Skip to main content

Surface Treatment Strategies on Catalytic Metal Nanoparticles

  • Reference work entry
Book cover Handbook of Nanoparticles

Abstract

Metal nanoparticles are materials of great scientific interest with a vast number of applications. In catalysis, also including electrocatalysis, the use of metal nanoparticles has provided very remarkable advances, and they are being applied in many reactions to obtain enhanced catalytic activity and/or to modify their catalytic selectivity. Nevertheless, in order to optimize/modulate these (electro)catalytic properties, it is frequently required to have a fine control of their surface. In this chapter, different surface treatment strategies for metal nanoparticles and their effects from a catalytic point of view are reviewed. Finally, a brief section devoted to the use of metal nanoparticles as platforms for biomolecules attachment for biosensing and bioanalytical applications is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.A. Somorjai, D.W. Blakely, Mechanism of catalysis of hydrocarbon reactions by platinum surfaces. Nature 258(5536), 580–583 (1975)

    Article  Google Scholar 

  2. R. Adzic, Reaction kinetics and mechanisms in metal single-crystal electrode surfaces, in Modern Aspects of Electrochemistry, ed. by R.E. White, J.O. Bockris, B.E. Conway, vol. 21 (Plenum Press, New York, 1990), p. 163

    Google Scholar 

  3. A. Wieckowski, E.R. Savinova, C.G. Vayenas, Catalysis and Electrocatalysis at Nanoparticle Surfaces (CRC Press, New York, 2003)

    Book  Google Scholar 

  4. E. Herrero, J.M. Feliu, A. Aldaz, Electrocatalysis, in Encyclopedia of Electrochemistry – Interfacial Kinetics and Mass Transport, ed. by A.J. Bard, M. Stratmann, vol. 2 (Wiley-VCH, Weinheim, 2003), pp. 443–465

    Google Scholar 

  5. T.S. Ahmadi, Z.L. Wang, T.C. Green, A. Henglein, M.A. El-Sayed, Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272(5270), 1924–1926 (1996)

    Article  Google Scholar 

  6. Z.-Y. Zhou, N. Tian, Z.-Z. Huang, D.-J. Chen, S.-G. Sun, Nanoparticle catalysts with high energy surfaces and enhanced activity synthesized by electrochemical method. Faraday Discuss. 140, 81–92 (2009)

    Article  Google Scholar 

  7. N. Tian, Z.Y. Zhou, S.G. Sun, Platinum metal catalysts of high-index surfaces: from single-crystal planes to electrochemically shape-controlled nanoparticles. J. Phys. Chem. C 112(50), 19801–19817 (2008)

    Article  Google Scholar 

  8. A.R. Tao, S. Habas, P. Yang, Shape control of colloidal metal nanocrystals. Small 4(3), 310–325 (2008)

    Article  Google Scholar 

  9. L.C. Gontard, L.Y. Chang, C.J.D. Hetherington, A.I. Kirkland, D. Ozkaya, R.E. Dunin-Borkowski, Aberration-corrected imaging of active sites on industrial catalyst nanoparticles. Angew. Chem. Int. Ed. 46(20), 3683–3685 (2007)

    Article  Google Scholar 

  10. J. Solla-Gullón, P. Rodríguez, E. Herrero, A. Aldaz, J.M. Feliu, Surface characterization of platinum electrodes. Phys. Chem. Chem. Phys. 10(10), 1359–1373 (2008). doi:10.1039/b709809j

    Article  Google Scholar 

  11. J. Hernández, J. Solla-Gullón, E. Herrero, Gold nanoparticles synthesized in a water-in-oil microemulsion: electrochemical characterization and effect of the surface structure on the oxygen reduction reaction. J. Electroanal. Chem. 574(1), 185–196 (2004). doi:10.1016/j.jelechem.2003.10.039

    Article  Google Scholar 

  12. J. Hernández, J. Solla-Gullón, E. Herrero, A. Aldaz, J.M. Feliu, Characterization of the surface structure of gold nanoparticles and nanorods using structure sensitive reactions. J. Phys. Chem. B 109(26), 12651–12654 (2005). doi:10.1021/jp0521609

    Article  Google Scholar 

  13. J. Hernández, J. Solla-Gullón, E. Herrero, J.M. Feliu, A. Aldaz, In situ surface characterization and oxygen reduction reaction on shape-controlled gold nanoparticles. J. Nanosci. Nanotechnol. 9(4), 2256–2273 (2009). doi:10.1166/jnn.2009.SE38

