Skip to main content

Fungal Cultivation and Production of Polysaccharides

  • Reference work entry
  • First Online:
Polysaccharides

Abstract

Many species of higher basidiomycetes have traditionally been used because of their medicinal properties. The positive effects associated to the consumption of those fungi have been mainly attributed to cell wall polysaccharides, which have important structural roles and are present throughout the entire life cycles of fungi. One of the most consumed and studied species native of the Americas is Agaricus subrufescens, a mushroom prescribed in different countries for prophylaxis and noninvasive treatment of numerous health-related disorders. Prior to the process of extraction, purification, and application of these polysaccharides, one needs to be concerned with the preservation of the specimen and production of fungal biomass. Even though basidiomata (syn. fruiting bodies, mushrooms) generally yield larger volumes of biomass when compared to the mycelium, cultivation of mycelium allows a more efficient control of the process and, therefore, is the method of choice of polysaccharide production. Mycelial biomass can be produced by solid-state fermentation (SSF) or submersed fermentation (SmF). Further separation and concentration of bioactive polysaccharides can be done by means of porous membranes, such as tangential flow nanofiltration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Amoudia A, Lovitt RW (2007) Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. J Membr Sci 303:4–28

    Google Scholar 

  • Angeli JPF, Ribeiro LR, Gonzaga MLC, Soares SDA, Ricardo MPSN, Tsuboy MS, Stidl R, Knasmueller S, Linhares RE, Mantovani MS (2006) Protective effects of β-glucan extracted from Agaricus brasiliensis against chemically induced DNA damage in human lymphocytes. Cell Biol Toxicol 22(4):285–291

    CAS  Google Scholar 

  • Angeli JPF, Ribeiro LR, Bellini MF, Mantovani MS (2009a) Beta-glucan extracted from the medicinal mushroom Agaricus blazei prevents the genotoxic effects of benzo[a]pyrene in the human hepatoma cell line HepG2. Arch Toxicol 83(1):81–86

    CAS  Google Scholar 

  • Angeli JPF, Ribeiro LR, Camelini CM, de Mendonça MM, Mantovani MS (2009b) Evaluation of the antigenotoxicity of polysaccharides and β-glucans from Agaricus blazei, a model study with the single cell gel electrophoresis/Hep G2 assay. J Food Comp Anal 22(7–8):699–703

    Google Scholar 

  • Atienzar FA, Venier P, Jha AN, Depledge MH (2002) Evaluation of the random amplified polymorphic DNA (RAPD) assay for the detection of DNA damage and mutations. Mutat Res 521(1–2):151–163

    CAS  Google Scholar 

  • Baños JG, Tomasini A, Szakács G, Barrios-González J (2009) High lovastatin production by Aspergillus terreus in solid-state fermentation on polyurethane foam: an artificial inert support. J Biosci Bioeng 108(2):105–110

    Google Scholar 

  • Brown GD, Gordon S (2001) Immune recognition: a new receptor for β-glucans. Nature 413:36–37

    CAS  Google Scholar 

  • Bruggemann R, Orlandi JM, Benati FJ, Faccin LC, Mantovani MS, Nozawa C, Linhares REC et al (2006) Antiviral activity of Agaricus blazei Murrill ss. Heinem extract against human and bovine herpesviruses in cell culture. Braz J Microbiol 37(4):561–565

    Google Scholar 

  • Camassola M, Rosa LO, Calloni R, Gaio TA, Dillon AJP (2013) Secretion of laccase and manganese peroxidase by Pleurotus strains cultivate in solid-state using Pinus spp. sawdust. Braz J Microbiol 44(1):207–213

    CAS  Google Scholar 

  • Camelini CM, Maraschin M, Mendonça MM, Zucco C, Ferreira AG, Tavares LA (2005) Structural characterization of β-glucans of Agaricus brasiliensis in different stages of fruiting body maturity and their use in nutraceutical products. Biotechnol Lett 27(17):1295–1299

    CAS  Google Scholar 

  • Camelini CM, Pena DA, Gomes A, Steindel M, Rossi MJ, Giachini AJ, Mendonça MM (2012) An efficient technique for in vitro preservation of Agaricus subrufescens (=A. brasiliensis). Ann Microbiol 62:1279–1285

    CAS  Google Scholar 

  • Camelini CM, Gomes A, Cardozo-Sousa FTG, Simões CMO, Rossi MJ, Giachini AJ, Petrus JCC, Mendonça MM (2013a) Production of polysaccharide from Agaricus subrufescens Peck on solid-state fermentation. Appl Microbiol Biotechnol 97(1):123–133

    CAS  Google Scholar 

  • Camelini CM, Rezzadori K, Benedetti S, Proner MC, Fogaça L, Azambuja AA, Giachini AJ, Rossi MJ, Petrus JCC (2013b) Nanofiltration of polysaccharides from Agaricus subrufescens. Appl Microbiol Biotechnol 97:9993–10002

    CAS  Google Scholar 

  • Cameotra SS (2007) Preservation of microorganisms as deposits for patent application. Biochem Biophys Res Commun 353:849–850

    CAS  Google Scholar 

  • Cardozo FTGS, Camelini CM, Mascarello A, Rossi MJ, Nunes RJ, Barardi CRM, Mendonça MM, Simões CMO (2011) Antiherpetic activity of a sulfated polysaccharide from Agaricus brasiliensis mycelia. Antiviral Res 92:108–114

    CAS  Google Scholar 

  • Cardozo FTGS, Camelini CM, Cordeiro MNS, Mascarello A, Malagoli BG, Larsen I, Rossi MJ, Nunes RJ, Braga FC, Brandt CR, Simões CMO (2013a) Characterization and cytotoxic activity of sulfated derivatives of polysaccharides from Agaricus brasiliensis. Int J Biol Macromol 57:265–272

