Skip to main content

Organic Modification of Hydroxylated Nanoparticles: Silica, Sepiolite, and Polysaccharides

  • Reference work entry
Handbook of Nanoparticles

Abstract

The incorporation of organic compounds onto the surface of nanoparticles (NPs) differs from the same reactions carried out on macroscopic surfaces in that the former are characterized by surfaces energies much higher than the latter. Consequently, surface stabilization mechanisms of NPs are very active, and among them NP self-aggregation is the first and most important. In NP surface modification, the ability of the experimental conditions to destroy self-aggregation will determine the extent to which the NP surface is modified and so, the modified NP nature. A second consequence of the high-surface free energy is the NP surface avidity to interact chemically or physically with other compounds: NPs readily adsorb water, gases, vapors, or other higher molecular weight substances, and in the particular case of hydroxylated NP, chemical reactivity is both high and rich. This chapter will deal with the surface modification of silica, sepiolite, and polysaccharides. Experimental strategies, resulting organo-NPs, their structure and properties, and frequent uses and applications of them will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.F. Vansant, P. Van Der Voort, K.C. Vrancken, Characterization and Chemical Modification of the Silica Surface. Studies in Surface Science and Catalysis (Elsevier, 1995)

    Google Scholar 

  2. B. Buszewski, M. Jezierska, M. Wełniak, D. Berek, Survey and trends in the preparation of chemically bonded silica phases for liquid chromatographic analysis. HRC J. High Resolut. Chromatogr. 21(5), 267–281 (1998)

    Article  Google Scholar 

  3. R.K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica (Wiley, New York, 1979)

    Google Scholar 

  4. P. Van Der Voort, E.F. Vansant, Silylation of the silica surface. A review. J. Liq. Chromatogr. Relat. Technol. 19(17–18), 2723–2752 (1996)

    Article  Google Scholar 

  5. H. Ishida, J.L. Koenig, Reinforcement mechanism of fiber-glass reinforced plastics under wet conditions: a review. Polym. Eng. Sci. 18(2), 128–145 (1978)

    Article  Google Scholar 

  6. I. Halasz, I. Sebestian, New stationary phase for chromatography. Angew. Chem. Int. Ed. 8(6), 453 (1969)

    Article  Google Scholar 

  7. D.C. Locke, J.T. Schmermu, B. Banner, Bonded stationary phases for chromatography. Anal. Chem. 44(1), 90 (1972)

    Article  Google Scholar 

  8. K. Unger, W. Thomas, P. Adrian, Herstellung oberflächenmodifizierter Adsorbentien – III. Arylierung von Siliciumdioxidoberflächen durch Reaktion mit Organolithiumverbindungen. Kolloid Z. Z. Polym. 251(1), 45–52 (1973)

    Article  Google Scholar 

  9. O.E. Brust, I. Sebestian, I. Halász, Stationäre phasen mit SiN bindung für die flügkeitschromatographie. J. Chromatogr. A 83(C), 15–24 (1973)

    Article  Google Scholar 

  10. J.J. Kirkland, J.J. Destefan, Controlled surface porosity supports with chemically-bonded organic stationary phases for gas and liquid chromatography. J. Chromatogr. Sci. 8(6), 309 (1970)

    Article  Google Scholar 

  11. L.C. Sander, S.A. Wise, Synthesis and characterization of polymeric C18 stationary phases for liquid chromatography. Anal. Chem. 56(3), 504–510 (1984)

    Article  Google Scholar 

  12. J.E. Sandoval, J.J. Pesek, Hydrolytically stable bonded chromatographic phases prepared through hydrosilation of olefins on a hydride-modified silica intermediate. Anal. Chem. 63(22), 2634–2641 (1991)

    Article  Google Scholar 

  13. C.H. Chu, E. Jonsson, M. Auvinen, J.J. Pesek, J.E. Sandoval, A new approach for the preparation of a hydride-modified substrate used as an intermediate in the synthesis of surface-bonded materials. Anal. Chem. 65(6), 808–816 (1993)

    Article  Google Scholar 

  14. N. Plumeré, B. Speiser, H.A. Mayer, D. Joosten, L. Wesemann, High-temperature chlorination-reduction sequence for the preparation of silicon hydride modified silica surfaces. Chem. Eur. J. 15(4), 936–946 (2009)

    Article  Google Scholar 

  15. S. Boutet, B. Jousseaume, T. Toupance, M. Biesemans, R. Willem, C. Labrugère, L. Delattre, Functionalization of silica gel with organotrialkynyltins: new method of covalent attachment of organic groups on silica gel. Chem. Mater. 17(7), 1803–1811 (2005)

    Article  Google Scholar 

  16. N. Garcia, E. Benito, J. Guzman, P. Tiemblo, Use of p-toluenesulfonic acid for the controlled grafting of alkoxysilanes onto silanol containing surfaces: preparation of tunable hydrophilic, hydrophobic, and super-hydrophobic silica. J. Am. Chem. Soc. 129(16), 5052–5060 (2007)

    Article  Google Scholar 

  17. L.T. Zhuravlev, The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf. A Physicochem. Eng. Asp. 173(1–3), 1–38 (2000)

    Article  Google Scholar 

  18. D.W. Sindorf, G.E. Maciel, Silicon-29 CP/MAS NMR studies of methylchlorosilane reactions on silica gel. J. Am. Chem. Soc. 103(14), 4263–4265 (1981)

    Article  Google Scholar 

  19. K.C. Vrancken, K. Possemiers, P. Vandervoort, E.F. Vansant, Surface modification of silica gels with aminoorganosilanes. Coll. Surf. Physicochem. Eng. Aspects 98(3), 235–241 (1995)

    Article  Google Scholar 

  20. B. Porsch, Epoxy- and diol-modified silica: optimization of surface bonding reaction. J. Chromatogr. A 653(1), 1–7 (1993)

    Article  Google Scholar 

  21. M.R. Rosen, From treating solution to filler surface and beyond – life-history of a silane coupling agent. J. Coat. Technol. 50(644), 70–82 (1978)

    Google Scholar 

  22. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397), 710–712 (1992)

    Article  Google Scholar 

  23. P.M. Price, J.H. Clark, D.J. Macquarrie, Modified silicas for clean technology. J. Chem. Soc. Dalton Trans. 2, 101–110 (2000)

    Article  Google Scholar 

  24. N. Garcia, E. Benito, J. Guzman, P. Tiemblo, V. Morales, R.A. Garcia, Functionalization of SBA-15 by an acid-catalyzed approach: a surface characterization study. Microporous Mesoporous Mater. 106, 129–139 (2007)

    Article  Google Scholar 

  25. P.K. Jal, S. Patel, B.K. Mishra, Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta 62(5), 1005–1028 (2004)

    Article  Google Scholar 

  26. X. Feng, Functionalized monolayers on ordered mesoporous supports. Science 276(5314), 923–926 (1997)

    Article  Google Scholar 

  27. H. Zou, S. Wu, J. Shen, Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem. Rev. 108(9), 3893–3957 (2008)

    Article  Google Scholar 

  28. A.Y. Fadeev, T.J. McCarthy, Trialkylsilane monolayers covalently attached to silicon surfaces: wettability studies indicating that molecular topography contributes to contact angle hysteresis. Langmuir 15(11), 3759–3766 (1999)