    Article  Google Scholar 

  14. M.S. El-Deab, On the preferential crystallographic orientation of Au nanoparticles: effect of electrodeposition time. Electrochim. Acta 54(14), 3720–3725 (2009)

    Article  Google Scholar 

  15. M.S. El-Deab, T. Sotomura, T. Ohsaka, Size and crystallographic orientation controls of gold nanoparticles electrodeposited on GC electrodes. J. Electrochem. Soc. 152(1), C1–C6 (2005)

    Article  Google Scholar 

  16. M.S. El-Deab, K. Arihara, T. Ohsaka, Fabrication of Au(111)-like polycrystalline gold electrodes and their applications to oxygen reduction. J. Electrochem. Soc. 151(6), E213–E218 (2004)

    Article  Google Scholar 

  17. Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48(1), 60–103 (2009)

    Article  Google Scholar 

  18. H. Lee, C. Kim, S. Yang, J.W. Han, J. Kim, Shape-controlled nanocrystals for catalytic applications. Catal. Surv. Asia. 16(1), 14–27 (2012)

    Article  Google Scholar 

  19. Y. Tang, W. Cheng, Metallic nanoparticles as advanced electrocatalysts. Sci. Adv. Mater. 4(8), 784–797 (2012)

    Article  Google Scholar 

  20. J. Solla-Gullon, F.J. Vidal-Iglesias, J.M. Feliu, Shape dependent electrocatalysis. Annu. Rep. Prog. Chem. Sect. C. 107, 263–297 (2011)

    Article  Google Scholar 

  21. M.A. El-Sayed, Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34(4), 257–264 (2001)

    Article  Google Scholar 

  22. J.W. Yoo, D. Hathcock, M.A. El-Sayed, Characterization of Pt nanoparticles encapsulated in Al2O3 and their catalytic efficiency in propene hydrogenation. J. Phys. Chem. A 106(10), 2049–2054 (2002)

    Article  Google Scholar 

  23. J.W. Yoo, D.J. Hathcock, M.A. El-Sayed, Propene hydrogenation over truncated octahedral Pt nanoparticles supported on alumina. J. Catal. 214(1), 1–7 (2003)

    Article  Google Scholar 

  24. R. Narayanan, M.A. El-Sayed, Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett. 4(7), 1343–1348 (2004)

    Article  Google Scholar 

  25. R. Narayanan, M.A. El-Sayed, Effect of colloidal catalysis on the nanoparticle size distribution: dendrimer-Pd vs PVP-Pd nanoparticles catalyzing the suzuki coupling reaction. J. Phys. Chem. B 108(25), 8572–8580 (2004)

    Article  Google Scholar 

  26. R. Narayanan, M.A. El-Sayed, Changing catalytic activity during colloidal platinum nanocatalysis due to shape changes: electron-transfer reaction. J. Am. Chem. Soc. 126(23), 7194–7195 (2004)

    Article  Google Scholar 

  27. J.W. Yoo, S.M. Lee, H.T. Kim, M.A. El-Sayed, Propylene hydrogenation over cubic Pt nanoparticles deposited on alumina. Bull. Kor. Chem. Soc. 25(6), 843–846 (2004)

    Article  Google Scholar 

  28. R. Narayanan, M.A. El-Sayed, Effect of colloidal nanocatalysis on the metallic nanoparticle shape: the suzuki reaction. Langmuir 21(5), 2027–2033 (2005)

    Article  Google Scholar 

  29. M.A. Mahmoud, C.E. Tabor, M.A. El-Sayed, Y. Ding, L.W. Zhong, A new catalytically active colloidal platinum nanocatalyst: the multiarmed nanostar single crystal. J. Am. Chem. Soc. 130(14), 4590–4591 (2008)

    Article  Google Scholar 

  30. R. Narayanan, M.A. El-Sayed, Some aspects of colloidal nanoparticle stability, catalytic activity, and recycling potential. Top. Catal. 47(1–2), 15–21 (2008)

    Article  Google Scholar 

  31. H. Lee, S.E. Habas, S. Kweskin, D. Butcher, G.A. Somorjai, P. Yang, Morphological control of catalytically active platinum nanocrystals. Angew. Chem. Int. Ed. 45(46), 7824–7828 (2006)