    CAS  Google Scholar 

  • Cardozo FTGS, Larsen IV, Carballo EV, Jose G, Stern RA, Brummel RC, Camelini CM, Rossi MJ, Simões CMO, Brandt CR (2013b) In vivo anti-HSV activity of a sulfated derivative of Agaricus brasiliensis mycelial polysaccharide. Antimicrob Agents Chemother 57:2541–2549

    CAS  Google Scholar 

  • Cardozo FTGS, Camelini CM, Leal PC, Kratz JM, Nunes RJ, Mendonça MM, Simões CMO (2014) Antiherpetic mechanism of a sulfated derivative of Agaricus brasiliensis fruiting bodies polysaccharide. Intervirology 57:375–383

    Google Scholar 

  • Castilho LR, Polato CMS, Baruque EA, Sant’Anna GLJ, Freire DMG (2000) Economic analysis of lipase production by Penicillium restrictum in solid-state and submerged fermentations. Biochem Eng J 4(3):239–247

    CAS  Google Scholar 

  • Chacón-Villalobos A (2006) Tecnologías de membranas en la agroindustria láctea. Agron Mesoam 17(2):243–263

    Google Scholar 

  • Chandel AK, Kapoor RK, Singh A, Kuhad RC (2007) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol 98(10):1947–1950

    CAS  Google Scholar 

  • Chang ST, Buswell JA (1996) Mushroom nutriceuticals. World J Microbiol Biotechnol 12:473–476

    Google Scholar 

  • Charcosset C (2006) Membrane processes in biotechnology: an overview. Biotechnol Adv 24:482–492

    CAS  Google Scholar 

  • Cheryan M (1998) Ultrafiltration and microfiltration handbook. Technomic Publishing, Lancaster

    Google Scholar 

  • Chisti MY (1989) Airlift bioreactors. Elsevier, New York

    Google Scholar 

  • Chisti Y, Moo-young M (1988) Prediction of liquid circulation in airlift reactors with biological media. J Chem Technol Biotechnol 42:211–219

    Google Scholar 

  • Chisti Y, Wenge F, Moo-young M (1995) Relationship between riser and downcomer gas hold-up in internal-loop airlift reactors without gas–liquid separations. Chem Eng J 57:7–13

    Google Scholar 

  • Choy V, Patel N, Thibault J (2011) Application of image analysis in the fungal fermentation of Trichoderma reesei RUT-C30. Biotechnol Prog 27(6):1544–1553

    CAS  Google Scholar 

  • Clark TA, Anderson JB (2004) Dikaryons of the basidiomycete fungus Schizophyllum commune: evolution in long-term culture. Genetics 167:1663–1675

    CAS  Google Scholar 

  • Cleary JA, Graham GE, Husband AJ (1999) The effect of molecular weight and β-1,6-linkages on priming of macrophage function in mice by (1,3)-β-d-glucan. Immunol Cell Biol 77:395–403

    CAS  Google Scholar 

  • Colauto NB, Linde GA (2012a) Avances sobre el cultivo del “Cogumelo-do-sol” en Brasil. In: Sánchez JE, Mata VG (eds) Hongos comestibles y medicinales en Iberoamérica: investigación y desarrollo en un entorno multicultura. Ecosur, Chiapas, pp 121–136

    Google Scholar 

  • Colauto NB, Linde GA (2012b) Organización y preservación de microorganismos en Brasil. In: Sánchez JE, Mata VG (eds) Hongos comestibles y medicinales en iberoamérica: investigación y desarrollo en un entorno multicultura. Ecosur, Chiapas, pp 53–68

    Google Scholar 

  • Colauto NB, Eira AF, Linde GA (2012a) Cryopreservation of Agaricus blazei in liquid nitrogen using DMSO as cryoprotectant. Biosci J 28(6):1034–1037

    Google Scholar 

  • Colauto NB, Cordeiro FA, Geromini KVN, Lima TG, Lopes AD, Nunes RAR, Roratto FB, Tanaka HS, Zaghi LL Jr, Linde GA (2012b) Viability of Agaricus blazei after long-term cryopreservation. Ann Microbiol 62:871–876

    CAS  Google Scholar 

  • Couto SR, Sanromán MA (2005) Application of solid-state fermentation to ligninolytic enzyme production. Biochem Eng J 22(3):211–219

    Google Scholar 

  • Couto SR, Sanromán MA (2006) Application of solid-state fermentation to food industry: a review. J Food Eng 76(3):291–302

    CAS  Google Scholar 

  • Croan SC, Burdsall HH Jr, Rentmeester RM (1999) Preservation of tropical wood-inhabiting basidiomycetes. Mycologia 91(5):908–916

    Google Scholar 

  • Crueger W, Crueger A (1990) Substrates for industrial fermentation. In: Brock TD (ed) Biotechnology: a textbook of industrial microbiology. Science Tech, Wisconsin, pp 59–63

    Google Scholar 

  • Cui L, Sun Y, Xu H, Cong H, Liu J (2013) A polysaccharide isolated from Agaricus blazei Murill (ABP-AW1) as a potential Th1 immunity-stimulating adjuvant. Oncol Lett 6(4):1039–1044

    CAS  Google Scholar 

  • Da Silva MDLC, Martinez PF, Izeli NL, Silva IR, Vasconcelos AFD, De Stefani CM, Stelutti RM, Giese EC, De Melo BA (2006) Caracterização química de glucanas fúngicas e suas aplicações biotecnológicas. Quim Nova 29(1):85–92

    Google Scholar 

  • Da Silva AF, Sartori D, MacEdo FC Jr, Ribeiro LR, Fungaro MHP, Mantovani MS (2013) Effects of β-glucan extracted from Agaricus blazei on the expression of ERCC5, CASP9, and CYP1A1 genes and metabolic profile in HepG2 cells. Hum Exp Toxicol 32(6):647–654