    Article  Google Scholar 

  29. J. Bravo, L. Zhai, Z. Wu, R.E. Cohen, M.F. Rubner, Transparent superhydrophobic films based on silica nanoparticles. Langmuir 23(13), 7293–7298 (2007)

    Article  Google Scholar 

  30. A. Procopio, G. De Luca, M. Nardi, M. Oliverio, R. Paonessa, General MW-assisted grafting of MCM-41: study of the dependence on time dielectric heating and solvent. Green Chem. 11(6), 770 (2009)

    Article  Google Scholar 

  31. N. Garcia, E. Benito, J. Guzman, R. de Francisco, P. Tiemblo, Microwave versus conventional heating in the grafting of alkyltrimethoxysilanes onto silica particles. Langmuir 26(8), 5499–5506 (2010)

    Article  Google Scholar 

  32. J.R. Combes, L.D. White, C.P. Tripp, Chemical modification of metal oxide surfaces in supercritical CO2: in situ infrared studies of the adsorption and reaction of organosilanes on silica. Langmuir 15(22), 7870–7875 (1999)

    Article  Google Scholar 

  33. C. Cao, A.Y. Fadeev, T.J. McCarthy, Reactions of organosilanes with silica surfaces in carbon dioxide. Langmuir 17(3), 757–761 (2001)

    Article  Google Scholar 

  34. T. Lummerstorfer, H. Hoffmann, Click chemistry on surfaces: 1,3-dipolar cycloaddition reactions of azide-terminated monolayers on silica. J. Phys. Chem. B 108(13), 3963–3966 (2004)

    Article  Google Scholar 

  35. R. Ranjan, W.J. Brittain, Combination of living radical polymerization and click chemistry for surface modification. Macromolecules 40(17), 6217–6223 (2007)

    Article  Google Scholar 

  36. O. Prucker, J. Rühe, Mechanism of radical chain polymerizations initiated by azo compounds covalently bound to the surface of spherical particles. Macromolecules 31(3), 602–613 (1998)

    Article  Google Scholar 

  37. R. Barbey, L. Lavanant, D. Paripovic, N. Schüwer, C. Sugnaux, S. Tugulu, H.A. Klok, Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem. Rev. 109(11), 5437–5527 (2009)

    Article  Google Scholar 

  38. D.W. Schaefer, D. Kohls, E. Feinblum, Morphology of highly dispersing precipitated silica: impact of drying and sonication. J. Inorg. Organomet. Polym. Mater. 22(3), 617–623 (2012)

    Article  Google Scholar 

  39. S.K. Parida, S. Dash, S. Patel, B.K. Mishra, Adsorption of organic molecules on silica surface. Adv. Colloid Interface Sci. 121(1–3), 77–110 (2006)

    Article  Google Scholar 

  40. R. De Francisco, Ph.D. thesis, Universidad Autónoma de Madrid, 2013

    Google Scholar 

  41. N. Yan, M.R. Gray, J.H. Masliyah, On water-in-oil emulsions stabilized by fine solids. Colloids Surf. A Physicochem. Eng. Asp. 193(1–3), 97–107 (2001)

    Article  Google Scholar 

  42. H. Engelhardt, D. Mathes, Chemically bonded stationary phases for aqueous high-performance exclusion chromatography. J. Chromatogr. A 142(C), 311–320 (1977)

    Article  Google Scholar 

  43. M.B. Evans, A.D. Dale, C.J. Little, The preparation and evaluation of superior bonded phases for reversed-phase, high-performance liquid chromatography. Chromatographia 13(1), 5–10 (1980)

    Article  Google Scholar 

  44. Y. Sun, Z. Zhang, C.P. Wong, Study on mono-dispersed nano-size silica by surface modification for underfill applications. J. Colloid Interface Sci. 292(2), 436–444 (2005)

    Article  Google Scholar 

  45. T.M. Wu, M.S. Chu, Preparation and characterization of thermoplastic vulcanizate/silica nanocomposites. J. Appl. Polym. Sci. 98(5), 2058–2063 (2005)

    Article  Google Scholar 

  46. Y.H. Lai, M.C. Kuo, J.C. Huang, M. Chen, On the PEEK composites reinforced by surface-modified nano-silica. Mater. Sci. Eng. A 458(1–2), 158–169 (2007)

    Article  Google Scholar 

  47. A. Voronov, A. Kohut, A. Synytska, W. Peukert, Mechanochemical modification of silica with poly(1-vinyl-2-pyrrolidone) by grinding in a stirred media mill. J. Appl. Polym. Sci. 104(6), 3708–3714 (2007)

    Article  Google Scholar 

  48. Y. Liang, M. Ozawa, A. Krueger, A general procedure to functionalize agglomerating nanoparticles demonstrated on nanodiamond. ACS Nano 3(8), 2288–2296 (2009)

    Article  Google Scholar 

  49. R.P. Bagwe, L.R. Hilliard, W. Tan, Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 22(9), 4357–4362 (2006)

    Article  Google Scholar 

  50. X. Li, Z. Cao, Z. Zhang, H. Dang, Surface-modification in situ of nano-SiO2 and its structure and tribological properties. Appl. Surf. Sci. 252(22), 7856–7861 (2006)

    Article  Google Scholar 

  51. S. Tsantilis, S.E. Pratsinis, Soft- and hard-agglomerate aerosols made at high temperatures. Langmuir 20(14), 5933–5939 (2004)

    Article  Google Scholar 

  52. D. Li, R.B. Kaner, How nucleation affects the aggregation of nanoparticles. J. Mater. Chem. 17(22), 2279–2282 (2007)

    Article  Google Scholar 

  53. D. Li, R.B. Kaner, Shape and aggregation control of nanoparticles: not shaken, not stirred. J. Am. Chem. Soc. 128(3), 968–975 (2006)

    Article  Google Scholar 

  54. P.H. Mutin, G. Guerrero, A. Vioux, Hybrid materials from organophosphorus coupling molecules. J. Mater. Chem. 15(35–36), 3761–3768 (2005)

    Article  Google Scholar 

  55. M.-A. Neouze, U. Schubert, Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatsh. Chem. Chem. Mon. 139(3), 183–195 (2008)

    Article  Google Scholar 

  56. M.H. Kim, H.K. Na, Y.K. Kim, S.R. Ryoo, H.S. Cho, K.E. Lee, H. Jeon, R. Ryoo, D.H. Min, Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery. ACS Nano 5(5), 3568–3576 (2011)

    Article  Google Scholar 

  57. R. Kumar, I. Roy, T.Y. Ohulchanskky, L.A. Vathy, E.J. Bergey, M. Sajjad, P.N. Prasad, In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano 4(2), 699–708 (2010)

    Article  Google Scholar 

  58. Y. An, M. Chen, Q. Xue, W. Liu, Preparation and self-assembly of carboxylic acid-functionalized silica. J. Colloid Interface Sci. 311(2), 507–513 (2007)

    Article  Google Scholar 

  59. M. Nakamura, K. Ishimura, One-pot synthesis and characterization of three kinds of thiol – organosilica nanoparticles. Langmuir 24(9), 5099–5108 (2008)