    Article  Google Scholar 

  32. R. Rioux, H. Song, M. Grass, S. Habas, K. Niesz, J. Hoefelmeyer, P. Yang, G. Somorjai, Monodisperse platinum nanoparticles of well-defined shape: synthesis, characterization, catalytic properties and future prospects. Top. Catal. 39(3), 167–174 (2006). doi:10.1007/s11244-006-0053-2

    Article  Google Scholar 

  33. K.M. Bratlie, H. Lee, K. Komvopoulos, P. Yang, G.A. Somorjai, Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett. 7(10), 3097–3101 (2007)

    Article  Google Scholar 

  34. J. Wei, C.A. Floudas, C.E. Gounaris, G.A. Somorjai, Search engines for shape selectivity. Catal. Lett. 133(1–2), 234–241 (2009)

    Article  Google Scholar 

  35. C.K. Tsung, J.N. Kuhn, W. Huang, C. Aliaga, L.I. Hung, G.A. Somorjai, P. Yang, Sub-10 nm platinum nanocrystals with size and shape control: catalytic study for ethylene and pyrrole hydrogenation. J. Am. Chem. Soc. 131(16), 5816–5822 (2009)

    Article  Google Scholar 

  36. G.A. Somorjai, C.J. Kliewer, Reaction selectivity in heterogeneous catalysis : AAAn invited review. React. Kinet. Catal. Lett. 96(2), 191–208 (2009)

    Article  Google Scholar 

  37. G.A. Somorjai, J.Y. Park, Molecular factors of catalytic selectivity. Angew. Chem. Int. Ed. 47(48), 9212–9228 (2008)

    Article  Google Scholar 

  38. Y. Zhang, M.E. Grass, J.N. Kuhn, F. Tao, S.E. Habas, W. Huang, P. Yang, G.A. Somorjai, Highly selective synthesis of catalytically active monodisperse rhodium nanocubes. J. Am. Chem. Soc. 130(18), 5868–5869 (2008)

    Article  Google Scholar 

  39. K. An, G.A. Somorjai, Size and shape control of metal nanoparticles for reaction selectivity in catalysis. ChemCatChem 4(10), 1512–1524 (2012)

    Article  Google Scholar 

  40. S. Alayoglu, C. Aliaga, C. Sprung, G.A. Somorjai, Size and shape dependence on Pt nanoparticles for the methylcyclopentane/ hydrogen ring opening/ring enlargement reaction. Catal. Lett. 141(7), 914–924 (2011)

    Article  Google Scholar 

  41. Y. Zhang, M.E. Grass, W. Huang, G.A. Somorjai, Seedless polyol synthesis and CO oxidation activity of monodisperse (111)- and (100)-oriented rhodium nanocrystals in Sub-10 nm sizes. Langmuir 26(21), 16463–16468 (2010)

    Article  Google Scholar 

  42. J.Y. Park, C. Aliaga, J.R. Renzas, H. Lee, G.A. Somorjai, The role of organic capping layers of platinum nanoparticles in catalytic activity of CO oxidation. Catal. Lett. 129(1–2), 1–6 (2009)

    Article  Google Scholar 

  43. J.N. Kuhn, C.K. Tsung, W. Huang, G.A. Somorjai, Effect of organic capping layers over monodisperse platinum nanoparticles upon activity for ethylene hydrogenation and carbon monoxide oxidation. J. Catal. 265(2), 209–215 (2009)

    Article  Google Scholar 

  44. L.R. Baker, G. Kennedy, J.M. Krier, M. Van Spronsen, R.M. Onorato, G.A. Somorjai, The role of an organic cap in nanoparticle catalysis: reversible restructuring of carbonaceous material controls catalytic activity of platinum nanoparticles for ethylene hydrogenation and methanol oxidation. Catal. Lett. 142(11), 1286–1294 (2012)

    Article  Google Scholar 

  45. J.M. Krier, W.D. Michalak, L.R. Baker, K. An, K. Komvopoulos, G.A. Somorjai, Sum frequency generation vibrational spectroscopy of colloidal platinum nanoparticle catalysts: disordering versus removal of organic capping. J. Phys. Chem. C 116(33), 17540–17546 (2012)