    Google Scholar 

  • Dalla-Santa HS, Rubel R, Vítola FMD, Rodriguez-Leon JA, Dalla-Santa OR, Brand D, Alvaréz DC, Macedo REF, Carvalho JC, Soccol CR (2011) Growth parameters of Agaricus brasiliensis mycelium on wheat grains in solid-state fermentation. Biotechnol 11(3):144–153

    Google Scholar 

  • Delmanto R, Lima P, Sugui M, Eira AF, Salvadori D, Speit G, Ribeiro L (2001) Antimutagenic effect of Agaricus blazei Murrill mushroom on the genotoxicity induced by cyclophosphamide. Mutat Res 496(1–2):15–21

    CAS  Google Scholar 

  • Dobrev GT, Pishtiyski IG, Stanchev VS, Mircheva R (2007) Optimization of nutrient medium containing agricultural wastes for xylanase production by Aspergillus niger B03 using optimal composite experimental design. Bioresour Technol 98:2671–2678

    CAS  Google Scholar 

  • Eira AF (2003) Cultivo do cogumelo medicinal: Agaricus blazei (Murril) ss. Heinemann ou Agaricus brasiliensis (Wasser et al.). Aprenda Fácil, Viçosa

    Google Scholar 

  • Eo SK, Kim YS, Lee CK, Han SS (2000) Possible mode of antiviral activity of acidic protein bound polysaccharide isolated from Ganoderma lucidum on herpes simplex viruses. J Ethnopharmacol 72(3):475–481

    CAS  Google Scholar 

  • Faccin LC, Benati F, Rincão VP, Mantovani MS, Soares SA, Gonzaga ML, Nozawa C, Carvalho Linhares RE (2007) Antiviral activity of aqueous and ethanol extracts and of an isolated polysaccharide from Agaricus brasiliensis against poliovirus type 1. Lett Appl Microbiol 45(1):24–28

    CAS  Google Scholar 

  • Fan L, Soccol AT, Pandey A, Soccol CR (2007) Effect of nutritional and environmental conditions on the production of exo-polysaccharide of Agaricus brasiliensis by submerged fermentation and its antitumor activity. LWT 40:30–35

    CAS  Google Scholar 

  • Fazenda ML, Seviour R, Mcneil B, Harvey LM (2008) Submerged culture fermentation of “Higher Fungi”: the macrofungi. Adv Appl Microbiol 63:33–103

    CAS  Google Scholar 

  • Figueirêdo VR, Martos ET, Siqueira FG, Maciel WP, Silva R, Rinker DL, Dias ES (2013) Microbial inoculation during composting improves productivity of sun mushroom (Agaricus subrufescens Peck). Afr J Microbiol Res 7(35):4430–4434

    Google Scholar 

  • Fujimiya Y, Suzuki Y, Oshiman KI, Kobori H, Moriguchi K, Nakashima H, Matumoto Y, Takahara S, Ebina T, Katakura R (1998) Selective tumoricidal effect of soluble proteoglucan extracted from the basidiomycete, Agaricus blazei Murill, mediated via natural killer cell activation and apoptosis. Cancer Immunol Immunother 46(3):147–159

    CAS  Google Scholar 

  • Gadd GM (1995) Signal transduction in fungi. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman and Hall, London, pp 183–210

    Google Scholar 

  • Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27(2):153–176

    CAS  Google Scholar 

  • Gasser RB (2006) Molecular tools: advances, opportunities and prospects. Vet Parasitol 136(2):69–89

    CAS  Google Scholar 

  • Gervais P, Molin P (2003) The role of water in solid-state fermentation. Biochem Eng J 13:85–101

    CAS  Google Scholar 

  • Ghorai S, Banik SP, Verma D, Chowdhury S, Mukherjee S, Khowala S (2009) Fungal biotechnology in food and feed processing. Food Res Int 42(5–6):577–587

    CAS  Google Scholar 

  • Ghosh T, Chattopadhyay K, Marschall M, Karmakar P, Mandal P, Ray B (2009) Focus on antivirally active sulfated polysaccharides: from structure-activity analysis to clinical evaluation. Glycobiology 19(1):2–15

    CAS  Google Scholar 

  • Giavasis I (2014) Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. Curr Opin Biotechnol 26:162–173

    CAS  Google Scholar 

  • Gompertz OF, Gambale W, Paula CR, Corrêa B (2002) Biologia dos fungos. In: Trabulsi LR, Alterthum F, Gompertz OF, Candeias JA (eds) Microbiologia, 3rd edn. Atheneu, São Paulo, pp 365–375

    Google Scholar 

  • Gonçalves CCM, Paiva PCA, Dias ES, Siqueira FG, Henrique F (2010) Evaluation of the cultivation of Pleurotus sajor-caju (fries) sing. on cotton textile mill waste for mushroom production and animal feeding. Ciênc Agrotec 34(1):220–225

    Google Scholar 

  • Gonzaga MLC, Ricardo NMPS, Heatley F, Soares SDA (2005) Isolation and characterization of polysaccharides from Agaricus blazei Murill. Carbohydr Polym 60(1):43–49

    CAS  Google Scholar 

  • Gonzaga MLC, Bezerra DP, Alves APNN, De Alencar NMN, De Oliveira MR, Lima MW, De Aguiar SS, Pessoa C, De Moraes MO, Costa-Lotufo LV (2009) In vivo growth-inhibition of Sarcoma 180 by an α-(1 → 4)-glucan-β-(1 → 6)-glucan-protein complex polysaccharide obtained from Agaricus blazei Murill. J Nat Med 63(1):32–40

    CAS  Google Scholar 

  • Goosen MFA, Sablani SS, Al-Maskari SS, Albelushi RH, Wilp M (2002) Effect of feed temperature on permeate flux and mass transfer coefficient in spiral-wound reverse osmosis systems. Desalination 14:367–372