    Article  Google Scholar 

  60. J. Kobler, K. Möller, T. Bein, Colloidal suspensions of functionalized mesoporous silica nanoparticles. ACS Nano 2(4), 791–799 (2008)

    Article  Google Scholar 

  61. L.R. Hilliard, X. Zhao, W. Tan, Immobilization of oligonucleotides onto silica nanoparticles for DNA hybridization studies. Anal. Chim. Acta 470(1), 51–56 (2002)

    Article  Google Scholar 

  62. G. Hernández, R. Rodríguez, Adsorption properties of silica sols modified with thiol groups. J. Non Cryst. Solids 246(3), 209–215 (1999)

    Article  Google Scholar 

  63. Y. Wu, C. Chen, S. Liu, Enzyme-functionalized silica nanoparticles as sensitive labels in biosensing. Anal. Chem. 81(4), 1600–1607 (2009)

    Article  Google Scholar 

  64. R. Voss, M.A. Brook, J. Thompson, Y. Chen, R.H. Pelton, J.D. Brennan, Non-destructive horseradish peroxidase immobilization in porous silica nanoparticles. J. Mater. Chem. 17(46), 4854–4863 (2007)

    Article  Google Scholar 

  65. L. Han, Y. Sakamoto, O. Terasaki, Y. Li, S. Che, Synthesis of carboxylic group functionalized mesoporous silicas (CFMSs) with various structures. J. Mater. Chem. 17(12), 1216–1221 (2007)

    Article  Google Scholar 

  66. S. Cousinié, M. Gressier, P. Alphonse, M.J. Menu, Silica-based nanohybrids containing dipyridine, urethan, or urea derivatives. Chem. Mater. 19(26), 6492–6503 (2007)

    Article  Google Scholar 

  67. Z. Csogör, M. Nacken, M. Sameti, C.M. Lehr, H. Schmidt, Modified silica particles for gene delivery. Mater. Sci. Eng. C 23(1–2), 93–97 (2003)

    Article  Google Scholar 

  68. N. García, J. Guzmán, E. Benito, A. Esteban-Cubillo, E. Aguilar, J. Santarén, P. Tiemblo, Surface modification of sepiolite in aqueous gels by using methoxysilanes and its impact on the nanofiber dispersion ability. Langmuir 27(7), 3952–3959 (2011)

    Article  Google Scholar 

  69. S. De Monredon, A. Pottier, J. Maquet, F. Babonneau, C. Sanchez, Characterisation of the grafting of (3-aminoethyl) aminopropyltrimethoxysilane on precipitated silica. New J. Chem. 30(5), 797–802 (2006)

    Article  Google Scholar 

  70. V. Feldmann, J. Engelmann, S. Gottschalk, H.A. Mayer, Synthesis, characterization and examination of Gd[DO3A-hexylamine]-functionalized silica nanoparticles as contrast agent for MRI-applications. J. Colloid Interface Sci. 366(1), 70–79 (2012)

    Article  Google Scholar 

  71. P.K. Jal, R.K. Dutta, M. Sudarshan, A. Saha, S.N. Bhattacharyya, S.N. Chintalapudi, K. Mishra B, Extraction of metal ions using chemically modified silica gel: a PIXE analysis. Talanta 55(2), 233–240 (2001)

    Article  Google Scholar 

  72. S. Santra, P. Zhang, K. Wang, R. Tapec, W. Tan, Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal. Chem. 73(20), 4988–4993 (2001)

    Article  Google Scholar 

  73. H. Wang, J. Li, Y. Ding, C. Lei, G. Shen, R. Yu, Novel immunoassay for Toxoplasma gondii-specific immunoglobulin G using a silica nanoparticle-based biomolecular immobilization method. Anal. Chim. Acta 501(1), 37–43 (2004)

    Article  Google Scholar 

  74. K. Patel, S. Angelos, W.R. Dichtel, A. Coskun, Y.W. Yang, J.I. Zink, J.F. Stoddart, Enzyme-responsive snap-top covered silica nanocontainers. J. Am. Chem. Soc. 130(8), 2382–2383 (2008)

    Article  Google Scholar 

  75. C. Chen, J. Geng, F. Pu, X. Yang, J. Ren, X. Qu, Polyvalent nucleic acid/mesoporous silica nanoparticle conjugates: dual stimuli-responsive vehicles for intracellular drug delivery. Angew. Chem. Int. Ed. 50(4), 882–886 (2011)

    Article  Google Scholar 

  76. Z. Guo, A. Lei, X. Liang, Q. Xu, Click chemistry: a new facile and efficient strategy for preparation of functionalized HPLC packings. Chem. Commun. 43, 4512–4514 (2006)

    Article  Google Scholar 

  77. H.S. Mader, M. Link, D.E. Achatz, K. Uhlmann, X. Li, O.S. Wolfbeis, Surface-modified upconverting microparticles and nanoparticles for use in click chemistries. Chem. Eur. J. 16(18), 5416–5424 (2010)

    Article  Google Scholar 

  78. W.R. Algar, D.E. Prasuhn, M.H. Stewart, T.L. Jennings, J.B. Blanco-Canosa, P.E. Dawson, I.L. Medintz, The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconjug. Chem. 22(5), 825–858 (2011)

    Article  Google Scholar 

  79. M.A. Rocco, J.Y. Kim, A. Burns, J. Kostecki, A. Doody, U. Wiesner, M.P. DeLisa, Site-specific labeling of surface proteins on living cells using genetically encoded peptides that bind fluorescent nanoparticle probes. Bioconjug. Chem. 20(8), 1482–1489 (2009)

    Article  Google Scholar 

  80. S.G. Zhu, J.J. Xiang, X.L. Li, S.R. Shen, H.B. Lu, J. Zhou, W. Xiong, B.C. Zhang, X.M. Nie, M. Zhou, K. Tang, G.Y. Li, Poly(l-lysine)-modified silica nanoparticles for the delivery of antisense oligonucleotides. Biotechnol. Appl. Biochem. 39(2), 179–187 (2004)

    Article  Google Scholar 

  81. Y.V. Kazakevich, A.Y. Fadeev, Adsorption characterization of oligo(dimethylsiloxane)-modified silicas: an example of highly hydrophobic surfaces with non-aliphatic architecture. Langmuir 18(8), 3117–3122 (2002)

    Article  Google Scholar 

  82. M. Hoyos, N. Garcia, R. Navarro, A. Dardano, A. Ratto, F. Guastavino, P. Tiemblo, Electrical strength in ramp voltage AC tests of LDPE and its nanocomposites with silica and fibrous and laminar silicates. J. Polym. Sci. Part B Polym. Phys. 46(13), 1301–1311 (2008)

    Article  Google Scholar 

  83. P. Tiemblo, M. Hoyos, J.M. Gomez-Elvira, J. Guzman, N. Garcia, A. Dardano, F. Guastavino, The development of electrical treeing in LDPE and its nanocomposites with spherical silica and fibrous and laminar silicates. J. Phys. D Appl. Phys. 41(12)

