Skip to main content

Polysaccharides from Lower Plants: Bryophytes

  • Reference work entry
  • First Online:
Book cover Polysaccharides

Abstract

Bryophytes, which are considered to be the first land plants, are the second largest taxonomic group in the plant kingdom. Polysaccharides in bryophytes play a key role in the evolution of chemical diversity of vegetation, and they also function as a structural material. Additionally, polysaccharides are believed to be involved in bryophyte stress tolerance and other functions in this plant kingdom group. Despite the recent progress in bryophyte phytochemistry, bryophyte polysaccharides as a group of substances are largely neglected. Still, major differences in the polysaccharide composition in comparison with higher plants can be identified. In Sphagnum mosses, a unique polysaccharide – sphagnan – has been found, and its possible applications are on the way. Further, a relatively large group of carbohydrates that form bryophyte polysaccharides has been identified, and their functions in the development of bryophyte stress tolerance are discussed. Study of bryophyte polysaccharides is a challenging and prospective field of research, with a potential of providing not only considerable new knowledge about this group of substances, their functions, evolution of chemical compounds and chemical diversity, but also new applications of bryophyte carbohydrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asakawa Y (2007) Biologically active compounds from bryophytes. Pure Appl Chem 79(4):557–580

    Article  CAS  Google Scholar 

  • Asakawa Y, Ludwiczu A, Nagashima F (2013) Chemical constituents of bryophytes: bio- and chemical diversity, biological activity, and chemosystematics (progress in the chemistry of organic natural products). Springer, Vien

    Book  Google Scholar 

  • Baas M, Pancost R, Geel B, Sinninghe Damste JS (2000) A comparative study of lipids in Sphagnum species. Org Geochem 31:535–541

    Article  CAS  Google Scholar 

  • Balance S, Kristiansen KA, Hol J, Christensen BE (2008) Interactions of polysaccharides extracted by mild acid hydrolysis from the leaves of Sphagnum papillosum with either phenylhydrazine, o- phenylenediamine and its oxidation products or collagen. Carbohydr Polym 71:550–558

    Article  Google Scholar 

  • Balance S, Kristiansen KA, Skogeker NT, Tvedt KE, Christensen BE (2012) The localization of pectin in Sphagnum moss leaves and its role in preservation. Carbohydr Polym 87:1326–1332

    Article  Google Scholar 

  • Basile A, Giordano S, Lopez- Saez JA, Cobianchi RC (1999) Antibacterial activity of pure flavonoids isolated from mosses. Phytochemistry 52:1479–1482

    Article  CAS  Google Scholar 

  • Batra A, Binding H, Rasmussen S, Rudolph H, Waetzig GH (2003) Efficient regeneration of Sphagnum fallax from isolated protoplasts. In Vitro Cell Dev Pl 39(2):147–150

    Article  Google Scholar 

  • Beike AK, Decker EL, Frank W, Lang D, Vervleit-Scheebaum M, Zimmer AD, Reski R (2010) Applied Bryology-Bryotechnology. Tropical Bryology 31:22–32

    Google Scholar 

  • Bland DE, Logan A, Menshun M, Sternhell S (1968) The lignin of Sphagnum. Phytochemistry 7:1373–1377

    Article  CAS  Google Scholar 

  • Borsheim KY, Christensen BE, Painter TJ (2001) Preservation of fish by embedment in Sphagnum moss, peat or holocellulose: experimental proof of the oxopolysaccharidic nature of the preservative substance and of its antimicrobial and tanning action. Innov Food Sci Emerg Technol 2:63–74

    Article  CAS  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants consistency of molecular structures with the physical properties of the walls during growth. Plant J 3:1–30

    Article  CAS  Google Scholar 

  • Dembitsky VM, Rezanka T, Bychek IA, Afonina OM (1993) Polar lipid and fatty acid composition of some bryophytes. Phytochemistry 33:1009–1014

    Article  CAS  Google Scholar 

  • Duckett JG, Burch J, Fletcher PW, Matcham HW, Read DJ, Russel AJ, Pressel S (2004) In vitro cultivation of bryophytes: a review of practicalities, problems and promise. J Bryol 26(10):3–20

    Article  Google Scholar 

  • Gaudig G, Fengler F, Krebs M, Prager A, Schulz J, Wichmann S, Joosten H (2014) Sphagnum farming in Germany – a review of progress. Mires Peat 13:1–11

    Google Scholar 

  • Glime JM (eds) (2007) Bryophyte ecology. Physiological ecology. Ebook. Michigan Technological University, International Association of Bryologists. http://www.bryoecol.mtu.edu/

  • Goffinet B, Shaw AJ (eds) (2008) Bryophyte biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Graham LE, Kim E, Aranciba-Avila P, Graham JM, Wilcox LW (2010) Evolutionary and ecophysiological significance of sugar utilization by the peat moss Sphagnum compactum (Sphagnaceae) and the common charophycean associates Cylindrocystis brebissonii and Mougeotia sp. (Zygnemataceae). Am J Bot 97(9):1485–1491