    Google Scholar 

  • Hamedi A, Vahid H, Ghanati F (2007) Optimization of the medium composition for production of mycelia biomass and exo-polysaccharide by Agaricus blazei Murill DPPh 131 using response-surface methodology. Biotechnology 6(4):456–464

    CAS  Google Scholar 

  • Hashimoto S, Akanuma AM, Motoi M, Imai N, Rodrignes CA, Nameda S, Miura NN, Adachi Y, Ohno N (2006) Effect of culture conditions on the chemical composition and biological activities of Agaricus brasiliensis S. Wasser et al. (Agaricomycetideae). Int J Med Mushr 8:329–341

    Google Scholar 

  • Hayashi K, Nakano T, Hashimoto M, Kanekiyo K, Hayashi T (2008) Defensive effects of a fucoidan from brown alga Undaria pinnatifida against herpes simplex virus infection. Int Immunopharmacol 8(1):109–116

    CAS  Google Scholar 

  • Hays HCW, Millner PA, Jones JK, Rayner-Brandes MH (2005) A novel and convenient self-drying system for bacterial preservation. J Microbiol Methods 63(1):29–35

    Google Scholar 

  • Hölker U, Höfer M, Lenz J (2004) Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64(2):175–186

    Google Scholar 

  • Hsieh C-W, Huang Y-S, Lai C-H, Ko W-C (2014) Removal of higher fatty acid esters from Taiwanese rice-spirits by nanofiltration. Food Bioprocess Technol 7:525–531

    CAS  Google Scholar 

  • Hu DJ, Cheong KL, Zhao J, Li SP (2013) Chromatography in characterization of polysaccharides from medicinal plants and fungi. J Sep Sci 36(1):1–19

    CAS  Google Scholar 

  • Hyde KD, Bahkali AH, Moslem MA (2010) Fungi: an unusual source for cosmetics. Fungal Diversity 43(1):1–9

    Google Scholar 

  • Ito H, Sumiya TH (2000) Iwade research institute of mycology Co., Ltd., Japan. Oral drugs for treating AIDS patients. US Patent 6,120,772

    Google Scholar 

  • Izawa S, Inoue Y (2004) A screening system for antioxidants using thioredoxin-deficient yeast: discovery of thermostable antioxidant activity from Agaricus blazei Murill. Appl Microbiol Biotechnol 64(4):537–542

    CAS  Google Scholar 

  • Jassim SA, Naji MA (2003) Novel antiviral agents: a medicinal plant perspective. J Appl Microbiol 95(3):412–427

    CAS  Google Scholar 

  • Kalk JP, Langlykke AS (1986) Cost estimation for biotechnology projects. In: Demain AL, Solomon NA (eds) Manual of industrial microbiology and biotechnology. American Society for Microbiology, Washington, DC, pp 363–385

    Google Scholar 

  • Kamada T, Hirai K, Fujii M (1993) The role of the cytoskeleton in the pairing and positioning of the two nuclei in the apical cells of the dikaryon of the basidiomycete Coprinus cinereus. Exp Mycol 17:338–344

    Google Scholar 

  • Kanekiyo K, Lee JB, Hayashi K, Takenaka H, Hayakawa Y, Endo S, Hayashi T (2005) Isolation of an antiviral polysaccharide, nostoflan, from a terrestrial cyanobacterium, Nostoc flagelliforme. J Nat Prod 68(7):1037–1041

    CAS  Google Scholar 

  • Kawagoe M, Nagaoka Y, Araki M, Yamagaki K, Naoe K, Noda H (2004) Submerged culture of Agaricus blazei mycelium in a bubble column fermentor. J Chem Eng Jpn 37(8):1056–1061

    CAS  Google Scholar 

  • Kerrigan RW (2005) Agaricus subrufescens, a cultivated edible and medicinal mushroom and its synonyms. Mycologia 97(1):12–24

    Google Scholar 

  • Kerrigan RW (2007) Inclusive and exclusive concepts of Agaricus subrufescens peck: a reply to Wasser et al. Int J Med Mushrooms 9(1):79–83

    Google Scholar 

  • Kirkwood S (1974) Unusual polysaccharides. Annu Rev Biochem 43:401–417

    CAS  Google Scholar 

  • Komura DL, Carbonero ER, Gracher AHP, Baggio CH, Freitas CS, Marcon R, Santos ARS, Gorin PAJ, Iacomini M (2010) Structure of Agaricus spp. fucogalactans and their anti-inflammatory and antinociceptive properties. Bioresour Technol 101(15):6192–6199

    CAS  Google Scholar 

  • Kondo K, Watanabe A, Iwanaga Y, Abeb I, Tanaka H, Nagaoka MH, Akiyama H, Maitani T (2006) Analysis of agaritine in mushrooms and in agaritine-administered mice using liquid chromatography-tandem mass spectrometry. J Chromatogr B 834(1–2):55–61

    CAS  Google Scholar 

  • Kozarski M, Klaus A, Jakovljevic D, Todorovic N, Niksic M, Vrvic MM, Van Griensven LJLD (2014) Dietary polysaccharide extracts of Agaricus brasiliensis fruiting bodies: chemical characterization and bioactivities at different levels of purification. Food Res Int 64:53–64

    CAS  Google Scholar 

  • Kozuka M, Oyama M, Tokuda H, Nishino H, Lee KH (2005) Cancer preventive agents 3: antitumor promoting effects of Agaricus blazei. Pharm Biol 43(6):568–572

    Google Scholar 

  • Kunamneni A, Prabhakar T, Jyothi B, Ellaiah P (2007) Investigation of continuous cyclodextrin glucanotransferase production by the alginate-immobilized cells of alkalophilic Bacillus sp. in an airlift reactor. Enzyme Microb Technol 40:1538–1542

    CAS  Google Scholar 

  • Lakhanpal TN, Rana M (2005) Medicinal and nutraceutical genetic resources of mushrooms. Plant Genet Res 3(2):288–303