    Article  Google Scholar 

  46. C. Aliaga, J.Y. Park, Y. Yamada, H.S. Lee, C.K. Tsung, P. Yang, G.A. Somorjai, Sum frequency generation and catalytic reaction studies of the removal of organic capping agents from Pt nanoparticles by UV-Ozone treatment. J. Phys. Chem. C 113(15), 6150–6155 (2009)

    Article  Google Scholar 

  47. F.J. Vidal-Iglesias, J. Solla-Gullón, E. Herrero, V. Montiel, A. Aldaz, J.M. Feliu, Evaluating the ozone cleaning treatment in shape-controlled Pt nanoparticles: evidences of atomic surface disordering. Electrochem. Commun. 13(5), 502–505 (2011). doi:10.1016/j.elecom.2011.02.033

    Article  Google Scholar 

  48. I. Lee, F. Delbecq, R. Morales, M.A. Albiter, F. Zaera, Tuning selectivity in catalysis by controlling particle shape. Nat. Mater. 8(2), 132–138 (2009)

    Article  Google Scholar 

  49. I. Lee, F. Zaera, Catalytic conversion of olefins on supported cubic platinum nanoparticles: selectivity of (1 0 0) versus (1 1 1) surfaces. J. Catal. 269(2), 359–366 (2010)

    Article  Google Scholar 

  50. I. Lee, M.A. Albiter, Q. Zhang, J. Ge, Y. Yin, F. Zaera, New nanostructured heterogeneous catalysts with increased selectivity and stability. Phys. Chem. Chem. Phys. 13(7), 2449–2456 (2011)

    Article  Google Scholar 

  51. E. Schmidt, A. Vargas, T. Mallat, A. Baiker, Shape-selective enantioselective hydrogenation on Pt nanoparticles. J. Am. Chem. Soc. 131(34), 12358–12367 (2009)

    Article  Google Scholar 

  52. E. Schmidt, W. Kleist, F. Krumeich, T. Mallat, A. Baiker, Platinum nanoparticles: the crucial role of crystal face and colloid stabilizer in the diastereoselective hydrogenation of cinchonidine. Chem. Eur. J. 16(7), 2181–2192 (2010)

    Article  Google Scholar 

  53. F.J. Vidal-Iglesias, J. Solla-Gullón, P. Rodríguez, E. Herrero, V. Montiel, J.M. Feliu, A. Aldaz, Shape-dependent electrocatalysis: ammonia oxidation on platinum nanoparticles with preferential (100) surfaces. Electrochem. Commun. 6(10), 1080–1084 (2004). doi:10.1016/j.elecom.2004.08.010

    Article  Google Scholar 

  54. J. Solla-Gullón, F.J. Vidal-Iglesias, P. Rodríguez, E. Herrero, J.M. Feliu, J. Clavilier, A. Aldaz, In situ surface characterization of preferentially oriented platinum nanoparticles by using electrochemical structure sensitive adsorption reactions. J. Phys. Chem. B 108(36), 13573–13575 (2004). doi:10.1021/jp0471453

    Article  Google Scholar 

  55. M.T.M. Koper, Structure sensitivity and nanoscale effects in electrocatalysis. Nanoscale 3(5), 2054–2073 (2011)

    Article  Google Scholar 

  56. M. Subhramannia, V.K. Pillai, Shape-dependent electrocatalytic activity of platinum nanostructures. J. Mater. Chem. 18(48), 5858–5870 (2008)

    Article  Google Scholar 

  57. N. Tian, Z.-Y. Zhou, S.-G. Sun, Y. Ding, Z.L. Wang, Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316(5825), 732–735 (2007). doi:10.1126/science.1140484

    Article  Google Scholar 

  58. Y.J. Deng, N. Tian, Z.Y. Zhou, R. Huang, Z.L. Liu, J. Xiao, S.G. Sun, Alloy tetrahexahedral Pd-Pt catalysts: enhancing significantly the catalytic activity by synergy effect of high-index facets and electronic structure. Chem. Sci. 3(4), 1157–1161 (2012)

    Article  Google Scholar 

  59. Z.-Y. Zhou, Z.-Z. Huang, D.-J. Chen, Q. Wang, N. Tian, S.-G. Sun, High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation. Angew. Chem. Int. Ed. 49(2), 411–414 (2010). doi:10.1002/anie.200905413

    Article  Google Scholar 

  60. L. Zhang, W. Niu, G. Xu, Synthesis and applications of noble metal nanocrystals with high-energy facets. Nano Today 7(6), 586–605 (2012)