    Google Scholar 

  84. Y. Shin, D. Lee, K. Lee, K.H. Ahn, B. Kim, Surface properties of silica nanoparticles modified with polymers for polymer nanocomposite applications. J. Ind. Eng. Chem. 14(4), 515–519 (2008)

    Article  Google Scholar 

  85. D.R. Radu, C.Y. Lai, K. Jeftinija, E.W. Rowe, S. Jeftinija, V.S.Y. Lin, A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J. Am. Chem. Soc. 126(41), 13216–13217 (2004)

    Article  Google Scholar 

  86. M. Motornov, R. Sheparovych, R. Lupitskyy, E. MacWilliams, S. Minko, Superhydrophobic surfaces generated from water-borne dispersions of hierarchically assembled nanoparticles coated with a reversibly switchable shell. Adv. Mater. 20(1), 200–205 (2008)

    Article  Google Scholar 

  87. L.F. Cai, X.B. Huang, M.Z. Rong, W.H. Ruan, M.Q. Zhang, Effect of grafted polymeric foaming agent on the structure and properties of nano-silica/polypropylene composites. Polymer 47(20), 7043–7050 (2006)

    Article  Google Scholar 

  88. G. Li, D.L. Zeng, L. Wang, B. Zong, K.G. Neoh, E.T. Kang, Hairy hybrid nanoparticles of magnetic core, fluorescent silica shell, and functional polymer brushes. Macromolecules 42(21), 8561–8565 (2009)

    Article  Google Scholar 

  89. S. Berger, A. Synytska, L. Ionov, K.-J. Eichhorn, M. Stamm, Stimuli-responsive bicomponent polymer Janus particles by “grafting from”/“grafting to” approaches. Macromolecules 41(24), 9669–9676 (2008)

    Article  Google Scholar 

  90. S.-H. Cheng, C.-H. Lee, M.-C. Chen, J.S. Souris, F.-G. Tseng, C.-S. Yang, C.-Y. Mou, C.-T. Chen, L.-W. Lo, Tri-functionalization of mesoporous silica nanoparticles for comprehensive cancer theranostics-the trio of imaging, targeting and therapy. J. Mater. Chem. 20(29), 6149–6157 (2010)

    Article  Google Scholar 

  91. E. Ruiz-Hernández, A. Baeza, M. Vallet-Regí, Smart drug delivery through DNA/magnetic nanoparticle gates. ACS Nano 5(2), 1259–1266 (2011)

    Article  Google Scholar 

  92. A.B.. Pawar, I. Kretzschmar, Fabrication, assembly, and application of patchy particles. Macromol. Rapid Commun. NA-NA (2010)

    Google Scholar 

  93. J. Yan, M.C. Estévez, J.E. Smith, K. Wang, X. He, L. Wang, W. Tan, Dye-doped nanoparticles for bioanalysis. Nano Today 2(3), 44–50 (2007)

    Article  Google Scholar 

  94. I.I. Slowing, J.L. Vivero-Escoto, C.W. Wu, V.S.Y. Lin, Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 60(11), 1278–1288 (2008)

    Article  Google Scholar 

  95. K.E. Sapsford, W.R. Algar, L. Berti, K.B. Gemmill, B.J. Casey, E. Oh, M.H. Stewart, I.L. Medintz, Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem. Rev. 113(3), 1904–2074 (2013)

    Article  Google Scholar 

  96. Z.P. Xu, Q.H. Zeng, G.Q. Lu, A.B. Yu, Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci. 61(3), 1027–1040 (2006)

    Article  Google Scholar 

  97. C. Barbé, J. Bartlett, L. Kong, K. Finnie, H.Q. Lin, M. Larkin, S. Calleja, A. Bush, G. Calleja, Silica particles: a novel drug-delivery system. Adv. Mater. 16(21), 1959–1966 (2004)

    Article  Google Scholar 

  98. R. Tapec, X.J. Zhao, W. Tan, Development of organic dye-doped silica nanoparticles for bioanalysis and biosensors. J. Nanosci. Nanotechnol. 2(3–4), 405–409 (2002)

    Article  Google Scholar 

  99. C.H. Yu, A. Al-Saadi, S.J. Shih, L. Qiu, K.Y. Tam, S.C. Tsang, Immobilization of BSA on silica-coated magnetic iron oxide nanoparticle. J. Phys. Chem. C 113(2), 537–543 (2009)

    Article  Google Scholar 

  100. D.J. Bharali, I. Klejbor, E.K. Stachowiak, P. Dutta, I. Roy, N. Kaur, E.J. Bergey, P.N. Prasad, M.K. Stachowiak, Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc. Natl. Acad. Sci. U. S. A. 102(32), 11539–11544 (2005)

    Article  Google Scholar 

  101. A.B. Descalzo, R. Martínez-Máñez, F. Sancenón, K. Hoffmann, K. Rurack, The supramolecular chemistry of organic–inorganic hybrid materials. Angew. Chem. Int. Ed. 45(36), 5924–5948 (2006)

    Article  Google Scholar 

  102. J.L. Vivero-Escoto, I.I. Slowing, V.S.Y. Lin, B.G. Trewyn, Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small 6(18), 1952–1967 (2010)

    Article  Google Scholar 

  103. C.Y. Lai, B.G. Trewyn, D.M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija, V.S.Y. Lin, A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J. Am. Chem. Soc. 125(15), 4451–4459 (2003)

    Article  Google Scholar 

  104. K.C.F. Leung, T.D. Nguyen, J.F. Stoddart, J.I. Zink, Supramolecular nanovalves controlled by proton abstraction and competitive binding. Chem. Mater. 18(25), 5919–5928 (2006)

    Article  Google Scholar 

  105. L. Nebhani, C. Barner-Kowollik, Orthogonal transformations on solid substrates: efficient avenues to surface modification. Adv. Mater. 21(34), 3442–3468 (2009)

    Article  Google Scholar 

  106. D.E. Achatz, F.J. Heiligtag, X. Li, M. Link, O.S. Wolfbeis, Colloidal silica nanoparticles for use in click chemistry-based conjugations and fluorescent affinity assays. Sens. Actuators B Chem. 150(1), 211–219 (2010)

    Article  Google Scholar 

  107. S.H. Kim, M. Jeyakumar, J.A. Katzenellenbogen, Dual-mode fluorophore-doped nickel nitrilotriacetic acid-modified silica nanoparticles combine histidine-tagged protein purification with site-specific fluorophore labeling. J. Am. Chem. Soc. 129(43), 13254–13264 (2007)

    Article  Google Scholar 

  108. S. Bonacchi, D. Genovese, R. Juris, M. Montalti, L. Prodi, E. Rampazzo, M. Sgarzi, N. Zaccheroni, Luminescent chemosensors based on silica nanoparticles, in Luminescence Applied in Sensor Science, vol. 300, ed. by L. Prodi, M. Montalti, N. Zaccheroni. Top Curr Chem., 93–138 (2011)

    Google Scholar 

  109. A. van Blaaderen, A. Vrij, Synthesis and characterization of colloidal dispersions of fluorescent, monodisperse silica spheres. Langmuir 8(12), 2921–2931 (1992)