    CAS  Google Scholar 

  • Lanteri A (1978) Processing and packaging sulfonation and sulfation technology. J Am Oil Chem Soc 55(1):128–133

    CAS  Google Scholar 

  • Largeteau ML, Llarena-Hernández RC, Regnault-Roger C, Savoie JM (2011) The medicinal Agaricus mushroom cultivated in Brazil: biology, cultivation and non-medicinal valorization. Appl Microbiol Biotechnol 92(5):897–907

    CAS  Google Scholar 

  • Lavi I, Levinson D, Peri I, Tekoah Y, Hadar Y, Schwartz B (2010) Chemical characterization, antiproliferative and antiadhesive properties of polysaccharides extracted from Pleurotus pulmonarius mycelium and fruiting bodies. Appl Microbiol Biotechnol 85:1977–1990

    CAS  Google Scholar 

  • Lee YK, Chang HH, Kim JS, Kim JK, Lee KS (2000) Lignocellulolytic mutants of Pleurotus ostreatus induced by gamma-ray radiation and their genetic similarities. Radiat Phys Chem 57(2):145–150

    CAS  Google Scholar 

  • Lee IH, Huang RL, Chen CT, Chen HC, Hsu WC, Lu MK (2002) Antrodia camphorata polysaccharides exhibit anti-hepatitis B virus effects. FEMS Microbiol Lett 209(1):63–67

    CAS  Google Scholar 

  • Lee SM, Kim SM, Lee YH, Kim WJ, Park JK, Park YI, Jang WJ, Shin HD, Synytsya A (2010) Macromolecules isolated from Phellinus pini fruiting body: chemical characterization and antiviral activity. Macromol Res 18(6):602–609

    CAS  Google Scholar 

  • Leung MYK, Liu C, Koon JCM, Fung KP (2006) Polysaccharide biological response modifiers. Immunol Lett 105(2):101–114

    CAS  Google Scholar 

  • Lin JH, Yang SS (2006) Mycelium and polysaccharide production of Agaricus blazei Murril by submerged fermentation. J Microbiol Immunol Infect 39:98–108

    Google Scholar 

  • Listiarini K, Chun W, Sun DD, Leckie JO (2009) Fouling mechanism and resistance analyses of systems containing sodium alginate, calcium, alum and their combination in dead-end fouling of nanofiltration membranes. J Membr Sci 344:244–251

    CAS  Google Scholar 

  • Liu F, Liu Y, Meng Y, Yang M, He K (2004) Structure of polysaccharide from Polygonatum cyrtonema Hua and the antiherpetic activity of its hydrolyzed fragments. Antiviral Res 63(3):183–189

    CAS  Google Scholar 

  • Liu J, Yue L, Zhang C, Fan L, Zhou L, Lin Y, Niu Y, Li X, Wen X, Sun Y (2010) A polysaccharide isolated from Agaricus blazei Murill inhibits sialyl Lewis X/E-selectin-mediated metastatic potential in HT-29 cells through down-regulating α-1,3-fucosyltransferase-VII (FucT-VII). Carbohydr Polym 79(4):921–926

    CAS  Google Scholar 

  • Llarena-Hernandez RC, Largeteau ML, Farnet A-M, Foulongne-Oriol M, Ferrer N, Regnault-Roger C, Savoie J-M (2013) Potential of European wild strains of Agaricus subrufescens for productivity and quality on wheat straw based compost. World J Microbiol Biotechnol 29:1243–1253

    Google Scholar 

  • Maheshwari R, Navaraj A (2008) Senescence in fungi: the view from Neurospora. FEMS Microbiol Lett 280(2):135–143

    CAS  Google Scholar 

  • Mantovani MS, Bellini MF, Angeli JPF, Oliveira RJ, Silva AF, Ribeiro LR (2008) β-Glucans in promoting health: prevention against mutation and cancer. Mutat Res 658:154–161

    CAS  Google Scholar 

  • Mänttäri M, Puro L, Nuortila-Jokinen J, Nyström M (2000) Fouling effects of polysaccharides and humic acid in nanofiltration. J Membr Sci 165:1–17

    Google Scholar 

  • Mariano PLS, Gonçalves RB, Höfling JF (2007) Storage procedures for yeast preservation: phenotypic and genotypic evaluation. Ann Microbiol 57(3):461–465

    Google Scholar 

  • Marín S, Cuevas D, Ramos AJ, Sanchis V (2008) Fitting of colony diameter and ergosterol as indicators of food borne mould growth to known growth models in solid medium. Int J Food Microbiol 121(2):139–149

    Google Scholar 

  • Martins PR, Gameiro MC, Castoldi L, Romagnoli GG, Lopes FC, Pinto AVFDS, Loyola W, Kaneno R (2008) Polysaccharide-rich fraction of Agaricus brasiliensis enhances the candidacidal activity of murine macrophages. Mem Inst Oswaldo Cruz 103(3):244–250

    CAS  Google Scholar 

  • Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic fungi and soil bacteria. Phytopathol 59:153–163

    Google Scholar 

  • Matsuda M, Shigeta S, Okutani K (1999) Antiviral activities of marine pseudomonas polysaccharides and their oversulfated derivatives. Mar Biotechnol 1(1):68–73

    CAS  Google Scholar 

  • Mello BCBS, Petrus JCC, Hubinger MD (2010) Concentration of flavonoids and phenolic compounds in aqueous and ethanolic propolis extracts through nanofiltration. J Food Eng 96:533–539

    CAS  Google Scholar 

  • Mendonça MM, Kasuya MC, Cadorin A, Vieira AJ (2005) Agaricus blazei cultivation for a living in Brazil. In: Mushroom growers’ handbook 2: Shiitake cultivation. Part II. Mushrooms for better life. MushWorld, Seoul, pp 208–218

    Google Scholar 

  • Michelon M, Manera AP, Carvalho AL, Maugeri Filho F (2014) Concentration and purification of galacto-oligosaccharides using nanofiltration membranes. Int J Food Sci Technol 49:1953–1961

