Skip to main content

Melting Temperature of Metallic Nanoparticles

  • Reference work entry
Handbook of Nanoparticles

Abstract

Melting temperature is one of the fundamental properties of materials. In principle, the melting temperature of a bulk material is not dependent on its size. However, as the size of a material decreases toward the nanometer size and approaches atomic scale, the melting temperature scales with the material dimensions. The melting temperature of a nanomaterial such as nanoparticles (isotropic) and nanorods/nanowires (anisotropic) is related to other fundamental physical properties for nanomaterial applications, including catalysts, thermal management materials, electronics materials, and energy materials.

This book chapter focuses on both the theoretical and experimental studies of metallic nanoparticle melting temperature depression. Thermodynamic modeling and molecular dynamic (MD) simulations are discussed regarding the melting behavior of different nanostructures, such as spherical nanoparticles and nanowires. The currently available measurement techniques by using classical differential scanning calorimetry (DSC), recently developed nanocalorimeters, transmission electron microscope (TEM), and optical methods are introduced. In addition, the applications of metal nanoparticles with lower melting temperatures are discussed, such as nanosoldering and sintering for electronics assembly and packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.E. Kruis, H. Fissan, A. Peled, Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review. J. Aerosol Sci. 29, 511 (1998)

    Article  Google Scholar 

  2. M.T. Swihart, Vapor-phase synthesis of nanoparticles. Curr. Opin. Colloid Interface Sci. 8, 127 (2003)

    Article  Google Scholar 

  3. B.L. Cushing, V.L. Kolesnichenko, C.J. O’Connor, Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104, 3893 (2004)

    Article  Google Scholar 

  4. G. Caruntu, D. Caruntu, C.J. O’Connor, Liquid-Phase Synthesis of Inorganic Nanoparticles. Encyclopedia of Inorganic Chemistry, Wiley, Chichester (2009)

    Google Scholar 

  5. C.L. DeCastro, B.S. Mitchell, “Nanoparticles from mechanical attrition”, Synthesis, functionalization, and surface treatment of nanoparticles, American Scientific Publishers, Chapter 1, 1–15 (2003)

    Google Scholar 

  6. F. Mafune, J.-y. Kohno, Y. Takeda, T. Kondow, H. Sawabe, Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J. Phys. Chem. B 104, 9111 (2000)

    Article  Google Scholar 

  7. Y. Wu, P. Yang, Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 123, 3165 (2001)

    Article  Google Scholar 

  8. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353 (2003)

    Article  Google Scholar 

  9. N.R. Jana, L. Gearheart, C.J. Murphy, Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem. Mater. 13, 2313 (2001)

    Article  Google Scholar 

  10. I. Capek, Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv. Colloid Interface Sci. 110(49) (2004)

    Google Scholar 

  11. B.M. Quinn, C. Dekker, S.G. Lemay, Electrodeposition of noble metal nanoparticles on carbon nanotubes. J. Am. Chem. Soc. 127, 6146 (2005)

    Article  Google Scholar 

  12. F. Gao, S. Mukherjee, Q. Cui, Z. Gu, Synthesis, characterization, and thermal properties of nanoscale lead-free solders on multisegmented metal nanowires. J. Phys. Chem. C 113, 9546 (2009)

    Article  Google Scholar 

  13. Y. Yang, S. Matsubara, L. Xiong, T. Hayakawa, M. Nogami, Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties. J. Phys. Chem. C 111, 9095 (2007)

    Article  Google Scholar 

  14. M. Grzelczak, J. Pérez-Juste, P. Mulvaney, L.M. Liz-Marzán, Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37, 1783 (2008)

    Article  Google Scholar 

  15. H. Yoo, J.E. Millstone, S. Li, J.-W. Jang, W. Wei, J. Wu, G.C. Schatz, C.A. Mirkin, Core − shell triangular bifrustums. Nano Lett. 9, 3038 (2009)

    Article  Google Scholar 

  16. W. Niu, W. Zhang, S. Firdoz, X. Lu, Controlled synthesis of palladium concave nanocubes with Sub-10-nanometer edges and corners for tunable plasmonic property. Chem. Mater 26, 2180 (2014) doi: 10.1021/cm500210u