    Article  Google Scholar 

  110. P. Calero, R. Martínez-Máñez, F. Sancenón, J. Soto, Synthesis, characterisation and optical properties of silica nanoparticles coated with anthracene fluorophore and thiourea hydrogen-bonding subunits. Eur. J. Inorg. Chem. 36, 5649–5658 (2008)

    Article  Google Scholar 

  111. R. Spennato, M.J. Menu, M. Dartiguenave, Y. Dartiguenave, Silver thiolato complexes grafted on silica and dissolved in organic solution. Transit. Met. Chem. 29(8), 830–839 (2004)

    Article  Google Scholar 

  112. P. Cassagnau, Melt rheology of organoclay and fumed silica nanocomposites. Polymer 49(9), 2183–2196 (2008)

    Article  Google Scholar 

  113. K.Y. Lau, A.S. Vaughan, G. Chen, I.L. Hosier, Polyethylene nanodielectrics: the effect of nanosilica and its surface treatment on electrical breakdown strength, in 2012 I.E. Conference on Electrical Insulation and Dielectric Phenomena, CEIDP 2012, Montreal, 2012, pp. 21–24

    Google Scholar 

  114. F. Bauer, H.J. Gläsel, U. Decker, H. Ernst, A. Freyer, E. Hartmann, V. Sauerland, R. Mehnert, Trialkoxysilane grafting onto nanoparticles for the preparation of clear coat polyacrylate systems with excellent scratch performance. Prog. Org. Coat. 47(2), 147–153 (2003)

    Article  Google Scholar 

  115. R.Y. Hong, H.P. Fu, Y.J. Zhang, L. Liu, J. Wang, H.Z. Li, Y. Zheng, Surface-modified silica nanoparticles for reinforcement of PMMA. J. Appl. Polym. Sci. 105(4), 2176–2184 (2007)

    Article  Google Scholar 

  116. S.K. Medda, D. Kundu, G. De, Inorganic–organic hybrid coatings on polycarbonate. Spectroscopic studies on the simultaneous polymerizations of methacrylate and silica networks. J. Non Cryst. Solids 318(1–2), 149–156 (2003)

    Article  Google Scholar 

  117. S.-M. Yang, S.G. Jang, D.-G. Choi, S. Kim, H.K. Yu, Nanomachining by colloidal lithography. Small 2(4), 458–475 (2006)

    Article  Google Scholar 

  118. Y.Y. Yan, N. Gao, W. Barthlott, Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Adv. Colloid Interface Sci. 169(2), 80–105 (2011)

    Article  Google Scholar 

  119. W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta Int. J. Biol. 202, 1–8 (1997)

    Google Scholar 

  120. N. Garcia, E. Benito, P. Tiemblo, M.M.B. Hasan, A. Synytska, M. Stamm, Chemically guided topography in alkylsilane- and oligosiloxane-modified silica nanoparticle coatings: from very hydrophobic surfaces to “pearl” bouncing droplets. Soft Matter 6(19), 4768–4776 (2010)

    Article  Google Scholar 

  121. Y. Zhao, S. Perrier, Reversible addition-fragmentation chain transfer graft polymerization mediated by fumed silica supported chain transfer agents. Macromolecules 40(25), 9116–9124 (2007)

    Article  Google Scholar 

  122. M.A. Jordi, T.A.P. Seery, Quantitative determination of the chemical composition of silica-poly(norbornene) nanocomposites. J. Am. Chem. Soc. 127(12), 4416–4422 (2005)

    Article  Google Scholar 

  123. J.-H. Yang, S.-H. Choi, Comparison study of a chiral stationary phase based on cellulose derivatives prepared by “grafting from” and “grafting to” methods. J. Appl. Polym. Sci. 127(5), 4122–4128 (2013)

    Article  Google Scholar 

  124. K. Zhang, H. Chen, X. Chen, Z. Chen, Z. Cui, B. Yang, Monodisperse silica-polymer core-shell microspheres via surface grafting and emulsion polymerization. Macromol. Mater. Eng. 288(4), 380–385 (2003)

    Article  Google Scholar 

  125. M. Wiśniewska, Temperature effect on adsorption properties of silica-polyacrylic acid interface. J. Therm. Anal. Calorim. 101(2), 753–760 (2010)

    Article  Google Scholar 

  126. R.A. Akoum, C. Vaulot, D. Schwartz, M.-P. Hirn, B. Haidar, How silanization of silica particles affects the adsorption of PDMS chains on its surface. J. Polym. Sci. B 48(22), 2371–2378 (2010)

    Article  Google Scholar 

  127. E. Hübner, J. Allgaier, M. Meyer, J. Stellbrink, W. Pyckhout-Hintzen, D. Richter, Synthesis of polymer/silica hybrid nanoparticles using anionic polymerization techniques. Macromolecules 43(2), 856–867 (2009)

    Article  Google Scholar 

  128. C.D. Vo, A. Schmid, S.P. Armes, K. Sakai, S. Biggs, Surface ATRP of hydrophilic monomers from ultrafine aqueous silica sols using anionic polyelectrolytic macroinitiators. Langmuir 23(2), 408–413 (2007)

    Article  Google Scholar 

  129. B. Chang, D. Chen, Y. Wang, Y. Chen, Y. Jiao, X. Sha, W. Yang, Bioresponsive controlled drug release based on mesoporous silica nanoparticles coated with reductively sheddable polymer shell. Chem. Mater. 25(4), 574–585 (2013)

    Article  Google Scholar 

  130. X.X. Zhang, B.B. Xia, H.P. Ye, Y.L. Zhang, B. Xiao, L.H. Yan, H.B. Lv, B. Jiang, One-step sol–gel preparation of PDMS-silica ORMOSILs as environment-resistant and crack-free thick antireflective coatings. J. Mater. Chem. 22(26), 13132–13140 (2012)

    Article  Google Scholar 

  131. R. Zárraga, J. Cervantes, C. Salazar-Hernandez, G. Wheeler, Effect of the addition of hydroxyl-terminated polydimethylsiloxane to TEOS-based stone consolidants. J. Cult. Herit. 11(2), 138–144 (2010)

    Article  Google Scholar 

  132. K. Siwińska-Stefańska, J. Walkowiak, A. Krysztafkiewicz, T. Jesionowski, Polymer adsorption on the surface of highly dispersed silica. Appl. Surf. Sci. 254(11), 3591–3600 (2008)

    Article  Google Scholar 

  133. Y. Samoshina, A. Diaz, Y. Becker, T. Nylander, B. Lindman, Adsorption of cationic, anionic and hydrophobically modified polyacrylamides on silica surfaces. Colloids Surf. A Physicochem. Eng. Asp. 231(1–3), 195–205 (2003)

    Article  Google Scholar 

  134. H. Sertchook, H. Elimelech, D. Avnir, Composite particles of silica/poly(dimethylsiloxane). Chem. Mater. 17(18), 4711–4716 (2005)

    Article  Google Scholar 

  135. C.L. Wu, M.Q. Zhang, M.Z. Rong, K. Friedrich, Silica nanoparticles filled polypropylene: effects of particle surface treatment, matrix ductility and particle species on mechanical performance of the composites. Compos. Sci. Technol. 65(3–4), 635–645 (2005)

