, Sanders ME, Sartor RB, Sherman PM, Versalovic J, Young V, Finlay BB (2012) Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe 12:611–622

    Google Scholar 

  • Balamurugan R, George G, Kabeerdoss J, Hepsiba J, Chandragunasekaran AM, Ramakrishna BS (2010) Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children. Br J Nutr 103(3):335–338

    CAS  Google Scholar 

  • Bartosch S, Fite A, Macfarlane GT, McMurdo MET (2004) Characterization of bacterial communities in faeces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the faecal microbiota. Appl Environm Microbiol 70:3575–3581

    CAS  Google Scholar 

  • Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, Lobley GE, Flint HJ (2006) Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 72(5):3593–3599

    CAS  Google Scholar 

  • Benno Y, Sawada K, Mitsuoka T (1984) The intestinal microflora of infants: composition of faecal flora in breast-fed and bottle-fed infants. Microbiol Immunol 28:975–986

    CAS  Google Scholar 

  • Bettler J, Euler A (2006) An evaluation of the growth of term infants fed formula supplemented with fructose-oligosaccharide. Int J Probiot Prebiot 1(1):19–26

    Google Scholar 

  • Bezirtzoglou E, Tsiotsias A, Welling GW (2011) Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe 17(6):478–482. doi:10.1016/j.anaerobe.2011.03.009, Epub 8 Apr 2011

    Google Scholar 

  • Binns N (2013) Probiotics, prebiotics and the gut Microbiota. ILSI Eur Concise Monogr 1–32

    Google Scholar 

  • Bomhof MR, Saha DC, Reid DT, Paul HA, Reimer RA (2014) Effects of oligofructose and Bifidobacterium animalis on gut microbiota and glycemia in obese rats. Obesity (Silver Spring) 22(3):763–771

    CAS  Google Scholar 

  • Bouhnik Y, Raskine L, Champion K, Andrieux C, Penven S, Jacobs H, Simoneau G (2007) Prolonged administration of low-dose inulin stimulates the growth of bifidobacteria in humans. Nutr Res 27:187–193

    CAS  Google Scholar 

  • Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ (2003) The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278(13):11312–11319

    CAS  Google Scholar 

  • Calmels S, Ohshima H, Vincent P, Gounot AM, Bartsch H (1985) Screening of microorganisms for nitrosation catalysis at pH 7 and kinetic studies on nitrosamine formation from secondary amines by E. coli strains. Carcinogenesis 6:911–915

    CAS  Google Scholar 

  • Cani P, Dewever C, Delzenne N (2004) Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Brit J Nutr 92:521–526

    CAS  Google Scholar 

  • Cani PD, Daubioul CA, Reusens B, Remacle C, Catillon G, Delzenne NM (2005) Involvement of endogenous glucagon-like peptide-1(7-36) amide on glycaemia-lowering effect of oligofructose in streptozotocin-treated rats. J Endocrinol 185(3):457–465

    CAS  Google Scholar 

  • Cani PD, Knauf C, Iglesias MA, Drucker DJ, Delzenne NM, Burcelin R (2006a) Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor. Diabetes 55(5):484–490

    Google Scholar 

  • Cani PD, Joly E, Horsmans Y, Delzenne NM (2006b) Oligofructose promotes satiety in healthy human: a pilot study. Eur J Clin Nutr 60(5):567–572

    CAS  Google Scholar 

  • Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, Gibson GR, Delzenne NM (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50(11):2374–2383

    CAS  Google Scholar 

  • Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, Geurts L, Naslain D, Neyrinck A, Lambert DM, Muccioli GG, Delzenne NM (2009a) Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58(8):1091–1103

    CAS  Google Scholar 

  • Cani PD, Lecourt E, Dewulf EM, Sohet FM, Pachikian BD, Naslain D, De Backer F, Neyrinck AM, Delzenne NM (2009b) Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr 90(5):1236–1243

    CAS  Google Scholar 

  • Cani PD, Osto M, Geurts L, Everard A (2012) Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 3(4):279–288

    Google Scholar 

  • Cashman KD (2006) A prebiotic substance persistently enhances intestinal calcium absorption and increases bone mineralization in young adolescents. Nutr Rev 64(4):189–196

    Google Scholar 

  • Castiglia-Delavaud C, Verdier E, Besle JM, Vernet J, Boirie Y, Beaufrere B, De Baynast R, Vermorel M (1998) Net energy value of non-starch polysaccharide isolates (sugarbeet fibre and commercial inulin) and their impact on nutrient digestive utilization in healthy human subjects. Br J Nutr 80(4):343–352