    Article  Google Scholar 

  61. H. Zhang, M. Jin, Y. Xia, Noble-metal nanocrystals with concave surfaces: synthesis and applications. Angew. Chem. Int. Ed. 51(31), 7656–7673 (2012)

    Article  Google Scholar 

  62. Z. Quan, Y. Wang, J. Fang, High-index faceted noble metal nanocrystals. Acc. Chem. Res. 46(2), 191–202 (2013)

    Article  Google Scholar 

  63. C.M. Sanchez-Sanchez, J. Solla-Gullon, V. Montiel, Electrocatalysis at nanoparticles, in Electrochemistry: volume 11 – Nanosystems Electrochemistry, vol. 11 (The Royal Society of Chemistry, Cambridge, 2013), pp. 34–70. doi:10.1039/9781849734820-00034

    Chapter  Google Scholar 

  64. S. Xie, S.I. Choi, X. Xia, Y. Xia, Catalysis on faceted noble-metal nanocrystals: both shape and size matter. Curr. Opin. Chem. Eng. 2(2), 142–150 (2013)

    Article  Google Scholar 

  65. Z.Y. Zhou, N. Tian, J.T. Li, I. Broadwell, S.G. Sun, Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem. Soc. Rev. 40(7), 4167–4185 (2011)

    Article  Google Scholar 

  66. V.R. Stamenkovic, B. Fowler, B.S. Mun, G.F. Wang, P.N. Ross, C.A. Lucas, N.M. Markovic, Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315(5811), 493–497 (2007)

    Article  Google Scholar 

  67. B. Lim, T. Yu, Y. Xia, Shaping a bright future for platinum-based alloy electrocatalysts. Angew. Chem. Int. Ed. 49(51), 9819–9820 (2010)

    Article  Google Scholar 

  68. S.I. Choi, S. Xie, M. Shao, J.H. Odell, N. Lu, H.C. Peng, L. Protsailo, S. Guerrero, J. Park, X. Xia, J. Wang, M.J. Kim, Y. Xia, Synthesis and characterization of 9 nm Pt-Ni octahedra with a record high activity of 3.3 A/mgPt for the oxygen reduction reaction. Nano Lett. 13(7), 3420–3425 (2013)

    Article  Google Scholar 

  69. J. Zhang, J. Fang, A general strategy for preparation of Pt 3d-transition metal (Co, Fe, Ni) nanocubes. J. Am. Chem. Soc. 131(51), 18543–18547 (2009)

    Article  Google Scholar 

  70. H. Yang, J. Zhang, K. Sun, S. Zou, J. Fang, Enhancing by weakening: electrooxidation of methanol on Pt3Co and Pt nanocubes. Angew. Chem. Int. Ed. 49(38), 6848–6851 (2010)

    Article  Google Scholar 

  71. J. Zhang, H. Yang, J. Fang, S. Zou, Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett. 10(2), 638–644 (2010)

    Article  Google Scholar 

  72. J. Wu, J. Zhang, Z. Peng, S. Yang, F.T. Wagner, H. Yang, Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J. Am. Chem. Soc. 132(14), 4984–4985 (2010)

    Article  Google Scholar 

  73. Y. Kang, J.B. Pyo, X. Ye, R.E. Diaz, T.R. Gordon, E.A. Stach, C.B. Murray, Shape-controlled synthesis of pt nanocrystals: the role of metal carbonyls. ACS Nano 7(1), 645–653 (2013)

    Article  Google Scholar 

  74. Y. Kang, X. Ye, J. Chen, Y. Cai, R.E. Diaz, R.R. Adzic, E.A. Stach, C.B. Murray, Design of Pt-Pd binary superlattices exploiting shape effects and synergistic effects for oxygen reduction reactions. J. Am. Chem. Soc. 135(1), 42–45 (2013)

    Article  Google Scholar 

  75. C. Cui, L. Gan, H.H. Li, S.H. Yu, M. Heggen, P. Strasser, Octahedral PtNi nanoparticle catalysts: exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 12(11), 5885–5889 (2012)

    Article  Google Scholar 

  76. C. Cui, L. Gan, M. Heggen, S. Rudi, P. Strasser, Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 12, 765–771 (2013)