    Article  Google Scholar 

  136. E. Mubarekyan, M.M. Santore, Influence of molecular weight and layer age on self-exchange kinetics for saturated layers of PEO in a good solvent. Macromolecules 34(14), 4978–4986 (2001)

    Article  Google Scholar 

  137. Y. Huang, M.M. Santore, Dynamics in adsorbed layers of associative polymers in the limit of strong backbone − surface attractions. Langmuir 18(6), 2158–2165 (2002)

    Article  Google Scholar 

  138. G.J. Howard, P. McConnell, Adsorption of polymers at the solution-solid interface. I. Polyethers on silica. J. Phys. Chem. 71(9), 2974–2981 (1967)

    Article  Google Scholar 

  139. A. Bose, R.K. Gilpin, M. Jaroniec, Adsorption and thermogravimetric studies of mesoporous silica coated with siloxane polymer. J. Colloid Interface Sci. 240(1), 224–228 (2001)

    Article  Google Scholar 

  140. A. Haouam, E. Pefferkorn, Adsorption and desorption of macromolecules at a solid–liquid interface. Colloids Surf. 34(4), 371–379 (1988)

    Article  Google Scholar 

  141. S. Kapsabelis, C.A. Prestidge, Adsorption of ethyl(hydroxyethyl)cellulose onto silica particles: the role of surface chemistry and temperature. J. Colloid Interface Sci. 228(2), 297–305 (2000)

    Article  Google Scholar 

  142. T. Cosgrove, T.G. Heath, K. Ryan, Terminally attached polystyrene chains on modified silicas. Langmuir 10(10), 3500–3506 (1994)

    Article  Google Scholar 

  143. V.M. Litvinov, H. Barthel, J. Weis, Structure of a PDMS layer grafted onto a silica surface studied by means of DSC and solid-state NMR. Macromolecules 35(11), 4356–4364 (2002)

    Article  Google Scholar 

  144. B. Radhakrishnan, R. Ranjan, W.J. Brittain, Surface initiated polymerizations from silica nanoparticles. Soft Matter 2(5), 386–396 (2006)

    Article  Google Scholar 

  145. Y. Yang, Z. Yang, Q. Zhao, X. Cheng, S.C. Tjong, R.K.Y. Li, X. Wang, X. Xie, Immobilization of RAFT agents on silica nanoparticles utilizing an alternative functional group and subsequent surface-initiated RAFT polymerization. J. Polym. Sci. Part A Polym. Chem. 47(2), 467–484 (2009)

    Article  Google Scholar 

  146. M. Shamsipur, J. Fasihi, K. Ashtari, Grafting of ion-imprinted polymers on the surface of silica gel particles through covalently surface-bound initiators: a selective sorbent for uranyl ion. Anal. Chem. 79(18), 7116–7123 (2007)

    Article  Google Scholar 

  147. J.M. Breiner, J.E. Mark, G. Beaucage, Dependence of silica particle sizes on network chain lengths, silica contents, and catalyst concentrations in in situ-reinforced polysiloxane elastomers. J. Polym. Sci. B 37(13), 1421–1427 (1999)

    Article  Google Scholar 

  148. A.B. Wojcik, L.C. Klein, Transparent inorganic/organic copolymers by the sol–gel process: copolymers of tetraethyl orthosilicate (TEOS), vinyl triethoxysilane (VTES) and (meth)acrylate monomers. J. Sol Gel Sci. Technol. 4(1), 57–66 (1995)

    Article  Google Scholar 

  149. Z.H. Huang, K.Y. Qiu, The effects of interactions on the properties of acrylic polymers/silica hybrid materials prepared by the in situ sol–gel process. Polymer 38(3), 521–526 (1997)

    Article  Google Scholar 

  150. B. Nagy, W.F. Bradley, Am. Mineral. 40, 885 (1955)

    Google Scholar 

  151. K. Brauner, A. Preisinger, Mineralogische Mitteilungen 3(4), 120 (1956)

    Google Scholar 

  152. J. Santarén, J. Sanz, E. Ruiz-Hitzky, Structural fluorine in sepiolite. Clays Clay Miner. 38, 63–68 (1990)

    Article  Google Scholar 

  153. M. Molina-Sabio, F. Caturla, F. Rodríguez-Reinoso, G.V. Kharitonova, Porous structure of a sepiolite as deduced from the adsorption of N2, CO2, NH3 and H2O. Microporous Mesoporous Mater. 47, 389–396 (2001)

    Article  Google Scholar 

  154. E. Ruiz-Hitzky, Molecular access to intracrystalline tunnels of sepiolite. J. Mater. Chem. 11(1), 86–91 (2001)

    Article  Google Scholar 

  155. E. Ruiz-Hitzky, J.J. Fripiat, Organomineral derivatives obtained by reacting organochlorosilanes with the surface of silicates in organic solvents. Clays Clay Miner. 24(1), 25–30 (1976)

    Article  Google Scholar 

  156. A.J. Aznar, J. Sanz, E. Ruiz-Hitzky, Mechanism of the grafting of organosilanes on mineral surfaces. IV. Phenylderivatives of sepiolite and poly (organosiloxanes). Colloid Polym. Sci. 270(2), 165–176 (1992)

    Article  Google Scholar 

  157. J.L. Aldrichs, C. Serna, J.M. Serratosa, Structural hydroxyls in sepiolites. Clays Clay Miner. 23, 119–124 (1975)

    Article  Google Scholar 

  158. J. Serratosa, Surface properties of fibrous clay minerals (palygorskite and sepiolite). Dev. Sedimentol. 27, 99–109 (1979)

    Article  Google Scholar 

  159. E. Galan, Properties and applications of palygorskite-sepiolite clays. Clay Miner. 31, 443–453 (1996)

    Article  Google Scholar 

  160. E. Bilotti, R. Zhang, H. Deng, F. Quero, H.R. Fischer, T. Peijs, Sepiolite needle-like clay for PA6 nanocomposites: an alternative to layered silicates? Compos. Sci. Technol. 69(15–16), 2587–2595 (2009)

    Article  Google Scholar 

  161. R. Benlikaya, M. Alkan, İ. Kaya, Preparation and characterization of sepiolite-poly(ethyl methacrylate) and poly(2-hydroxyethyl methacrylate) nanocomposites. Polym. Compos. 30(11), 1585–1594 (2009)

    Article  Google Scholar 

  162. S. Inagaki, Y. Fukushima, H. Doi, O. Kamigaito, Pore size distribution and adsorption selectivity of sepiolite. Clay Miner. 25, 99–105 (1990)

    Article  Google Scholar 

  163. A.J. Dandy, M.S. Nadiye-Tabbiruka, Surface properties of sepiolite from Amboseli, Tanzania, and its catalytic activity for ethanol decomposition. Clays Clay Miner. 30(5), 347–352 (1982)

    Article  Google Scholar 

  164. Y. Grillet, J.M. Cases, M. Francois, J. Rouquerol, J.E. Poirier, Modification of the porous structure and surface area of sepiolite under vacuum thermal treatment. Clays Clay Miner. 36(3), 233–242 (1988)