    CAS  Google Scholar 

  • Ceriello A, Colagiuri S (2008) International Diabetes Federation guideline for management of postmeal glucose: a review of recommendations. Diabet Med 25:1151–1156

    CAS  Google Scholar 

  • Cherbut C (2002) Inulin and oligofructose in the dietary fibre concept. Br J Nutr 87(Suppl 2):S159–S162

    CAS  Google Scholar 

  • Closa-Monasterolo R, Gispert-Llaurado M, Luque V, Ferre N, Rubio-Torrents C, Zaragoza-Jordana M, Escribano J (2013) Safety and efficacy of inulin and oligofructose supplementation in infant formula: results from a randomized clinical trial. Clin Nutr 32(6):918–927

    CAS  Google Scholar 

  • Collado MC, González A, González R, Hernández M, Ferrús MA, Sanz Y (2005) Antimicrobial peptides are among the antagonistic metabolites produced by Bifidobacterium against Helicobacter pylori. Int J Antimicrob Agents 25(5):385–391

    CAS  Google Scholar 

  • Coudray C, Tressol JC, Gueux E, Rayssiguier Y (2003) Effects of inulin-type fructans of different chain length and type of branching on intestinal absorption and balance of calcium and magnesium in rats. Eur J Nutr 42:91–98

    CAS  Google Scholar 

  • Coutinho M, Gerstein HC, Wang Y, Yusuf S (1999) The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care 22:233–240

    CAS  Google Scholar 

  • Cummings JH, Macfarlane GT (1991) The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol 70:443–459

    CAS  Google Scholar 

  • Cummings JH, Christie S, Cole TJ (2001) A study of fructo oligosaccharides in the prevention of travellers’ diarrhoea. Aliment Pharmacol Ther 15(8):1139–1145

    CAS  Google Scholar 

  • Daubioul C, Taper H, De Wispelaere L, Delzenne N (2000) Dietary oligofructose lessens hepatic steatosis, but does not prevent hypertriglyceridemia in obese Zucker rats. J Nutr 130:1314–1319

    CAS  Google Scholar 

  • Daubioul C, Rousseau N, Demeure R, Gallez B, Taper H, Declerck B, Delzenne N (2002) Dietary fructans, but not cellulose, decrease triglyceride accumulation in the liver of obese Zucker fa/fa rats. J Nutr 132:967–973

    CAS  Google Scholar 

  • Daubioul CA, Horsmans Y, Lambert P, Danse E, Delzenne NM (2005) Effects of oligofructose on glucose and lipid metabolism in patients with nonalcoholic steatohepatitis: results of a pilot study. Eur J Clin Nutr 59:723–726

    CAS  Google Scholar 

  • De Preter V, Vanhoutte T, Huys G, Swings J, De Vuyst L, Rutgeerts P, Verbeke K (2007) Effects of Lactobacillus casei Shirota, Bifidobacterium breve, and oligofructose-enriched inulin on colonic nitrogen-protein metabolism in healthy humans. Am J Physiol Gastrointest Liver Physiol 292:G358–G368

    Google Scholar 

  • De Preter V, Raemen H, Cloetens L, Houben E, Rutgeerts P, Verbeke K (2008) Effect of dietary intervention with different pre- and probiotics on intestinal bacterial enzyme activities. Eur J Clin Nutr 62(2):225–231

    Google Scholar 

  • De Preter V, Falony G, Windey K, Hamer HM, De Vuyst L, Verbeke K (2010) The prebiotic, oligofructose-enriched inulin modulates the faecal metabolite profile: an in vitro analysis. Mol Nutr Food Res 54(12):1791–1801

    Google Scholar 

  • De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, Bäckhed F, Mithieux G (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156(1–2):84–96

    Google Scholar 

  • De Vuyst L, Leroy F (2011) Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifdobacterial competitiveness, butyrate production, and gas production. Int J Food Microbiol 149(1):73–80

    Google Scholar 

  • Dehghan P, Pourghassem Gargari B, Asgharijafarabadi M (2013) Effects of high performance inulin supplementation on glycemic status and lipid profile in women with type 2 diabetes: a randomized, placebo-controlled clinical trial. Health Promot Perspect 3(1):55–63