    Article  Google Scholar 

  77. H. Zhang, M. Jin, Y. Xia, Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem. Soc. Rev. 41(24), 8035–8049 (2012)

    Article  Google Scholar 

  78. J. Gu, Y.W. Zhang, F. Tao, Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches. Chem. Soc. Rev. 41(24), 8050–8065 (2012)

    Article  Google Scholar 

  79. Y. Cai, C. Ma, Y. Zhu, J.X. Wang, R.R. Adzic, Low-coordination sites in oxygen-reduction electrocatalysis: their roles and methods for removal. Langmuir 27(13), 8540–8547 (2011)

    Article  Google Scholar 

  80. L.M. Falicov, G.A. Somorjai, Correlation between catalytic activity and bonding and coordination number of atoms and molecules on transition metal surfaces: theory and experimental evidence. Proc. Natl. Acad. Sci. 82(8), 2207–2211 (1985)

    Article  Google Scholar 

  81. A. Gaussmann, N. Kruse, CO-induced structural changes of Pd particle surfaces. Catal. Lett. 10(3–4), 305–315 (1991)

    Article  Google Scholar 

  82. G.A. Somorjai, M.A. Van Hove, Adsorbate-induced restructuring of surfaces. Prog. Surf. Sci. 30(3–4), 201–231 (1989)

    Article  Google Scholar 

  83. K.J. Andersson, F. Calle-Vallejo, J. Rossmeisl, I. Chorkendorff, Adsorption-driven surface segregation of the less reactive alloy component. J. Am. Chem. Soc. 131(6), 2404–2407 (2009)

    Article  Google Scholar 

  84. M. Arenz, K.J.J. Mayrhofer, V. Stamenkovic, B.B. Blizanac, T. Tomoyuki, P.N. Ross, N.M. Markovic, The effect of the particle size on the kinetics of CO electrooxidation on high surface area Pt catalysts. J. Am. Chem. Soc. 127(18), 6819–6829 (2005)

    Article  Google Scholar 

  85. K.J.J. Mayrhofer, M. Hanzlik, M. Arenz, The influence of electrochemical annealing in CO saturated solution on the catalytic activity of Pt nanoparticles. Electrochim. Acta 54(22), 5018–5022 (2009)

    Article  Google Scholar 

  86. K.J.J. Mayrhofer, V. Juhart, K. Hartl, M. Hanzlik, M. Arenz, Adsorbate-Induced surface segregation for core-shell nanocatalysts. Angew. Chem. Int. Ed. 48(19), 3529–3531 (2009)

    Article  Google Scholar 

  87. Y. Gauthier, M. Schmid, S. Padovani, E. Lundgren, V. Buš, G. Kresse, J. Redinger, P. Varga, Adsorption sites and ligand effect for Co on an alloy surface: a direct view. Phys. Rev. Lett. 87(3), 361031–361034 (2001)

    Article  Google Scholar 

  88. E.G. Ciapina, E.A. Ticianelli, The effect of electrochemical CO annealing on platinum-cobalt nanoparticles in acid medium and their correlation to the oxygen reduction reaction. Electrochim. Acta 58(1), 172–178 (2011)

    Article  Google Scholar 

  89. V.R. Stamenkovic, B.S. Mun, M. Arenz, K.J.J. Mayrhofer, C.A. Lucas, G. Wang, P.N. Ross, N.M. Markovic, Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 6(3), 241–247 (2007)

    Article  Google Scholar 

  90. P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M.F. Toney, A. Nilsson, Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem. 2(6), 454–460 (2010)

    Article  Google Scholar 

  91. P. Strasser, Dealloyed Pt bimetallic electrocatalysts for oxygen reduction, in Handbook of Fuel Cells: Fundamentals Technology and Applications. Advances in Electrocatalysis, Materials, Diagnostics and Durability: Part 1, ed. by W. Vielstich, H. Yokokawa, H.A. Gasteiger, vol. 5 (Wiley, Chichester, 2009), pp. 30–47

    Google Scholar 

  92. C. Wang, M. Chi, D. Li, D. Strmcnik, D. van der Vliet, G. Wang, V. Komanicky, K.-C. Chang, A.P. Paulikas, D. Tripkovic, J. Pearson, K.L. More, N.M. Markovic, V.R. Stamenkovic, Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces. J. Am. Chem. Soc. 133(36), 14396–14403 (2011). doi:10.1021/ja2047655