    Article  Google Scholar 

  165. D. García-López, J.F. Fernández, J.C. Merino, J. Santarén, J.M. Pastor, Effect of organic modification of sepiolite for PA 6 polymer/organoclay nanocomposites. Compos. Sci. Technol. 70(10), 1429–1436 (2010)

    Article  Google Scholar 

  166. T. Hibino, A. Tsunashima, A. Yamazaki, R. Otsuka, Model calculation of sepiolite surface areas. Clays Clay Miner. 43(4), 391–396 (1995)

    Article  Google Scholar 

  167. T.F. Álvarez, Variación de la superficie específica de la sepiolita precalentada a diferentes temperaturas. Bol. Soc. Esp. Cerám. Vidrio 9(4), 377–394 (1970)

    Google Scholar 

  168. C. Serna, J.L. Ahlrichs, M. Serratosa, Folding in sepiolite crystals. Clays Clay Miner. 23, 452–457 (1975)

    Article  Google Scholar 

  169. T.F. Alvarez, Efecto de la deshidratación sobre las propiedades adsorbentes de la palygoskita y sepiolita. Clay Miner. 13, 325–335 (1978)

    Article  Google Scholar 

  170. L. Castillo, L. Lescano, L. Sirvent, S. Barbosa, S. Marfil, P. Maiza, Separación y purificación de fibras de sepiolita: contribución al procesamiento de arcillas especiales para uso industrial. Geoacta 36, 113–127 (2011)

    Google Scholar 

  171. J. Santarén Romé, E. Aguilar Díez, A. Esteban Cubillo, A. Álvarez Berenguer, E. Benito Cano, N. García García, J. Guzmán Perote, P. Tiemblo Magro, Method for producing a compound based on pseudolaminar silicates and the use thereof as filler for polymeric materials, PCT/ES2012/070051 (2012)

    Google Scholar 

  172. A. Mejía, N. García, J. Guzmán, P. Tiemblo, Confinement and nucleation effects in poly(ethylene oxide) melt-compounded with neat and coated sepiolite nanofibers: modulation of the structure and semicrystalline morphology. Eur. Polym. J. 49(1), 118–129 (2013)

    Article  Google Scholar 

  173. A. Mejía, N. García, J. Guzmán, P. Tiemblo, Surface modification of sepiolite nanofibers with PEG based compounds to prepare polymer electrolytes applied clay science. 95, 265–274 (2014)

    Google Scholar 

  174. M.N.F. Hernández, E. Ruiz-Hitzky, Interacción de Isocianatos Con Sepiolita. Clay Miner. 14, 295–305 (1979)

    Article  Google Scholar 

  175. P. Aranda, R. Kun, M.A. Martín-Luengo, S. Letaïef, I. Dékány, E. Ruiz-Hitzky, Titania–sepiolite nanocomposites prepared by a surfactant templating colloidal route. Chem. Mater. 20(1), 84–91 (2008)

    Article  Google Scholar 

  176. Y. Yu, X. Zhong, W. Gan, Conductive composites based on core–shell polyaniline nanoclay by latex blending. Colloid Polym. Sci. 287(4), 487–493 (2009)

    Article  Google Scholar 

  177. E. Ruiz-Hitzky, M. Darder, P. Aranda, M.Á.M. del Burgo, G. del Real, Bionanocomposites as new carriers for influenza vaccines. Adv. Mater. 21(41), 4167–4171 (2009)

    Article  Google Scholar 

  178. N. Garcia, M. Hoyos, J. Guzman, P. Tiemblo, Comparing the effect of nanofillers as thermal stabilizers in low density polyethylene. Polym. Degrad. Stab. 94(1), 39–48 (2009)

    Article  Google Scholar 

  179. R. Celis, M.C. HermosÍn, J. Cornejo, Heavy metal adsorption by functionalized clays. Environ. Sci. Technol. 34(21), 4593–4599 (2000)

    Article  Google Scholar 

  180. M. Doğan, Y. Turhan, M. Alkan, H. Namli, P. Turan, Ö. Demirbaş, Functionalized sepiolite for heavy metal ions adsorption. Desalination 230(1–3), 248–268 (2008)

    Article  Google Scholar 

  181. Y. Turhan, P. Turan, M. Doǧan, M. Alkan, H. Namli, O. Demirbas, Characterization and adsorption properties of chemically modified sepiolite. Ind. Eng. Chem. Res. 47(6), 1883–1895 (2008)

    Article  Google Scholar 

  182. G. Tartaglione, D. Tabuani, G. Camino, Thermal and morphological characterisation of organically modified sepiolite. Microporous Mesoporous Mater. 107(1–2), 161–168 (2008)

    Article  Google Scholar 

  183. A. Alvarez-Berenguer, F.R. Sanchez-Montero, J.J. Aragon-Martinez, Process for obtaining silane derivatives of sepiolite by reaction with alkoxy-silanes to improve their reinforcing capacity in polymers. United States Patent US4302594 A, 1981

    Google Scholar 

  184. K.A. Carrado, L. Xu, R. Csencsits, J.V. Muntean, Use of organo- and alkoxysilanes in the synthesis of grafted and pristine clays. Chem. Mater. 13(10), 3766–3773 (2001)

    Article  Google Scholar 

  185. J. Lemic, M. Tomasevic-Canovic, M. Djuricic, T. Stanic, Surface modification of sepiolite with quaternary amines. J. Colloid Interface Sci. 292(1), 11–19 (2005)

    Article  Google Scholar 

  186. Y. Kitayama, H. Katoh, T. Kodama, J. Abe, Polymerization of pyrrole in intracrystalline tunnels of sepiolite. Appl. Surf. Sci. 121–122, 331–334 (1997)

    Article  Google Scholar 

  187. W. Kuang, G.A. Facey, C. Detellier, B. Casal, J.M. Serratosa, E. Ruiz-Hitzky, Nanostructured hybrid materials formed by sequestration of pyridine molecules in the tunnels of sepiolite. Chem. Mater. 15(26), 4956–4967 (2003)

    Article  Google Scholar 

  188. G. Rytwo, S. Nir, L. Margulies, B. Casal, J. Merino, E. Ruiz-Hitzky, J.M. Serratosa, Adsorption of monovalent organic cations on sepiolite: experimental results and model calculations. Clays Clay Miner. 46(3), 340–348 (1998)

    Article  Google Scholar 

  189. I. Küncek, S. Şener, Adsorption of methylene blue onto sonicated sepiolite from aqueous solutions. Ultrason. Sonochem. 17(1), 250–257 (2010)

    Article  Google Scholar 

  190. R. Giustetto, K. Seenivasan, S. Bordiga, Spectroscopic characterization of a sepiolite-based Maya Blue pigment. Periodico di Mineralogia 79(Spec. Issue), 21–37 (2010)

    Google Scholar 

  191. L. Bokobza, A. Burr, G. Garnaud, M.Y. Perrin, S. Pagnotta, Fibre reinforcement of elastomers: nanocomposites based on sepiolite and poly(hydroxyethyl acrylate). Polym. Int. 53(8), 1060–1065 (2004)

    Article  Google Scholar 

  192. E. Bilotti, H.R. Fischer, T. Peijs, Polymer nanocomposites based on needle-like sepiolite clays: effect of functionalized polymers on the dispersion of nanofiller, crystallinity, and mechanical properties. J. Appl. Polym. Sci. 107(2), 1116–1123 (2008)