    Google Scholar 

  • Dehghan P, Gargari BP, Jafar-Abadi MA, Aliasgharzadeh A (2014a) Inulin controls inflammation and metabolic endotoxemia in women with type 2 diabetes mellitus: a randomized-controlled clinical trial. Int J Food Sci Nutr 65(1):117–1123

    CAS  Google Scholar 

  • Dehghan P, Pourghassem Gargari B, Asghari Jafar-abadi M (2014b) Oligofructose-enriched inulin improves some inflammatory markers and metabolic endotoxemia in women with type 2 diabetes mellitus: a randomized controlled clinical trial. Nutrition 30(4):418–423

    CAS  Google Scholar 

  • Delmée E, Cani PD, Gual G, Knauf C, Burcelin R, Maton N, Delzenne NM (2006) Relation between colonic proglucagon expression and metabolic response to oligofructose in high fat diet-fed mice. Life Sci 79(10):1007–1013

    Google Scholar 

  • Delzenne NM, Cani PD, Daubioul C, Neyrinck AM (2005) Impact of inulin and oligofructose on gastrointestinal peptides. Br J Nutr 93(Suppl 1):S157–S161

    CAS  Google Scholar 

  • Delzenne NM, Neyrinck AM, Cani PD (2013) Gut microbiota and metabolic disorders: how prebiotic can work? Br J Nutr 109(Suppl 2):S81–S85

    CAS  Google Scholar 

  • Den Hond E, Geypens B, Ghoos Y (2000) Effect of high performance chicory inulin on constipation. Nutr Res 20(5):731–736

    Google Scholar 

  • Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PG, Neyrinck AM, Bindels LB, de Vos WM, Gibson GR, Thissen JP, Delzenne NM (2013) Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62(8):1112–1121

    CAS  Google Scholar 

  • Du H, van der A DL, Boshuizen HC, Forouhi NG, Wareham NJ, Halkjaer J, Tjønneland A, Overvad K, Jakobsen MU, Boeing H, Buijsse B, Masala G, Palli D, Sørensen TI, Saris WH, Feskens EJ (2010) Dietary fiber and subsequent changes in body weight and waist circumference in European men and women. Am J Clin Nutr 91(2):329–336

    CAS  Google Scholar 

  • EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies) (2010) Dietary reference values for carbohydrates and dietary fibre. EFSA J 8(3):1462, 77 pp

    Google Scholar 

  • EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies) (2011) Scientific opinion on the substantiation of a health claim related to “slowly digestible starch in starch-containing foods” and “reduction of post-prandial glycaemic responses” pursuant to Article 13(5) of Regulation (EC) No 1924/20061. EFSA J 9(7):2292

    Google Scholar 

  • EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies) (2014) Scientific opinion on the substantiation of a health claim related to non-digestible carbohydrates and reduction of post-prandial glycaemic responses pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA J 12(1):3513

    Google Scholar 

  • Ellegård L, Andersson H, Bosaeus I (1997) Inulin and oligofructose do not influence the absorption of cholesterol, or the excretion of cholesterol, Ca, Mg, Zn, Fe, or bile acids but increases energy excretion in ileostomy subjects. Eur J Clin Nut 51:1–5

    Google Scholar 

  • Everard A, Cani PD (2013) Diabetes, obesity and gut microbiota. Best Pract Res Clin Gastroenterol 27(1):73–83, Review

    CAS  Google Scholar 

  • Everard A, Lazarevic V, Derrien M, Girard M, Muccioli GG, Neyrinck AM, Possemiers S, Van Holle A, François P, de Vos WM, Delzenne NM, Schrenzel J, Cani PD (2011) Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60(11):2775–2786

    CAS  Google Scholar 

  • Falony G, Vlachou A, Verbrugghe K, De Vuyst L (2006) Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 72(12):7835–7841

    CAS  Google Scholar 

  • Fanaro S, Chierici R, Guerrini P, Vigi V (2003) Intestinal microflora in early infancy: composition and development. Acta Paediatr Suppl 91(441):48–55

    CAS  Google Scholar 

  • Favier C, Neut C, Mizon C, Cortot A, Colombel JF, Mizon J (1997) Fecal beta-d-galactosidase production and Bifidobacteria are decreased in Crohn’s disease. Dig Dis Sci 42(4):817–822