    Article  CAS  Google Scholar 

  • Hajek T, Balance S, Limpens J, Zijlstra M, Verhoeven JTA (2011) Cell-wall polysaccharides play an important role in decay resistance of Sphagnum and actively depressed decomposition in vitro. Biogeochemistry 103:45–57

    Article  CAS  Google Scholar 

  • Hotson JW (1921) Sphagnum used as surgical dressing in Germany during World War (concluded). Bryologist 24:89–96

    Article  Google Scholar 

  • Ignat I, Volf I, Popa VI (2011) A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem 126:1821–1835

    Article  CAS  Google Scholar 

  • Irudayaray V, Janaky M, Johnson M, Selvan N (2010) Preliminary phytochemical and antimicrobial studies on a spike-moss Selaginella inaequalifolia (Hook. & Grev.). Spring Asian Pac J Trop Med 3(12):957–960

    Article  Google Scholar 

  • Iwashina T (2003) Flavonoid function and activity to plants and other organisms. Biol Sci Space 17:24–44

    Article  Google Scholar 

  • Judina NV, Pisareva SI, Zvereva AV, Dmitruk SE, Kalinkina GI (1999) Moss and peat polysaccharides. Khim Rastit Syrja 4:97–100

    Google Scholar 

  • Kato- Noguchi H, Seki T, Shigemori H (2010) Allelopathy and allelopathic substance in the moss Rhynchostegium pallidifolium. J Plant Physiol 167:468–471

    Article  CAS  Google Scholar 

  • Kosonogova LV, Naumova GV, Zhmakova NA, Rahtenko TS (1994) Sphagnum moss and peat pectins. Khimiya Tverdogo Topliva 2:76–83

    Google Scholar 

  • Ligrone R, Vaughn KC, Renzaglia KS, Knox JP, Duckett JG (2002) Diversity in the distribution of polysaccharides and glycoprotein epitopes in the cell walls of bryophytes: new evidence for the multiple evolution of water conducting cells. New Phytol 156:491–508

    Article  CAS  Google Scholar 

  • Maass WSG, Craigie JS (1964) Examination of some soluble constituents of Sphagnum gametophytes. Can J Bot 42:805–813

    Article  CAS  Google Scholar 

  • Maksimova V, Klavina L, Bikovens O, Zicmanis A, Purmalis O (2013) Structural characterization and chemical classification of some bryophytes found in Latvia. Chem Biodivers 10(7):1284–1294

    Article  CAS  Google Scholar 

  • Marschall M, Proctor MCF, Smirnoff N (1998) Carbohydrate composition and invertase activity of the leafy liverwort Porella platyphylla. New Phytol 138:343–353

    Article  CAS  Google Scholar 

  • Matsunaga T, Ishii T, Matsumoto S, Higuchi M, Darvill A, Albertsheim P, O’Neil MA (2004) Occurrence of the primary cell wall polysaccharide rhamnogalacturonan II in pteridophytes, lycophytes and bryophytes. Implications for the evolution of vascular plants. Plant Physiol 134:339–351

    Article  CAS  Google Scholar 

  • Matsuo A, Takaoka D, Kawahara H (1986) Soluble carbohydrates of liverworts. Phytochemistry 25(10):2335–2337

    Article  CAS  Google Scholar 

  • Melick DR, Seppelt RD (2002) Loss of soluble carbohydrates and changes in freezing point of Antarctic bryophytes after leaching and repeated freeze-thaw cycles. Antarct Sci 4:399–404

    Google Scholar 

  • Minami A, Nagao M, Ikegami K, Koshiba T, Arakawa K, Fujikawa S, Takezawa D (2005) Cold acclimation in bryophytes: low-temperature-induced freezing tolerance in Physcomitrella patens is associated with increases in expression levels of stress related genes but not with increase in level of endogenous abscisic acid. Planta 220:414–423

    Article  CAS  Google Scholar 

  • Nagao M, Oku K, Minami A, Mizuno K, Sakurai M, Arakawa K, Fujikawa S, Takezawa D (2006) Accumulation of theanderose in association with development of freezing tolerance in the moss Physcomitrella patens. Phytochemistry 67:702–709

    Article  CAS  Google Scholar 

  • Niklas K (1997) The evolutionary biology of plants. University of Chicago Press, Chicago

    Google Scholar 

  • Oldenhof H, Wolkers WF, Bowman JL, Tablin F, Crowe JH (2006) Freezing and desiccation tolerance in the moss Physcomitrella patens: an in situ Fourier transform infrared spectroscopic study. Biochim Biophys Acta 1760:1226–1234

    Article  CAS  Google Scholar 

  • Oliver MJ, Velten J, Mischler BD (2005) Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats? Integr Comp Biol 45:788–799

    Article  Google Scholar 

  • Painter TJ (1983) Residues of d-Lyxo-5- hexosulopyranuronic acid in Sphagnum holocellulose and their role in cross-linking. Carbohydr Res 124:C18–C21

    Article  CAS  Google Scholar 

  • Painter TJ (1991) Lindow man, Tollund man and other peat-bog bodies: the preservative and antimicrobial action of sphagnan, a reactive glycuronoglycan with tanning and sequestering properties. Carbohydr Polym 15:123–142