    Google Scholar 

  17. Q. Cui, K. Rajathurai, W. Jia, X. Li, F. Gao, Y. Lei, Z. Gu, Synthesis of single crystalline tin nanorods and their application as nanosoldering materials. J. Phys. Chem. C 114, 21938 (2010)

    Article  Google Scholar 

  18. D.H.M. Dam, J.H. Lee, P.N. Sisco, D.T. Co, M. Zhang, M.R. Wasielewski, T.W. Odom, Direct observation of nanoparticle–cancer cell nucleus interactions. ACS Nano 6, 3318 (2012)

    Article  Google Scholar 

  19. F. Caruso, R.A. Caruso, H. Möhwald, Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282, 1111 (1998)

    Article  Google Scholar 

  20. H. Jiang, K.-s. Moon, F. Hua, C. Wong, Synthesis and thermal and wetting properties of tin/silver alloy nanoparticles for low melting point lead-free solders. Chem. Mater. 19, 4482 (2007)

    Article  Google Scholar 

  21. H. Song, F. Kim, S. Connor, G.A. Somorjai, P. Yang, Pt nanocrystals: shape control and langmuir − blodgett monolayer formation. J. Phys. Chem. B 109, 188 (2004)

    Article  Google Scholar 

  22. W. Ni, Z. Yang, H. Chen, L. Li, J. Wang, Coupling between molecular and plasmonic resonances in freestanding dye − gold nanorod hybrid nanostructures. J. Am. Chem. Soc. 130, 6692 (2008)

    Article  Google Scholar 

  23. J. Sarkar, G.G. Khan, A. Basumallick, Nanowires: properties, applications and synthesis via porous anodic aluminium oxide template. Bull. Mater. Sci. 30, 271 (2007)

    Article  Google Scholar 

  24. E. Roduner, Size matters: why nanomaterials are different. Chem. Soc. Rev. 35, 583 (2006)

    Article  Google Scholar 

  25. P. Buffat, J.P. Borel, Size effect on the melting temperature of gold particles. Phys. Rev. A 13, 2287 (1976)

    Article  Google Scholar 

  26. C.A. Johnson, Generalization of the Gibbs-Thomson equation. Surf. Sci. 3, 429 (1965)

    Article  Google Scholar 

  27. K. Nanda, Size-dependent melting of nanoparticles: hundred years of thermodynamic model. Pramana 72, 617 (2009)

    Article  Google Scholar 

  28. M. Zhang, M.Y. Efremov, F. Schiettekatte, E. Olson, A. Kwan, S. Lai, T. Wisleder, J. Greene, L. Allen, Size-dependent melting point depression of nanostructures: nanocalorimetric measurements. Phys. Rev. B 62, 10548 (2000)

    Article  Google Scholar 

  29. P. Pawlow, Über die abhängigkeit des schmelzpunktes von der oberflächenenergie eines festen körpers. Z. Phys. Chem. 65, 1 (1909)

    Google Scholar 

  30. K.K. Nanda, S.N. Sahu, S.N. Behera, Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys. Rev. A 66, 013208 (2002)

    Article  Google Scholar 

  31. C.Q. Sun, Y. Wang, B.K. Tay, S. Li, H. Huang, Y.B. Zhang, Correlation between the melting point of a nanosolid and the cohesive energy of a surface atom. J. Phys. Chem. B 106, 10701 (2002)

    Article  Google Scholar 

  32. H. Reiss, I.B. Wilson, The effect of surface on melting point. J. Colloid Sci. 3, 551 (1948)

    Article  Google Scholar 

  33. W. Qi, M. Wang, Size and shape dependent melting temperature of metallic nanoparticles. Mater. Chem. Phys. 88, 280 (2004)

    Article  Google Scholar 

  34. S.L. Lai, J.R.A. Carlsson, L.H. Allen, Melting point depression of Al clusters generated during the early stages of film growth: Nanocalorimetry measurements. Appl. Phys. Lett. 72, 1098 (1998)