    CAS  Google Scholar 

  • Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104:13780–13785

    CAS  Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125(6):1401–1412

    CAS  Google Scholar 

  • Gibson GR, Roberfroid MB (2009) In: Gibson GR, Roberfoid MR (eds) Handbook of prebiotics. CRC Press, Taylor & Francis Group, Boca Raton, pp 69–92

    Google Scholar 

  • Gibson GR, Beatty ER, Wang X, Cummings JH (1995) Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108:975–982

    CAS  Google Scholar 

  • Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17:259–275

    CAS  Google Scholar 

  • Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A, Gareau M, Murphy EF, Saulnier D, Loh G, Macfarlane S, Delzenne N, Ringel Y, Kozianowski G, Dickmann R, Lenoir-Wijnkook I, Walker C, Buddington R (2010) Dietary prebiotics: current status and new definition. Food Sci & Technol Bull: Funct Foods 7:1–19

    Google Scholar 

  • Gråsten S, Liukkonen KH, Chrevatidis A, El-Nezami H, Poutanen K, Mykkånen H (2003) Effects of wheat pentosan and inulin on the metabolic activity of fecal microbiota and on bowel function in healthy humans. Nutr Res 23:1503–1514

    Google Scholar 

  • Greenblum S, Turnbaugh PJ, Borenstein E (2012) Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci U S A 10:594–599

    Google Scholar 

  • Grider JR, Piland BE (2007) The peristaltic reflex induced by short-chain fatty acids is mediated by sequential release of 5-HT and neuronal CGRP but not BDNF. Am J Physiol Gastrointest Liver Physiol 292(1):G429–G437

    CAS  Google Scholar 

  • Griffin IJ, Davila PM, Abrams SA (2002) Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intakes. Br J Nutr 87(Suppl 2):S187–S191

    CAS  Google Scholar 

  • Griffin IJ, Hicks PMD, Heaney RP, Abrams SA (2003) Enriched chicory inulin increases calcium absorption mainly in girls with lower calcium absorption. Nutr Res 23:901–909

    CAS  Google Scholar 

  • Guaraldi F, Salvatori G (2012) Effect of breast and formula feeding on gut microbiota shaping in newborns. Front cell infect microbiol 2(94):1–4

    Google Scholar 

  • Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, Welling GW (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30(1):61–67

    CAS  Google Scholar 

  • Heavey PM, Rowland IR (1999) The gut microflora of the developing infant: microbiology and metabolism. Microbiol Ecol Health Dis 11:75–83

    Google Scholar 

  • Holloway L, Moynihan S, Abrams SA, Kent K, Hsu AR, Friedlander AL (2007) Effects of oligofructose enriched- Inulin on intestinal absorption of calcium and magnesium and bone turnover markers in postmenopausal women. Br J Nutr 97(2):365–372

    CAS  Google Scholar 

  • Honda K, Littman DR (2012) The microbiome in infectious disease and inflammation. Annu Rev Immunol 30:759–795

    CAS  Google Scholar 

  • Howlett JF, Betteridge VA, Champ M, Craig S, Meheust A, Miller-Jones J (2010) The definition of dietary fiber – discussions at the ninth Vahouny fiber symposium: building scientific agreement. Food Nutr Res 54:22

    Google Scholar 

  • ICQC “The International Carbohydrate Quality Consortium” (2013) Glycemic index, glycemic load and glycemic response: an international scientific consensus summit. Stresa 7th Jun

    Google Scholar 

  • International Association for the Study of Obesity (IASO)/International Obesity Task Force (IOTF) (2011) http://www.iaso.org/iotf/obesity/obesitytheglobalepidemic/. Accessed 9 Jan 2012

  • International Osteoporosis Foundation (IOF) (2013) International Osteoporosis Foundation. www.iofbonehealth.org. Accessed on 24 Apr 2013

  • IoM (Institute of Medicine) (2005) Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. National Academic Press, Washington, DC

    Google Scholar 

  • Isakov V, Pilipenko V, Shakhovskaya A, Tutelyan V (2013) Efficacy of inulin enriched yogurt on bowel habits in patients with irritable bowel syndrome with constipation: a pilot study. FASEB J 27, lb426

    Google Scholar 

  • Kalliomäki M, Collado MC, Salminen S, Isolauri E (2008) Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 87(3):534–538

    Google Scholar 

  • Kamada N, Seo SU, Chen GY, Núñez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13(5):321–335, Review