    Article  Google Scholar 

  93. V.R. Stamenkovic, N.M. Markovic, Oxygen reduction on platinum bimetallic alloy catalysts, in Handbook of Fuel Cells: Fundamentals Technology and Applications. Advances in Electrocatalysis, Materials, Diagnostics and Durability: Part 1, ed. by W. Vielstich, H. Yokokawa, H.A. Gasteiger, vol. 5 (Wiley, Chichester, 2009), pp. 18–29

    Google Scholar 

  94. V. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, J. Rossmeisl, J. Greeley, J.K. Norskov, Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. Int. Ed. 45(18), 2897–2901 (2006)

    Article  Google Scholar 

  95. H.A. Gasteiger, N.M. Markovic, Just a dream or future reality? Science 324(5923), 48–49 (2009)

    Article  Google Scholar 

  96. M.C. Figueiredo, J. Solla-Gullón, F.J. Vidal-Iglesias, V. Climent, J.M. Feliu, Nitrate reduction at Pt(100) single crystals and preferentially oriented nanoparticles in neutral media. Catal. Today 202(1), 2–11 (2013)

    Article  Google Scholar 

  97. M. Inaba, M. Ando, A. Hatanaka, A. Nomoto, K. Matsuzawa, A. Tasaka, T. Kinumoto, Y. Iriyama, Z. Ogumi, Controlled growth and shape formation of platinum nanoparticles and their electrochemical properties. Electrochim. Acta 52(4), 1632–1638 (2006)

    Article  Google Scholar 

  98. T. Ming, W. Feng, Q. Tang, F. Wang, L. Sun, J. Wang, C. Yan, Growth of tetrahexahedral gold nanocrystals with high-index facets. J. Am. Chem. Soc. 131(45), 16350–16351 (2009)

    Article  Google Scholar 

  99. Z.Y. Zhou, S.J. Shang, N. Tian, B.H. Wu, N.F. Zheng, B.B. Xu, C. Chen, H.H. Wang, D.M. Xiang, S.G. Sun, Shape transformation from Pt nanocubes to tetrahexahedra with size near 10 nm. Electrochem. Commun. 22(1), 61–64 (2012)

    Article  Google Scholar 

  100. T. Zhu, E.J.M. Hensen, R.A. van Santen, N. Tian, S.-G. Sun, P. Kaghazchi, T. Jacob, Roughening of Pt nanoparticles induced by surface-oxide formation. Phys. Chem. Chem. Phys. 15(7), 2268–2272 (2013). doi:10.1039/c2cp44252c

    Article  Google Scholar 

  101. W.L. Seung, S. Chen, W. Sheng, N. Yabuuchi, Y.T. Kim, T. Mitani, E. Vescovo, Y. Shao-Horn, Roles of surface steps on Pt nanoparticles in electro-oxidation of carbon monoxide and methanol. J. Am. Chem. Soc. 131(43), 15669–15677 (2009)

    Article  Google Scholar 

  102. S.W. Lee, S. Chen, J. Suntivich, K. Sasaki, R.R. Adzic, Y. Shao-Horn, Role of surface steps of Pt nanoparticles on the electrochemical activity for oxygen reduction. J. Phys. Chem. Lett. 1(9), 1316–1320 (2010)

    Article  Google Scholar 

  103. Y.T. Kim, K. Ohshima, K. Higashimine, T. Uruga, M. Takata, H. Suematsu, T. Mitani, Fine size control of platinum on carbon nanotubes: from single atoms to clusters. Angew. Chem. Int. Ed. 45(3), 407–411 (2006)

    Article  Google Scholar 

  104. J. Hu, Z. Wang, J. Li, Gold nanoparticles with special shapes: controlled synthesis, surface-enhanced raman scattering, and the application in biodetection. Sensors 7(12), 3299–3311 (2007)

    Article  Google Scholar 

  105. A. Chen, S. Chatterjee, Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev. 42(12), 5425–5438 (2013)

    Article  Google Scholar 

  106. C.M. Welch, R.G. Compton, The use of nanoparticles in electroanalysis: a review. Anal. Bioanal. Chem. 384(3), 601–619 (2006)

    Article  Google Scholar 

  107. A.E. Nel, L. Mädler, D. Velegol, T. Xia, E.M.V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, M. Thompson, Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8(7), 543–557 (2009)