    Article  Google Scholar 

  35. P. Antoniammal, D. Arivuoli, Size and shape dependence on melting temperature of gallium nitride nanoparticles. J. Nanomater. 2012(8) (2012)

    Google Scholar 

  36. R.R. Vanfleet, J.M. Mochel, Thermodynamics of melting and freezing in small particles. Surf. Sci. 341, 40 (1995)

    Article  Google Scholar 

  37. H. Reiss, P. Mirabel, R.L. Whetten, Capillarity theory for the “coexistence” of liquid and solid clusters. J. Phys. Chem. 92, 7241 (1988)

    Article  Google Scholar 

  38. P. Couchman, W. Jesser, Thermodynamic theory of size dependence of melting temperature in metals. Nature 269, 481 (1977)

    Article  Google Scholar 

  39. A. Barybin, V. Shapovalov, Modification of Pawlow’s thermodynamical model for the melting of small single-component particles. J. Appl. Phys. 109, 034303 (2011)

    Article  Google Scholar 

  40. G. Guisbiers, M. Wautelet, Size, shape and stress effects on the melting temperature of nano-polyhedral grains on a substrate. Nanotechnology 17, 2008 (2006)

    Article  Google Scholar 

  41. H.M. Lu, P.Y. Li, Z.H. Cao, X.K. Meng, Size-, Shape-, and dimensionality-dependent melting temperatures of nanocrystals. J. Phys. Chem. C 113, 7598 (2009)

    Article  Google Scholar 

  42. D.K. Sar, P. Nayak, K.K. Nanda, Thermodynamic model for the size-dependent melting of prism-shaped nanoparticles. Phys. Lett. A 372, 4627 (2008)

    Article  Google Scholar 

  43. M. Attarian Shandiz, A. Safaei, S. Sanjabi, Z.H. Barber, Modeling size dependence of melting temperature of metallic nanoparticles. J. Phys. Chem. Solid 68, 1396 (2007)

    Article  Google Scholar 

  44. S. Lai, J. Guo, V. Petrova, G. Ramanath, L. Allen, Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys. Rev. Lett. 77, 99 (1996)

    Article  Google Scholar 

  45. C. Chen, J.-G. Lee, K. Arakawa, H. Mori, In situ observations of crystalline-to-liquid and crystalline-to-gas transitions of substrate-supported Ag nanoparticles. Appl. Phys. Lett. 96, 253104 (2010)

    Article  Google Scholar 

  46. J. Lee, T. Tanaka, J. Lee, H. Mori, Effect of substrates on the melting temperature of gold nanoparticles. Calphad 31, 105 (2007)

    Article  Google Scholar 

  47. P. Gill, T.T. Moghadam, B. Ranjbar, Differential scanning calorimetry techniques: applications in biology and nanoscience. J. Biomol. Tech. 21, 167 (2010)

    Google Scholar 

  48. A. Jeziorny, Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC. Polymer 19, 1142 (1978)

    Article  Google Scholar 

  49. P.J. Haines, F.W. Wilburn, Differential thermal analysis and differential scanning calorimetry, in Thermal Methods of Analysis (Springer, The Netherlands, 1995), pp. 63–122

    Chapter  Google Scholar 

  50. R.L. Danley, New heat flux DSC measurement technique. Thermochimica Acta. 395, 201 (2002)

    Article  Google Scholar 

  51. V.I. Levitas, M.L. Pantoya, G. Chauhan, I. Rivero, Effect of the alumina shell on the melting temperature depression for aluminum nanoparticles. J. Phys. Chem. C 113, 14088 (2009)

    Article  Google Scholar 

  52. L. Gunawan, G.P. Johari, Specific heat, melting, crystallization, and oxidation of zinc nanoparticles and their transmission electron microscopy studies. J. Phys. Chem. C 112, 20159 (2008)