    CAS  Google Scholar 

  • Karlsson F, Tremaroli V, Nielsen J, Bäckhed F (2013) Assessing the human gut microbiota in metabolic diseases. Diabetes 62(10):3341–3349

    CAS  Google Scholar 

  • Karra E, Chandarana K, Batterham RL (2009) The role of peptide YY in appetite regulation and obesity. J Physiol 587(Pt 1):19–25

    CAS  Google Scholar 

  • Kellow N, Coughlan M, Reid C (2014) Metabolic benefits of dietary prebiotics in human subjects: a systematic review of randomised controlled trials. Br J Nutr 111(7):1147–1161

    CAS  Google Scholar 

  • Khan LK, Bowman BA (1999) Obesity: a major public health problem. Annu Rev Nutr 19:13–17, Review

    Google Scholar 

  • Kleessen B, Sykura B, Zunft HJ (1997) Effect of inulin and lactose on fecal microflora, microbial activity, and bowel habit in elderly constipated persons. Am J Clin Nutr 65:1397–1402

    CAS  Google Scholar 

  • Kleessen B, Schwarz S, Boehm A, Fuhrmann H, Richter A, Henle T, Krueger M (2007) Jerusalem artichoke and chicory inulin in bakery products affect faecal microbiota of healthy volunteers. Br J Nutr 98:540–549

    CAS  Google Scholar 

  • Kotlowski R, Bernstein CN, Sepehri S, Krause DO (2007) High prevalence of Escherichia coli belonging to the B2+D phylogenetic group in inflammatory bowel disease. Gut 56:669–675

    CAS  Google Scholar 

  • Kruger MC, Brown KE, Collett G, Layton L, Schollum LM (2003) The effect of fructooligosaccharides with various degrees of polymerization on calcium bioavailability in the growing rat. Exp Biol Med 228(6):683–688

    CAS  Google Scholar 

  • Langlands SJ, Hopkins MJ, Coleman N, Cummings JH (2004) Prebiotic carbohydrates modify the mucosa associated microflora of the human large bowel. Gut 53:1610–1616

    CAS  Google Scholar 

  • Latulippe ME, Meheust A, Augustin L, Benton D, Berčík P, Birkett A, Eldridge AL, Faintuch J, Hoffmann C, Jones JM, Kendall C, Lajolo F, Perdigon G, Prieto PA, Rastall RA, Sievenpiper JL, Slavin J, de Menezes EW (2013) ILSI Brazil International Workshop on functional foods: a narrative review of the scientific evidence in the area of carbohydrates, microbiome, and health. Food Nutr Res 57. doi: 10.3402/fnr.v57i0.19214

    Google Scholar 

  • Leach J, Sobolik K (2010) High dietary intake of prebiotic inulin-type fructans in the prehistoric Chihuahuan desert. Br J Nutr 103(11):1558–1561

    CAS  Google Scholar 

  • Legette LL, Lee WH, Martin BR, Story JA, Campbell JK, Weaver CM (2012) Prebiotics enhance magnesium absorption and inulin-based fibres exert chronic effects on calcium utilization in a postmenopausal rodent model. J Food Sci 77(4):H88–H94

    CAS  Google Scholar 

  • Levitan EB, Song Y, Ford ES, Liu S (2004) Is nondiabetic hyperglycemia a risk factor for cardiovascular disease? A meta-analysis of prospective studies. Arch Intern Med 164:2147–2155

    Google Scholar 

  • Lewis S, Burmeister S, Brazier J (2005) Effect of the prebiotic oligofructose on relapse of Clostridium difficile-associated diarrhea: a randomized, controlled study. Clin Gastroenterol Hepatol 3:442–448

    CAS  Google Scholar 

  • Ley RE, Peterson DA, Gordon JI (2006a) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    CAS  Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006b) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023

    CAS  Google Scholar 

  • Lobo AR, Colli C, Filisetti TMCC (2006) Fructooligosaccharides improve bone mass and biomechanical properties in rats. Nutr Res 26(8):413–420

    CAS  Google Scholar 

  • Macfarlane S, Macfarlane GT (1995) Proteolysis and amino acid fermentation. In: Gibson GR, Macfarlane GT (eds) Human colonic bacteria: role in nutrition, physiology and pathology. CRC Press, Boca Raton

    Google Scholar 

  • Manichanh C, Borruel N, Casellas F, Guarner F (2012) The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol 9:599–608