    CAS  Google Scholar 

  • Minari MC, Rincão VP, Soares SA, Ricardo NMPS, Nozawa C, Linhares REC (2011) Antiviral properties of polysaccharides from Agaricus brasiliensis in the replication of bovine herpesvirus 1. Acta Virol 55(3):255–259

    CAS  Google Scholar 

  • Mizuno M, Minato K, Ito H, Kawade M, Terai H, Tsuchida H (1999) Anti-tumor polysaccharide from the mycelium of liquid-cultured Agaricus blazei Mill. Biochem Mol Biol Int 47(4):707–714

    CAS  Google Scholar 

  • Mol PC, Wessels JGH (1990) Differences in wall structure between substrate hyphae and hyphae of fruit-body stripes in Agaricus bisporus. Mycol Res 94:472–479

    Google Scholar 

  • Moore D, Chiu SW (2001) Fungal products as food. In: Pointing SB, Hyde KD (eds) Bio-exploitation of filamentous fungi. Fungal Diversity Press, Hong Kong, pp 223–251

    Google Scholar 

  • Mulder M (2000) Basic principles of membrane technology, 2nd edn. Kluwer, Dordrecht

    Google Scholar 

  • Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93(1):1–10

    CAS  Google Scholar 

  • Mussatto SI, Roberto IC (2006) Brewers spent grain: generation, characteristics and potential applications. J Cereal Sci 43:1–14

    CAS  Google Scholar 

  • Naesens L, Bonnafous P, Agut H, De Clercq E (2006) Antiviral activity of diverse classes of broad-acting agents and natural compounds in HHV-6-infected lymphoblasts. J Clin Virol 37(Suppl 1):S69–S75

    CAS  Google Scholar 

  • Neves MA, Kasuya MCM, Araújo EF, Leite CL, Camelini CM, Ribas LCC, Mendonça MM (2005) Physiological and genetic variability of commercial isolates of culinary-medicinal mushroom Agaricus brasiliensis S. Wasser et al. (Agaricomycetideae) cultivated in Brazil. Int J Med Mushr 7:575–585

    Google Scholar 

  • Nie S, Xie M, Wang Y (2005) Preparation of tea glycoprotein and its application as a calibration standard for the quantification and molecular weight determination of tea glycoprotein in different tea samples by high-performance gel-permeation chromatography. Anal Bioanal Chem 383:680–686

    CAS  Google Scholar 

  • Nienow AW (1998) Hydrodynamics of stirred bioreactors. Appl Mech Rev 51:3–32

    Google Scholar 

  • Noble RD, Stern SA (1995) Membrane separation technology: principles and applications. Elsevier, Amsterdam

    Google Scholar 

  • Oborník M, Klí M, Ðiñka L (2000) Genetic variability and phylogeny inferred from random amplified polymorphic DNA data reflect life strategy of entomopathogenic fungi. Can J Bot 78(9):1150–1155

    Google Scholar 

  • Oei P (1996) Mushroom cultivation with special emphasis on appropriate techniques for developing countries. Tool Publications, Leiden

    Google Scholar 

  • Ohga S (1990) Growth rate of mycelium of shiitake Lentinus edodes, in relation to water potential of medium. J Fac Agr Kyushu Univ 34(4):413–420

    Google Scholar 

  • Ohno N, Furukawa M, Miura NN, Adachi Y, Motoi M, Yadomae T (2001) Antitumor β-glucan from the cultured fruit body of Agaricus blazei. Biol Pharm Bull 24(7):820–828

    CAS  Google Scholar 

  • Olafsdottir ES, Ingólfsdottir K (2001) Polysaccharides from lichens: structural characteristics and biological activity. Planta Med 67(3):199–208

    CAS  Google Scholar 

  • Ooijkaas LP, Tramper J, Buitelaar RM (1998) Biomass estimation of Coniothyrium minitans in solid-state fermentation. Enzyme Microb Technol 22(6):480–486

    CAS  Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour Technol 74:69–80

    CAS  Google Scholar 

  • Paulsen BS (2002) Biologically active polysaccharides as possible lead compounds. Phytochem Rev 1(3):379–387

    CAS  Google Scholar 

  • Pinto AVFS, Martins PR, Romagnoli GG, Campanelli AP, Terezan AP, Filho ER, Eira AF, Kaneno R (2009) Polysaccharide fraction of Agaricus brasiliensis avoids tumor-induced IL-10 production and changes the microenvironment of subcutaneous Ehrlich adenocarcinoma. Phytochem Rev 256(1–2):27–38

    Google Scholar 

  • Prakash GVB, Padmaja V, Kiran RRS (2008) Statistical optimization of process variables for the large-scale production of Metarhizium anisopliae conidiospores in solid-state fermentation. Bioresour Technol 99(6):1530–1537

    CAS  Google Scholar 

  • Prosser JI, Tough AJ (1991) Growth mechanisms and growth kinetics of filamentous microorganisms. Crit Rev Biotechnol 10:253–274

    CAS  Google Scholar 

  • Qiu H, Tang W, Tong X, Ding K, Zuo J (2007) Structure elucidation and sulfated derivatives preparation of two alpha-d-glucans from Gastrodia elata Bl. and their anti-dengue virus bioactivities. Carbohydr Res 342(15):2230–2236

    CAS  Google Scholar 

  • Raghavarao KSMS, Ranganathan TV, Karanth NG (2003) Some engineering aspects of solid-state fermentation. Biochem Eng J 13:127–135

    CAS  Google Scholar 

  • Ribas LCC, Mendonça MM, Camelini CM, Soares CHL (2009) Use of spent mushroom substrates from Agaricus subrufescens (syn. A. blazei, A. brasiliensis) and Lentinula edodes productions in the enrichment of a soil-based potting media for lettuce (Lactuca sativa) cultivation: growth promotion and soil bioremediation. Bioresour Technol 100:4750–4757