    Article  Google Scholar 

  53. J. Hongjin, M. Kyoung-Sik, F. Hua, C.P. Wong, Thermal properties of tin/silver alloy nanoparticles for low temperature lead-free interconnect technology. in Electronic Components and Technology Conference. ECTC ’07. Proceedings. 57th. 54 (2007)

    Google Scholar 

  54. N.H. Kim, J.-Y. Kim, K.J. Ihn, Preparation of silver nanoparticles having low melting temperature through a new synthetic process without solvent. J. Nanosci. Nanotechnol. 7, 3805 (2007)

    Article  Google Scholar 

  55. T.T. Bao, Y. Kim, J. Lee, J.-G. Lee, Preparation and thermal analysis of Sn-Ag nano solders. Mater. Trans. 51, 2145 (2010)

    Article  Google Scholar 

  56. G. Zou, J. Yan, F. Mu, A. Wu, J. Ren, A. Hu, Y. Zhou, Low temperature bonding of Cu metal through sintering of Ag nanoparticles for high temperature electronic application. Open Surf. Sci. J. 3, 70 (2011)

    Article  Google Scholar 

  57. S. Jeong, K. Woo, D. Kim, S. Lim, J.S. Kim, H. Shin, Y. Xia, J. Moon, Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink jet printing. Adv. Funct. Mater. 18, 679 (2008)

    Article  Google Scholar 

  58. H. Jiang, K.-S. Moon, H. Dong, F. Hua, C.P. Wong, Size-dependent melting properties of tin nanoparticles. Chem. Phys. Lett. 429, 492 (2006)

    Article  Google Scholar 

  59. S.L. Lai, G. Ramanath, L.H. Allen, P. Infante, Z. Ma, High-speed (104 °C/s) scanning microcalorimetry with monolayer sensitivity (J/m2). Appl. Phys. Lett. 67, 1229 (1995)

    Article  Google Scholar 

  60. M. Schmidt, R. Kusche, B. von Issendorff, H. Haberland, Irregular variations in the melting point of size-selected atomic clusters. Nature 393, 238 (1998)

    Article  Google Scholar 

  61. M. Takagi, Electron-diffraction study of liquid-solid transition of thin metal films. J. Physical Soc. Japan 9, 359 (1954)

    Google Scholar 

  62. C.R.M. Wronski, The size dependence of the melting point of small particles of tin. Br. J. Appl. Phys. 18, 1731 (1967)

    Article  Google Scholar 

  63. M. Blackman, A. Curzon, Structure and Properties of Thin Films (Wiley, New York, 1959), p. 217

    Google Scholar 

  64. C. Coombes, The melting of small particles of lead and indium. J. Phys. F: Met. Phys. 2, 441 (1972)

    Article  Google Scholar 

  65. N.T. Gladkich, R. Niedermayer, K. Spiegel, Nachweis großer schmelzpunktserniedrigungen bei dünnen metallschichten. Physica status solidi (b). 15, 181 (1966)

    Google Scholar 

  66. R. Berman, A. Curzon, The size dependence of the melting point of small particles of indium. Can. J. Phys. 52, 923 (1974)

    Google Scholar 

  67. M. José-Yacamán, C. Gutierrez-Wing, M. Miki, D.Q. Yang, K.N. Piyakis, E. Sacher, Surface diffusion and coalescence of mobile metal nanoparticles. J. Phys. Chem. B 109, 9703 (2005)

    Article  Google Scholar 

  68. B. Liu, Y. Bando, M. Wang, C. Zhi, X. Fang, C. Tang, M. Mitome, D. Golberg, Electron-beam irradiation induced conductivity in ZnS nanowires as revealed by in situ transmission electron microscope. J. Appl. Phys. 106, 034302 (2009)

    Article  Google Scholar 

  69. Z.W. Pan, Z.R. Dai, Z.L. Wang, Lead oxide nanobelts and phase transformation induced by electron beam irradiation. Appl. Phys. Lett. 80, 309 (2002)