    CAS  Google Scholar 

  • Martinez-Medina M, Aldeguer X, Gonzalez-Huix F, Acero D, Garcia-Gil LJ (2006) Abnormal microbiota composition in the ileocolonic mucosa of Crohn’s disease patients as revealed by polymerase chain reaction-denaturing gradient gel electrophoresis. Inflamm Bowel Dis 12:1136–1145

    Google Scholar 

  • McCann MT, Livingstone MBE, Wallace JMW, Gallagher AM, Welch RW (2011) Oligofructose-enriched inulin supplementation decreases energy intake in overweight and obese men and women. Obesity Rev 12(Suppl 1):63–279

    Google Scholar 

  • Menne E, Guggenbuhl N, Roberfroid M (2000) Fn-type of chicory inulin hydrolysate has a prebiotic effect in humans. J Nutr 30:1197–1199

    Google Scholar 

  • Meyer D (2007) Inulin for product development of low GI products to support weight management. In: Salovaara H, Gates F, Tenkanen M (eds) Dietary fibre components and functions. Wageningen Academic Publishers, The Netherlands, pp 257–269

    Google Scholar 

  • Million M, Lagier JC, Yahav D, Paul M (2013) Gut bacterial microbiota and obesity. Clin Microbiol Infect 19:305–313

    CAS  Google Scholar 

  • Mishfegh A, Friday J, Goldman J, Jaspreet C (1999) Presence of inulin and oligofructose in the diets of Americans. J Nutr 129(7 Suppl):1407S–1411S

    Google Scholar 

  • Moore N, Chao C, Yang LP, Storm H, Oliva-Hemker M, Saavedra JM (2003) Effects of fructo-oligosaccharide-supplemented infant cereal: a double-blind, randomized trial. Br J Nutr 90(3):581–587

    CAS  Google Scholar 

  • Moser M, Wouters R (2014) Nutritional and technological benefits of inulin-type oligosaccharides. In: Javier Moreno F, María Luz S (eds) Food oligosaccharides. Wiley, Chichester

    Google Scholar 

  • Moser M, Agemans A, Caers W (2014) Production and bioactivity of oligosaccharides from chicory roots. In: María Luz Sanz M u (ed) Food oligosaccharides. Wiley, Chichester, pp 55–75

    Google Scholar 

  • Nauta AJ, Ben Amor K, Knol J, Garssen J, van der Beek EM (2013) Relevance of pre- and postnatal nutrition to development and interplay between the microbiota and metabolic and immune systems. Am J Clin Nutr 98(2):586S–593S

    CAS  Google Scholar 

  • Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2013) Host-Gut microbiota metabolic interactions. Science 336:1262–1267

    Google Scholar 

  • Ninonuevo MR, Park Y, Yin H, Zhang J, Ward RE, Clowers BH, German JB, Freeman SL, Killeen K, Grimm R, Lebrilla CB (2006) A strategy for annotating the human milk glycome. J Agric Food Chem 54:7471–7480

    CAS  Google Scholar 

  • Nzeusseu A, Dienst D, Haufroid V, Depresseux G, Devolgelaer JP, Manicourt DH (2006) Inulin and fructooligosaccharides differ in their ability to enhance the density of cancellous and cortical bone in the axial and peripheral skeleton of growing rats. Bone 38(3):394–399

    CAS  Google Scholar 

  • Parnell JA, Reimer RA (2009) Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr 89(6):1751–1759

    CAS  Google Scholar 

  • Pourghassem Gargari B, Dehghan P, Aliasgharzadeh A, Asghari Jafar-Abadi M (2013) Effects of high performance inulin supplementation on glycemic control and antioxidant status in women with type 2 diabetes. Diabetes Metab J 37(2):140–148

    Google Scholar 

  • Prentice A, Bonjour JP, Brance F, Cooper C, Flynn A, Garabedian M, Müller D, Pannemans D, Weber P (2003) Passclaim – bone health and osteoporosis. Eur J Nutr 42(Suppl 1):28–49

    Google Scholar 

  • Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P (2009) Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Brit J Nutr 101:541–550

    CAS  Google Scholar 

  • Rao VA (2001) The prebiotic properties of oligofructose at low intake levels. Nutr Res 21:843–848

    CAS  Google Scholar 

  • Raschka L, Daniel H (2005) Mechanisms underlying the effects of inulin-type fructans on calcium absorption in the large intestine of rats. Bone 37:728–735