    CAS  Google Scholar 

  • Richter DL (2008) Revival of saprotrophic and mycorrhizal basidiomycete cultures after 20 years in cold storage in sterile water. Can J Microbiol 54(8):595–599

    CAS  Google Scholar 

  • Richter DL, Bruhn JN (1989) Revival of saprotrophic and mycorrhizal basidiomycete cultures from cold storage in sterile water. Can J Microbiol 35(11):1055–1060

    Google Scholar 

  • Rossi MJ, Souza JAR, Oliveira VL (2002) Inoculum production of the ectomycorrhizal fungus Pisolithus microcarpus in an airlift bioreactor. Appl Microbiol Biotechnol 59:175–181

    CAS  Google Scholar 

  • Rossi MJ, Streit HC, Furigo Jr A, Brum AA, Mendonça MM (2004) Inoculante de Agaricus brasiliensis produzido em biorreator Airlift e encapsulado em gel de alginato de cálcio. In: X Brazilian Meeting on Mycorrhizal Fungi (FERTBIO), Lages, 19–23 July 2004, Poster

    Google Scholar 

  • Rossi MJ, Giachini AJ, Oliveira VL, Furigo-Jr A (submitted) Oxygen transfer and consumption during the cultivation of ectomycorrhizal fungi in airlift bioreactor – part II (submitted)

    Google Scholar 

  • Royse DJ, Sanchez-Vazquez JE (2003) Influence of precipitated calcium carbonate (CaCO3) on shiitake (Lentinula edodes) yield and mushroom size. Bioresour Technol 90(2):225–228

    CAS  Google Scholar 

  • Sales-Campos C, Araujo LM, Minhoni MTA, Andrade MCN (2013) Centesimal composition and physical-chemistry analysis of the edible mushroom Lentinus strigosus occurring in the Brazilian Amazon. An Acad Bras Cienc 85:1537–1544

    CAS  Google Scholar 

  • Salgado C, Palacio L, Carmona FJ, Hernández A, Prádanos P (2013) Influence of low and high molecular weight compounds on the permeate flux decline in nanofiltration of red grape must. Desalination 315:124–134

    CAS  Google Scholar 

  • Saqib AAN, Hassan M, Khan NF, Baig S (2010) Thermostability of crude endoglucanase from Aspergillus fumigatus grown under solid state fermentation (SSF) and submerged fermentation (SmF). Process Biochem 45(5):641–646

    CAS  Google Scholar 

  • Scrase R (1995) Cultivating mushrooms: from pure culture to spawn production. Mycologist 9(2):53–56

    Google Scholar 

  • Shimomura N, Hasebe K (2006) Morphological mutation of Lentinula edodes mycelium, particularly detectable in the dikaryotic state. Mycoscience 47(4):224–227

    CAS  Google Scholar 

  • Shu CH, Wen BJ, Lin KJ (2003) Monitoring the polysaccharide quality of Agaricus blazei in submerged culture by examining molecular weight distribution and TNF-α release capability of macrophage cell line RAW 264.7. Biotechnol Lett 25:2061–2064

    CAS  Google Scholar 

  • Silva MLC, Martinez PF, Izeli NL, Silva IR, Vasconcelos AFD, Cardoso MS (2006) Caracterização química de glucanas fúngicas e suas aplicações biotecnológicas. Quím Nova 29(1):85–92

    Google Scholar 

  • Silveira DB, Álvaro JC, Camelini CM, Rossi MJ, Petrus JCC, Mendonça MM, Pinto AR, Zanetti CR (2012) Mass separation and in vitro immunological activity of membrane-fractionated polysaccharides from fruiting body and mycelium of Agaricus subrufescens. Biotechnol Bioprocess Eng 17:804–811

    CAS  Google Scholar 

  • Singhania RR, Patel AK, Soccol CR, Pandey A (2009) Recent advances in solid-state fermentation. Biochem Eng J 44(1):13–18

    CAS  Google Scholar 

  • Smiderle FR, Ruthes AC, van Arkel J, Chanput W, Iacomini M, Wichers HJ, Van Griensven LJLD (2011) Polysaccharides from Agaricus bisporus and Agaricus brasiliensis show similarities in their structures and their immunomodulatory effects on human monocytic THP-1 cells. BMC Complement Altern Med 11:1–10

    Google Scholar 

  • Smiderle FR, Alquini G, Tadra-Sfeir MZ, Iacomini M, Wichers HJ, Van Griensven LJLD (2013) Agaricus bisporus and Agaricus brasiliensis (1 → 6)-β-d-glucans show immunostimulatory activity on human THP-1 derived macrophages. Carbohydr Polym 94(1):91–99

    CAS  Google Scholar 

  • Smit AJ (2004) Medicinal and pharmaceutical uses of seaweed natural products: a review. J Appl Phycol 16(4):245–262

    CAS  Google Scholar 

  • Smith JE, McKay D, Molina R (1994) Survival of mycorrhizal fungal isolates stored in sterile water at two temperatures and retrieved on solid and liquid nutrient media. Can J Microbiol 40(9):736–742

    Google Scholar 

  • Smith JE, Rowan NJ, Sullivan R (2002) Medicinal mushrooms: a rapidly developing area of biotechnology for cancer therapy and other bioactivities. Biotechnol Lett 24:1839–1845

    CAS  Google Scholar 

  • Sorimachi K, Ikehara Y, Maezato G, Okubo A, Yamazaki S, Akimoto K, Niwa A (2001) Inhibition by Agaricus blazei Murill fractions of cytopathic effect induced by western equine encephalitis (WEE) virus on Vero cells in vitro. Biosci Biotechnol Biochem 65(7):1645–1647

    CAS  Google Scholar 

  • Stamets P (2000) Growing gourmet and medicinal mushrooms, 3rd edn. Ten Speed Press, Berkeley