    Article  Google Scholar 

  70. L. Marks, P. Ajayan, J. Dundurs, Quasi-melting of small particles. Ultramicroscopy 20, 77 (1986)

    Article  Google Scholar 

  71. P.M. Ajayan, L.D. Marks, Experimental evidence for quasimelting in small particles. Phys. Rev. Lett. 63, 279 (1989)

    Article  Google Scholar 

  72. F. Gao, Z. Liu, G. Zhou, J.C. Yang, Z. Gu, Fast diffusion and void formation in a Two-segment copper-Tin lead-free nanowire system with one-dimensional confinement. Sci. Adv. Mater. 4, 881 (2012)

    Article  Google Scholar 

  73. Z.L. Wang, J.M. Petroski, T.C. Green, M.A. El-Sayed, Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals. J. Phys. Chem. B 102, 6145 (1998)

    Article  Google Scholar 

  74. F. Baletto, R. Ferrando, Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev. Mod. Phys. 77, 371 (2005)

    Article  Google Scholar 

  75. M.M. Alvarez, J.T. Khoury, T.G. Schaaff, M.N. Shafigullin, I. Vezmar, R.L. Whetten, Optical absorption spectra of nanocrystal gold molecules. J. Phys. Chem. B 101, 3706 (1997)

    Article  Google Scholar 

  76. A. Habenicht, M. Olapinski, F. Burmeister, P. Leiderer, J. Boneberg, Jumping nanodroplets. Science 309, 2043 (2005)

    Article  Google Scholar 

  77. J. Boneberg, A. Habenicht, D. Benner, P. Leiderer, M. Trautvetter, C. Pfahler, A. Plettl, P. Ziemann, Jumping nanodroplets: a new route towards metallic nano-particles. Appl. Phys. A 93, 415 (2008)

    Article  Google Scholar 

  78. S. Inasawa, M. Sugiyama, Y. Yamaguchi, Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting. J. Phys. Chem. B 109, 3104 (2005)

    Article  Google Scholar 

  79. J.H. Hodak, A. Henglein, M. Giersig, G.V. Hartland, Laser-induced inter-diffusion in AuAg core − shell nanoparticles. J. Phys. Chem. B 104, 11708 (2000)

    Article  Google Scholar 

  80. S.J. Tan, M.J. Campolongo, D. Luo, W. Cheng, Building plasmonic nanostructures with DNA. Nat. Nano. 6, 268 (2011)

    Article  Google Scholar 

  81. S. Link, M.A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410 (1999)

    Article  Google Scholar 

  82. S. Link, C. Burda, B. Nikoobakht, M.A. El-Sayed, How long does it take to melt a gold nanorod?: a femtosecond pump–probe absorption spectroscopic study. Chem. Phys. Lett. 315, 12 (1999)

    Article  Google Scholar 

  83. K. Yamada, Y. Tokumoto, T. Nagata, F. Mafuné, Mechanism of laser-induced size-reduction of gold nanoparticles as studied by nanosecond transient absorption spectroscopy. J. Phys. Chem. B 110, 11751 (2006)

    Article  Google Scholar 

  84. O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, A.M. Dmytruk, Size-dependent melting of spherical copper nanoparticles embedded in a silica matrix. Phys. Rev. B 75, 085434 (2007)

    Article  Google Scholar 

  85. S.A. Little, T. Begou, R.W. Collins, S. Marsillac, Optical detection of melting point depression for silver nanoparticles via in situ real time spectroscopic ellipsometry. Appl. Phys. Lett. 100, 051107 (2012)

    Article  Google Scholar 

  86. H.H. Richardson, Z.N. Hickman, A.O. Govorov, A.C. Thomas, W. Zhang, M.E. Kordesch, Thermooptical properties of gold nanoparticles embedded in Ice: characterization of heat generation and melting. Nano Lett. 6, 783 (2006)

    Article  Google Scholar 

  87. H. Amekura, M. Tanaka, Y. Katsuya, H. Yoshikawa, H. Shinotsuka, S. Tanuma, M. Ohnuma, Y. Matsushita, K. Kobayashi, C. Buchal, S. Mantl, N. Kishimoto, Melting of Zn nanoparticles embedded in SiO2 at high temperatures: effects on surface plasmon resonances. Appl. Phys. Lett. 96, 023110 (2010)