    CAS  Google Scholar 

  • Rautava S, Luoto R, Salminen S, Isolauri E (2012) Microbial contact during pregnancy, intestinal colonization and human disease. Nat Rev Gastroenterol Hepatol 9(10):565–576

    CAS  Google Scholar 

  • Renz H, Brandtzaeg P, Hornef M (2011) The impact of perinatal immune development on mucosal homeostasis and chronic inflammation. Nat Rev Immunol 12(1):9–23

    Google Scholar 

  • Roberfroid MB, Cumps J, Devogelaer JP (2002) Dietary chicory inulin increases whole-body bone mineral density in growing male rats. J Nutr 132(12):3599–3602

    CAS  Google Scholar 

  • Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, Guarner F, Respondek F, Whelan K, Coxam V, Davicco MJ, Léotoing L, Wittrant Y, Delzenne NM, Cani PD, Neyrinck AM, Meheust A (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104(Suppl 2):S1–S63

    CAS  Google Scholar 

  • Rozan P, Nejdi A, Hidalgo S, Bisson JF, Desor D, Messaoudi M (2008) Effects of lifelong intervention with an oligofructose-enriched inulin in rats on general health and lifespan. Br J Nutr 100(6):1192–1199

    CAS  Google Scholar 

  • Rudolff S, Kunz C (2012) Milk oligosaccharides and metabolism. Adv Nutr 3:398S–405S

    Google Scholar 

  • Russo F, Riezzo G, Chiloiro M, De Michele G, Chimienti G, Marconi E, D’Attoma B, Linsalata M, Clemente C (2010) Metabolic effects of a diet with inulin-enriched pasta in healthy young volunteers. Current Pharm Des 16:825–831

    CAS  Google Scholar 

  • Russo F, Linsalata M, Clemente C, Chiloiro M, Orlando A, Marconi E, Chimienti G, Riezzo G (2012) Inulin-enriched pasta improves intestinal permeability and modifies the circulating levels of zonulin and glucagon-like peptide 2 in healthy young volunteers. Nutr Res 32(12):940–946

    CAS  Google Scholar 

  • Saavedra, Tschernia (2002) Human studies with probiotics and prebiotics: clinical implications. Br J Nutr 87(S2):S241–S246

    CAS  Google Scholar 

  • Scholz-Ahrens KE, Schrezenmeir J (2002) Inulin, oligofructose and mineral absorption – experimental data and mechanism. Br J Nutr 87(Suppl 2):S179–S186

    CAS  Google Scholar 

  • Scholz-Ahrens K, Açil Y, Schrezenmeir J (2002) Effect of oligofructose or dietary calcium on repeated calcium and phosphorus balances, bone mineralization and trabecular structure in ovariectomized rats. Br J Nutr 88(4):365–377

    CAS  Google Scholar 

  • Schwiertz A, Jacobi M, Frick JS, Richter M, Rusch K, Köhler H (2010a) Microbiota in pediatric inflammatory bowel disease. J Pediatr 157(2):240–244

    Google Scholar 

  • Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C, Hardt PD (2010b) Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 18(1):190–195

    Google Scholar 

  • Seksik P, Rigottier-Gois L, Gramet G, Sutren M, Pochart P, Marteau P, Jian R, Dore J (2003) Alterations of the dominant faecal bacterial groups in patients with Crohn’s disease. J Clin Microbiol 44:3980–3988

    Google Scholar 

  • Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, Grangeatte D, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottiere HM, Dore J, Marteau P, Seksik P, Langella P (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 105:16731–16736

    CAS  Google Scholar 

  • Stewart ML, Timm DA, Slavin JL (2008) Fructooligosaccharides exhibit more rapid fermentation than long-chain inulin in an in vitro fermentation system. Nutr Res 28(5):329–334

    CAS  Google Scholar 

  • Theis S (2014) Snapshots: what’s new on prebiotic fibers. In: American Society of Nutrition (Hg) The 10th Vahouny dietary fiber symposium, Bethesda, 26–28 Mar 2014

    Google Scholar 

  • Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61(2):364–371

    CAS  Google Scholar 

  • Torrazza RM, Ukhanova M, Wang X, Sharma R, Hudak ML, Neu J, Mai V (2013) Intestinal microbial ecology and environmental factors affecting necrotizing enterocolitis. PLoS ONE 8(12):e83304