    Article  Google Scholar 

  108. C.D. Walkey, W.C.W. Chan, Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 41(7), 2780–2799 (2012)

    Article  Google Scholar 

  109. J.M. Pingarrón, P. Yáñez-Sedeño, A. González-Cortés, Gold nanoparticle-based electrochemical biosensors. Electrochim. Acta 53(19), 5848–5866 (2008)

    Article  Google Scholar 

  110. M. Pedrero, P. Yáñez-sedeño, J.M. Pingarrón, Gold nanoparticle-based electrochemical DNA biosensors, in Electrochemical DNA Biosensors, ed. by M. Ozsoz (Pan Stanford, Singapore, 2012), pp. 103–140

    Google Scholar 

  111. W. Zhao, J.J. Xu, H.Y. Chen, Electrochemical biosensors based on layer-by-layer assemblies. Electroanalysis 18(18), 1737–1748 (2006)

    Article  Google Scholar 

  112. W. Cao, C. Wei, J. Hu, Q. Li, Direct electrochemistry and electrocatalysis of myoglobin immobilized on gold nanoparticles/carbon nanotubes nanohybrid film. Electroanalysis 20(17), 1925–1931 (2008)

    Article  Google Scholar 

  113. R.A. Caruso, M. Antonietti, Sol–gel nanocoating: an approach to the preparation of structured materials. Chem. Mater. 13(10), 3272–3282 (2001)

    Article  Google Scholar 

  114. R. Toledano, D. Mandler, Electrochemical codeposition of thin gold nanoparticles/sol–gel nanocomposite films. Chem. Mater. 22(13), 3943–3951 (2010)

    Article  Google Scholar 

  115. H. Zhang, G. Chen, Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol–gel method. Environ. Sci. Technol. 43(8), 2905–2910 (2009)

    Article  Google Scholar 

  116. J. Wang, Electrochemical biosensing based on noble metal nanoparticles. Microchim. Acta 177(3–4), 245–270 (2012)

    Article  Google Scholar 

  117. K. Zhou, Y. Zhu, X. Yang, J. Luo, C. Li, S. Luan, A novel hydrogen peroxide biosensor based on Au-graphene-HRP-chitosan biocomposites. Electrochim. Acta 55(9), 3055–3060 (2010)

    Article  Google Scholar 

  118. J.M. Abad, M. Gass, A. Bleloch, D.J. Schiffrin, Direct electron transfer to a metalloenzyme redox center coordinated to a monolayer-protected cluster. J. Am. Chem. Soc. 131(29), 10229–10236 (2009)

    Article  Google Scholar 

  119. G. Lai, F. Yan, J. Wu, C. Leng, H. Ju, Ultrasensitive multiplexed immunoassay with electrochemical stripping analysis of silver nanoparticles catalytically deposited by gold nanoparticles and enzymatic reaction. Anal. Chem. 83(7), 2726–2732 (2011)

    Article  Google Scholar 

  120. Y. Fu, P. Li, T. Wang, L. Bu, Q. Xie, X. Xu, L. Lei, C. Zou, J. Chen, S. Yao, Novel polymeric bionanocomposites with catalytic Pt nanoparticles label immobilized for high performance amperometric immunoassay. Biosens. Bioelectron. 25(7), 1699–1704 (2010)

    Article  Google Scholar 

  121. V. Mani, B.V. Chikkaveeraiah, V. Patel, J.S. Gutkind, J.F. Rusling, Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme-particle amplification. ACS Nano 3(3), 585–594 (2009)

    Article  Google Scholar 

  122. S. Liu, P. Wu, W. Li, H. Zhang, C. Cai, Ultrasensitive and selective electrochemical identification of hepatitis C virus genotype 1b based on specific endonuclease combined with gold nanoparticles signal amplification. Anal. Chem. 83(12), 4752–4758 (2011)

    Article  Google Scholar 

  123. K. Glynou, P.C. Ioannou, T.K. Christopoulos, V. Syriopoulou, Oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization. Anal. Chem. 75(16), 4155–4160 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the MICINN (Spain) (projects CTQ2010-16271 and CTQ2010-18570).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Solla-Gullón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Vidal-Iglesias, F.J., Gómez-Mingot, M., Solla-Gullón, J. (2016). Surface Treatment Strategies on Catalytic Metal Nanoparticles. In: Aliofkhazraei, M. (eds) Handbook of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-15338-4_50

Download citation

Publish with us

Policies and ethics