    Article  Google Scholar 

  88. B.D. Todd, R.M. Lynden-Bell, Surface and bulk properties of metals modelled with Sutton-Chen potentials. Surf. Sci. 281, 191 (1993)

    Article  Google Scholar 

  89. J.-H. Shim, B.-J. Lee, Y.W. Cho, Thermal stability of unsupported gold nanoparticle: a molecular dynamics study. Surf. Sci. 512, 262 (2002)

    Article  Google Scholar 

  90. E.C. Neyts, A. Bogaerts, Numerical study of the size-dependent melting mechanisms of nickel nanoclusters. J. Phys. Chem. C 113, 2771 (2009)

    Article  Google Scholar 

  91. S. Alavi, D.L. Thompson, Molecular dynamics simulations of the melting of aluminum nanoparticles. J. Phys. Chem. A 110, 1518 (2005)

    Article  Google Scholar 

  92. S.K.R.S. Sankaranarayanan, V.R. Bhethanabotla, B. Joseph, Molecular dynamics simulation study of the melting and structural evolution of bimetallic Pd-Pt nanowires. Phys. Rev. B 74, 155441 (2006)

    Article  Google Scholar 

  93. F. Delogu, Structural and energetic properties of unsupported Cu nanoparticles from room temperature to the melting point: Molecular dynamics simulations. Phys. Rev. B 72, 205418 (2005)

    Article  Google Scholar 

  94. Y. Shibuta, T. Suzuki, A molecular dynamics study of the phase transition in bcc metal nanoparticles. J. Chem. Phys. 129, 144102 (2008)

    Article  Google Scholar 

  95. G. Bilalbegović, Structures and melting in infinite gold nanowires. Solid State Commun. 115, 73 (2000)

    Article  Google Scholar 

  96. Y.-H. Wen, Z.-Z. Zhu, R. Zhu, G.-F. Shao, Size effects on the melting of nickel nanowires: a molecular dynamics study. Physica E 25, 47 (2004)

    Article  Google Scholar 

  97. L. Miao, V.R. Bhethanabotla, B. Joseph, Melting of Pd clusters and nanowires: a comparison study using molecular dynamics simulation. Phys. Rev. B 72, 134109 (2005)

    Article  Google Scholar 

  98. J. Wang, X. Chen, G. Wang, B. Wang, W. Lu, J. Zhao, Melting behavior in ultrathin metallic nanowires. Phys. Rev. B 66, 085408 (2002)

    Article  Google Scholar 

  99. B. Wang, G. Wang, X. Chen, J. Zhao, Melting behavior of ultrathin titanium nanowires. Phys. Rev. B 67, 193403 (2003)

    Article  Google Scholar 

  100. Z. Yang, X. Yang, Z. Xu, Molecular dynamics simulation of the melting behavior of Pt-Au nanoparticles with core-shell structure. J. Phys. Chem. C 112, 4937 (2008)

    Article  Google Scholar 

  101. S.K.R.S. Sankaranarayanan, V.R. Bhethanabotla, B. Joseph, Molecular dynamics simulation study of phase transformations in transition bimetallic nanowires. J. Phys. Chem. C 111, 2430 (2007)

    Article  Google Scholar 

  102. H.B. Liu, U. Pal, J.A. Ascencio, Thermodynamic stability and melting mechanism of bimetallic Au − Pt nanoparticles. J. Phys. Chem. C 112, 19173 (2008)

    Article  Google Scholar 

  103. Z. Kuntová, G. Rossi, R. Ferrando, Melting of core-shell Ag-Ni and Ag-Co nanoclusters studied via molecular dynamics simulations. Phys. Rev. B 77, 205431 (2008)

    Article  Google Scholar 

  104. T. Shibata, B.A. Bunker, Z. Zhang, D. Meisel, C.F. Vardeman, J.D. Gezelter, Size-dependent spontaneous alloying of Au − Ag nanoparticles. J. Am. Chem. Soc. 124, 11989 (2002)