    Google Scholar 

  • Trebichavsky I, Rada V, Splichalova A, Splichal I (2009) Cross-talk of human gut with bifidobacteria. Nutr Rev 67:77–82

    Google Scholar 

  • Tucker LA, Thomas KS (2009) Increasing total fiber intake reduces risk of weight and fat gains in women. J Nutr 139(3):576–581

    CAS  Google Scholar 

  • Tuohy KM, Finlay RK, Wynne AG, Gibson G (2001) A Human Volunteer Study on the prebiotic effects of HP-inulin – faecal bacteria enumerated using Fluorescent In Situ Hybridisation (FISH). Anaerobe 7:113–118

    CAS  Google Scholar 

  • U.S. Department of Health & Human Services. www.aoa.gov/Aging_Statistics/, Accessed 12 May 2014

  • Van den Heuvel E, Muys T, van Dokkum W, Schaafsma G (1999) Oligofructose stimulates calcium absorption in adolescents. Am J Clin Nutr 69(3):544–548

    Google Scholar 

  • Van Dokkum W, Wezendonk B, Srikumar TS, van den Heuvel EG (1999) Effect of nondigestible oligosaccharides on large-bowel functions, blood lipid concentrations and glucose absorption in young healthy male subjects. Eur J Clin Nutr 53(1):1–7

    Google Scholar 

  • Van Loo JP, Coussement L, Leenheer D (1995) On the presence of inulin and oligofructose as natural ingredients in the Western diet. Crit Rev Food Sc Nutr 35:525–552

    Google Scholar 

  • Veereman-Wauters G, Staelens S, Van de Broek H, Plaskie K, Wesling F, Roger LC, McCartney AL, Assam P (2011) Physiological and bifidogenic effects of prebiotic supplements in infant formulae. JPGN 52:763–771

    CAS  Google Scholar 

  • Waligora-Dupriet AJ, Campeotto F, Nicolis I, Bonet A, Soulaines P, Dupont C, Butel MJ (2007) Effect of oligofructose supplementation on gut microflora and well-being in young children attending a day care centre. Int J Food Microb 113:108–113

    CAS  Google Scholar 

  • Walker WA (2013) Initial intestinal colonization in the human infant and immune homeostasis. Ann Nutr Metab 63(Suppl 2):8–15

    CAS  Google Scholar 

  • Wang X, Gibson GR (1993) Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the large intestine. J Appl Bacteriol 75(4):373–380

    CAS  Google Scholar 

  • Weaver CM, Martine BR, Story JA, Hutchinson I, Sanders L (2010) Novel fibers increase bone calcium content and strength beyond efficiency of large intestine fermentation. J Agric Food Chem 58(16):8952–8957

    CAS  Google Scholar 

  • Window to Science edition 1/2011. The journal of the BENEO-Institute. Publisher: BENEO-Institute, c/o BENEO GmbH

    Google Scholar 

  • Woodmansey EJ, Mcmurdo MET, Macfarlane GT, Macfarlane S (2004) Comparison of compositions and metabolic activities of faecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects. Appl Environ Microbiol 70:6113–6122

    CAS  Google Scholar 

  • World Health Organization (WHO) (2011) Noncommunicable diseases country profiles 2011. http://whqlibdoc.who.int/publications/2011/9789241502283_eng.pdf. Accessed 12 May 2014

  • World Health Organization (WHO) (2012) Strategy and action plan for healthy ageing in Europe, 2012–2020. Regional Committee for Europe. Sixty-second session Malta, 10–13 Sept 2012. http://www.euro.who.int/en/health-topics/Life-stages/healthy-ageing/publications/2012/eurrc6210-rev.1-strategy-and-action-plan-for-healthy-ageing-in-europe,-20122020. Accessed 12 May 2014

  • Younes H, Coudray C, Bellanger J, Demigné C, Rayssiguier Y, Rémésy C (2001) Effects of two fermentable carbohydrates (inulin and resistant starch) and their combination on calcium and magnesium balance in rats. Br J Nutr 86(4):479–485

    CAS  Google Scholar 

  • Zafar TA, Weaver CM, Zhao Y, Martin BR, Wastney ME (2004) Nondigestible oligosaccharides increase calcium absorption and suppress bone resorption in ovariectomized rats. J Nutr 134(2):399–402

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Moser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Moser, M., Sentko, A., Alexiou, H. (2015). Inulin and Health Benefits. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-16298-0_37

Download citation

Publish with us

Policies and ethics