    Article  CAS  Google Scholar 

  • Painter TJ (1998) Carbohydrate polymers in food preservation: an integrated view of the Maillard reaction with special reference to discoveries of preserved foods in Sphagnum- dominated peat bogs. Carbohydr Polym 36:335–347

    Article  CAS  Google Scholar 

  • Painter TJ (2003) Concerning the wound healing properties of Sphagnum holocellulose: the Maillard reaction in pharmacology. J Ethnopharmacol 88:145–148

    Article  CAS  Google Scholar 

  • Pence VC, Dundorf SS, Redella S (2005) Differential effects of abscisic acid on desiccation tolerance and carbohydrates in three species of liverworts. J Plant Physiol 162:1331–1337

    Article  CAS  Google Scholar 

  • Popper ZA, Fry SC (2003) Primary cell wall composition of bryophytes and charophytes. Ann Bot 91:1–12

    Article  CAS  Google Scholar 

  • Popper ZA, Sadler IH, Fry SC (2003) α-d-glucuronosyl-(-1→3)l-galactose, an unusual disaccharide from polysaccharides of the hornwort Anthoceros caucasicus. Phytochemistry 64:325–335

    Article  CAS  Google Scholar 

  • Popper ZA, Sadler IH, Fry SC (2004) 3-O-methylrhamnose in lower land plant primary cell walls. Biochem Syst Ecol 32:279–289

    Article  CAS  Google Scholar 

  • Proctor MCF (2000) The bryophyte paradox: Tolerance of desiccation, evasion of drought. Plant Ecology 151:41–49

    Article  Google Scholar 

  • Renzaglia KS, Duff RJ, Nickrent DL, Garbary DJ (2000) Vegetative and reproductive innovations of early land plants: implications for a unified phylogeny. Philos Trans R Soc Lond Ser B Biol Sci 355:769–793

    Article  CAS  Google Scholar 

  • Saboljevic A, Sokovic M, Glamočlija J, Čirič A, Vujičic M, Pejin B, Saboljevic M (2010) Comparison of extract bio-activities of in-situ and in vitro grown selected bryophyte species. Afr J Microbiol Res 4(9):808–812

    Google Scholar 

  • Singh M, Govindarajan R, Nath V, Rawat AKS, Mehrotra S (2006) Antimicrobial, wound healing and antioxidant activity of Plagiochasma appendiculatum Lehm. et Lind. J Ethnopharmacol 107:67–72

    Article  Google Scholar 

  • Smirnoff N (1991) The carbohydrates of bryophytes in realation to desiccation tolerance. J Bryol 17:185–191

    Article  Google Scholar 

  • Spjut RW, Suffness M, Cragg GM, Norris DH (1986) Mosses, liverworts and hornworts screened for antitumor agents. Econ Bot 40(3):310–338

    Article  Google Scholar 

  • Stalheim T, Balance S, Christensen BE, Granum PE (2009) Sphagnan-a pectin-like polymer isolated from Sphagnum moss can inhibit the growth of some typical food spoilage and food poisoning bacteria by lowering the pH. J Appl Microbiol 106:967–976

    Article  CAS  Google Scholar 

  • Suleiman AAA, Bacon J, Christie A, Lewis DH (1978) The carbohydrates of the leafy liverwort, Plagiochila asplenioides (L.) Dum. New Phytol 82:439–448

    Article  Google Scholar 

  • Thomas JJ, McNeil M, Darvill AG, Albertsheim P (1984) Structure of plant cell walls. Isolation and characterization of wall polysaccharides from suspension-cultured Douglas fir cells. Plant Physiol 83:659–671

    Article  Google Scholar 

  • Tutschek R (1982) Interference of l-α-aminoocy-β-phenylpropionic acid with cold- induced sphagnorubin synthesis in Sphagnum magellanicum BRID. Planta 155:307–309

    Article  CAS  Google Scholar 

  • Üçüncü O, Cansu TB, Özdemir T, Alpay K, Yayli N (2010) Chemical composition and antimicrobial activity of the essential oils of mosses (Tortula muralis Hedw., Homalothecium lutescens (Hedw.) H. Rob., Hypnum cupressiforme Hedw., and Pohlia nutans (Hedw.) Lindb.) from Turkey. Turk J Chem 34:825–834

    Google Scholar 

  • Zinsmeister HD, Mues R (eds) (1990) Bryophytes: their chemistry and chemical taxonomy. Oxford University Press, Oxford

    Google Scholar 

  • Zinsmeister HD, Becker H, Eicher T (1991) Bryophytes, a source of biologically active, naturally occurring material. Angew Chem Int Ed 30:130–147

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the ESF funded project “Interdisciplinary studies of Latvia’s bog resources, their protection and sustainable management” Nr. 2014/0009/1DP/ 1.1.1.2.0/13/APIA/VIAA/044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Klavina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Klavina, L. (2015). Polysaccharides from Lower Plants: Bryophytes. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-16298-0_11

Download citation

Publish with us

Policies and ethics