    Article  Google Scholar 

  105. F. Ding, A. Rosen, S. Curtarolo, K. Bolton, Modeling the melting of supported clusters. Appl. Phys. Lett. 88, 133110 (2006)

    Article  Google Scholar 

  106. Q. Cui, F. Gao, S. Mukherjee, Z. Gu, Joining and interconnect formation of nanowires and carbon nanotubes for nanoelectronics and nanosystems. Small 5, 1246 (2009)

    Article  Google Scholar 

  107. C. Zou, Y. Gao, B. Yang, Q. Zhai, Synthesis and DSC study on Sn3.5Ag alloy nanoparticles used for lower melting temperature solder. J. Mater. Sci. Mater. Electron. 21(868) (2010)

    Google Scholar 

  108. J.P. Koppes, K.A. Grossklaus, A.R. Muza, R.R. Revur, S. Sengupta, A. Rae, E.A. Stach, C.A. Handwerker, Utilizing the thermodynamic nanoparticle size effects for low temperature Pb-free solder. Mater. Sci. Eng. B 177, 197 (2012)

    Article  Google Scholar 

  109. Y. Shu, K. Rajathurai, F. Gao, Q. Cui, Z. Gu, Synthesis and thermal properties of low melting point tin/indium (Sn/In) lead-free nanosolders and their melting behavior in a Vapor Flux. J. Alloys Comp. 626, 391 (2014)

    Google Scholar 

  110. F. Gao, K. Rajathurai, Q. Cui, G. Zhou, I. NkengforAcha, Z. Gu, Effect of surface oxide on the melting behavior of lead-free solder nanowires and nanorods. Appl. Surf. Sci. 258, 7507 (2012)

    Article  Google Scholar 

  111. K. Jain, M. Klosner, M. Zemel, S. Raghunandan, Flexible electronics and displays: high-resolution, roll-to-roll, projection lithography and photoablation processing technologies for high-throughput production. Proc. IEEE. 93, 1500 (2005)

    Article  Google Scholar 

  112. A. Kamyshny, J. Steinke, S. Magdassi, Metal-based inkjet inks for printed electronics. Open Appl. Phys. J. 4, 19 (2011)

    Article  Google Scholar 

  113. A. Hudd, Inkjet printing technologies, in The Chemistry of Inkjet Inks (World Scientific, New Jersey/London/Singapore, 2010), p. 3

    Google Scholar 

  114. K.-S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, C.P. Wong, Thermal behavior of silver nanoparticles for low-temperature interconnect applications. J. Electron. Mater. 34, 168 (2005)

    Article  Google Scholar 

  115. J. Kang, J. Ryu, H. Kim, H. Hahn, Sintering of inkjet-printed silver nanoparticles at room temperature using intense pulsed light. J. Electron. Mater. 40, 2268 (2011)

    Article  Google Scholar 

  116. H.-S. Kim, S. Dhage, D.-E. Shim, H.T. Hahn, Intense pulsed light sintering of copper nanoink for printed electronics. Appl. Phys. A 97, 791 (2009)

    Article  Google Scholar 

  117. A. Henglein, Colloidal silver nanoparticles: photochemical preparation and interaction with O2, CCl4, and some metal ions. Chem. Mater. 10, 444 (1998)

    Article  Google Scholar 

  118. Y. Han, R. Lupitskyy, T.-M. Chou, C.M. Stafford, H. Du, S. Sukhishvili, Effect of oxidation on surface-enhanced Raman scattering activity of silver nanoparticles: a quantitative correlation. Anal. Chem. 83, 5873 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

They thank the financial support from the National Science Foundation (Award Number CMMI-1234532). Past supports from 3M Company (3M Non-Tenured Faculty Grant) and Massachusetts Toxics Use Reduction Institute (TURI) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Gao, F., Gu, Z. (2016). Melting Temperature of Metallic Nanoparticles. In: Aliofkhazraei, M. (eds) Handbook of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-15338-4_6

Download citation

Publish with us

Policies and ethics