    Google Scholar 

  • Steindel M, Dias Neto E, Menezes CLP, Romanha AJ, Simpson AJG (1993) Random amplified polymorphic DNA analysis of Trypanosoma cruzi strains. Mol Biochem Parasitol 60(1):71–80

    CAS  Google Scholar 

  • Sugita K, Kabashima K, Tokura Y (2008) Agaricus blazei Murill augments keratinocyte production of bioactive cytokines capable of promoting antigen-presenting capacity. J Dermatol 35:373–376

    CAS  Google Scholar 

  • Sui Z, Yang R, Liu B, Gu T, Zhao Z, Shi D, Chang D (2010) Chemical analysis of Agaricus blazei polysaccharides and effect of the polysaccharides on IL-1β mRNA expression in skin of burn wound-treated rats. Int J Biol Macromol 47(2):155–157

    CAS  Google Scholar 

  • Talarico LB, Zibetti RGM, Faria PCS, Scolaro LA, Duarte MER, Noseda MD, Pujol CA, Damonte EB (2004) Anti-herpes simplex virus activity of sulfated galactans from the red seaweeds Gymnogongrus griffithsiae and Cryptonemia crenulata. Int J Biol Macromol 34(1–2):63–71

    CAS  Google Scholar 

  • Talyshinsky MM, Souprun YY, Huleihel MH (2002) Anti-viral activity of red microalgal polysaccharides against retroviruses. Cancer Cell Int 2:1–8

    Google Scholar 

  • Teng WL (1997) Activated charcoal affects morphogenesis and enhances sporophyte regeneration during leaf cell suspension culture of Platycerium bifurcatum. Plant Cell Rep 17(2):77–83

    CAS  Google Scholar 

  • Torralba S, Pisabarro AG, Ramirez L (2004) Immunofluorescence microscopy of the microtubule cytoskeleton during conjugate division in the dikaryon of Pleurotus ostreatus N001. Mycologia 96:41–51

    Google Scholar 

  • Uchiyama S, Haramaki K (2004) Atlas World USA Inc. Use of Agaricus blazei Murill to prevent or treat skin and other disorders. US Patent EP1,409,000 A4

    Google Scholar 

  • Urben AF, Oliveira HCZ, Ribeiro VL, Santos JKP (2004) Cultivo de Agaricus blazei. In: Urben AF (ed) Produção de cogumelos por meio de tecnologia chinesa modificada, 2nd edn. Embrapa, Brasília, pp 155–174

    Google Scholar 

  • Van der Borght A, Goesaert H, Veraverbeke WS, Delcour JA (2005) Fractionation of wheat and wheat flour into starch and gluten: overview of the main processes and the factors involved. J Cereal Sci 41:221–237

    Google Scholar 

  • Van Reis R, Zydney A (2007) Bioprocess membrane technology: review. J Membr Sci 297:16–50

    Google Scholar 

  • Vendrell-Pascuas S, Castellote-Bargalló AI, López-Sabater MC (2000) Determination of inulin in meat products by high-performance liquid chromatography with refractive index detection. J Chromatogr A 881:591–597

    CAS  Google Scholar 

  • Walton K, Coombs MM, Walker R, Ioannides C (1997) Bioactivation of mushroom hydrazines to mutagenic products by mammalian and fungal enzymes. Mutat Res 381:131–139

    CAS  Google Scholar 

  • Wasser SP, Weis AL (1999) Medicinal properties of substances occurring in higher basidiomycetes mushrooms: current perspectives (review). Int J Med Mushr 1:31–62

    CAS  Google Scholar 

  • Wasser SP, Didukh MY, De Amazonas MAL, Nevo E, Stamets P, Da Eira AF (2002) Is a widely cultivated culinary-medicinal Royal Sun Agaricus (champignon do Brazil, or the himematsutake mushroom) Agaricus brasiliensis S. Wasser et al. indeed a synonym of A. subrufescens peck? Int J Med Mushr 7(3):507–511

    Google Scholar 

  • Witvrouw M, De Clercq E (1997) Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacol 29(4):497–511

    CAS  Google Scholar 

  • Xiao Y, Hongmei L, Hong Y, Rugang Z (2007) Extraction immunocompetent sections of Agaricus blazei Murill polysaccharides by membranes technology. In: International conference on complex medical engineering, Beijing, 23–27 May 2007, pp 1734–1737. doi:10.1109/ICCME.2007.4382044

    Google Scholar 

  • Xu L, Wang S (2005) The Ginkgo biloba extract concentrated by nanofiltration. Desalination 184:305–313

    CAS  Google Scholar 

  • Yamamoto KA, Galhardi LCF, Rincão VP, Soares SDA, Vieira TGP, Ricardo NMPS, Nozawa C, Linhares REC (2013) Antiherpetic activity of an Agaricus brasiliensis polysaccharide, its sulfated derivative and fractions. Int J Biol Macromol 52(1):9–13

    CAS  Google Scholar 

  • Yamanaka D, Tada R, Adachi Y, Ishibashi KI, Motoi M, Iwakura Y, Ohno N (2012) Agaricus brasiliensis-derived β-glucans exert immunoenhancing effects via a dectin-1-dependent pathway. Int Immunopharmacol 14(3):311–319

    CAS  Google Scholar 

  • Zhu W, Chiu LCM, Ooi VEC, Chan PKS, Ang PO Jr (2004) Antiviral property and mode of action of a sulphated polysaccharide from Sargassum patens against herpes simplex virus type 2. Int J Antimicrob Agents 24(3):81–85

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Maísa Camelini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Camelini, C.M., Rossi, M.J., Cardozo, F.T.G.S., Gomes, A., Sales-Campos, C., Giachini, A.J. (2015). Fungal Cultivation and Production of Polysaccharides. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-16298-0_21

Download citation

Publish with us

Policies and ethics