    Article  Google Scholar 

  193. G. Tartaglione, D. Tabuani, G. Camino, M. Moisio, PP and PBT composites filled with sepiolite: morphology and thermal behaviour. Compos. Sci. Technol. 68(2), 451–460 (2008)

    Article  Google Scholar 

  194. M. Alkan, G. Tekin, H. Namli, FTIR and zeta potential measurements of sepiolite treated with some organosilanes. Microporous Mesoporous Mater. 84(1–3), 75–83 (2005)

    Article  Google Scholar 

  195. C. Pecharromán, A. Esteban-Cubillo, I. Montero, J.S. Moya, E. Aguilar, J. Santarén, A. Alvarez, Monodisperse and corrosion-resistant metallic nanoparticles embedded into sepiolite particles for optical and magnetic applications. J. Am. Ceram. Soc. 89(10), 3043–3049 (2006)

    Article  Google Scholar 

  196. A. Esteban-Cubillo, C. Pecharromán, E. Aguilar, J. Santarén, J.S. Moya, Antibacterial activity of copper monodispersed nanoparticles into sepiolite. J. Mater. Sci. 41(16), 5208–5212 (2006)

    Article  Google Scholar 

  197. P. Tiemblo, E. Benito, N. García, A. Esteban-Cubillo, R. Pina-Zapardiel, C. Pecharromán, Multiscale gold and silver plasmonic plastics by melt compounding. RSC Adv. 2(3), 915–919 (2012)

    Article  Google Scholar 

  198. P. Aranda, M. Darder, R. Fernández-Saavedra, M. López-Blanco, E. Ruiz-Hitzky, Relevance of polymer- and biopolymer-clay nanocomposites in electrochemical and electroanalytical applications. Thin Solid Films 495(1–2), 104–112 (2006)

    Article  Google Scholar 

  199. C. Schuerch, Polysaccharides, in Encyclopedia of Polymer Science and Technology, ed. by H.F. Mark (Wiley, New York, 1986), pp. 87–162

    Google Scholar 

  200. P. Honnavally, R.N.T. Ramesh, Carbohydrates-the renewable raw materials of high biotechnological value. Crit. Rev. Biotechnol. 23(2), 149–173 (2003)

    Article  Google Scholar 

  201. M.A. Azizi Samir, F. Alloin, A. Dufresne, Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6, 612–626 (2005)

    Article  Google Scholar 

  202. Y. Nishiyama, Structure and properties of the cellulose microfibril. J. Wood Sci. 55(4), 241–249 (2009)

    Article  Google Scholar 

  203. T. Saito, S. Kimura, Y. Nishiyama, A. Isogai, Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8), 2485–2491 (2007)

    Article  Google Scholar 

  204. M. Henriksson, G. Henriksson, L.A. Berglund, T. Lindström, An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur. Polym. J. 43(8), 3434–3441 (2007)

    Article  Google Scholar 

  205. F.W. Herrick, R.L. Casebier, J.K. Hamilton, K.R. Sandberg, Microfibrillated cellulose: morphology and accessibility. J. Appl. Polym. Sci. Appl. Polym. Symp. 37, 797–813 (1983)

    Google Scholar 

  206. A.F. Turbak, F.W. Snyder, K.R. Sandberg, Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J. Appl. Polym. Sci. Appl. Polym. Symp. 37, 815–827 (1983)

    Google Scholar 

  207. K. Fleming, D.G. Gray, S. Matthews, Cellulose crystallites. Chem. Eur. J. 7(9), 1831–1835 (2001)

    Article  Google Scholar 

  208. R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011)

    Article  Google Scholar 

  209. S.J. Eichhorn, A. Dufresne, M. Aranguren, N.E. Marcovich, J.R. Capadona, S.J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A.N. Nakagaito, A. Mangalam, J. Simonsen, A.S. Benight, A. Bismarck, L.A. Berglund, T. Peijs, Review: current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 45(1), 1–33 (2010)

    Article  Google Scholar 

  210. N. Lin, J. Huang, A. Dufresne, Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4(11), 3274–3294 (2012)

    Article  Google Scholar 

  211. Y. Habibi, L.A. Lucia, O.J. Rojas, Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110(6), 3479–3500 (2010)

    Article  Google Scholar 

  212. E. Lam, K.B. Male, J.H. Chong, A.C. Leung, J.H. Luong, Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol. 30(5), 283–290 (2012)

    Article  Google Scholar 

  213. D. Klemm, F. Kramer, S. Moritz, T. Lindstrom, M. Ankerfors, D. Gray, A. Dorris, Nanocelluloses: a new family of nature-based materials. Angew. Chem. 50(24), 5438–5466 (2011)

    Article  Google Scholar 

  214. Y.N. Tsuguyuki Saito, J.-L. Putaux, M. Vignon, A. Isogai, Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6), 1687–1691 (2006)

    Article  Google Scholar 

  215. A. Isogai, T. Saito, H. Fukuzumi, TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1), 71–85 (2011)

    Article  Google Scholar 

  216. M. Hasani, E.D. Cranston, G. Westman, D.G. Gray, Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4(11), 2238 (2008)

    Article  Google Scholar 

  217. S. Spoljaric, A. Genovese, R.A. Shanks, Polypropylene–microcrystalline cellulose composites with enhanced compatibility and properties. Compos. Part A Appl. Sci. Manuf. 40(6–7), 791–799 (2009)

    Article  Google Scholar 

  218. S. Padalkar, J.R. Capadona, S.J. Rowan, C. Weder, Y.H. Won, L.A. Stanciu, R.J. Moon, Natural biopolymers: novel templates for the synthesis of nanostructures. Langmuir 26(11), 8497–8502 (2010)

    Article  Google Scholar 

  219. C.C. Gousse, H. Excoffier, G. Soubeyrand, L. Fleury, Stable suspension of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43, 2645–2651 (2002)

    Article  Google Scholar 

  220. G. Siqueira, J. Bras, A. Dufresne, Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2), 425–432 (2009)

    Article  Google Scholar 

  221. A. Sullo, Y. Wang, A. Koschella, T. Heinze, T.J. Foster, Self-association of novel mixed 3-mono-O-alkyl cellulose: effect of the hydrophobic moieties ratio. Carbohydr. Polym. 93(2), 574–581 (2013)

    Article  Google Scholar 

  222. S. Beck-Candanedo, M. Roman, D.G. Gray, Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2), 1048–1054 (2005)

    Article  Google Scholar 

  223. X. Wang, G. Fang, C. Hu, T. Du, Application of ultrasonic waves in activation of microcrystalline cellulose. J. Appl. Polym. Sci. 109(5), 2762–2767 (2008)

    Article  Google Scholar 

  224. D. Ishii, D. Tatsumi, T. Matsumoto, Effect of solvent exchange on the solid structure and dissolution behavior of cellulose. Biomacromolecules 4(5), 1238–1243 (2003)

    Article  Google Scholar 

  225. A.F. Turbak, Recent developments in cellulose solvent systems. Tappi J. 67(1), 94–96 (1984)

    Google Scholar 

  226. D. Ishii, D. Tatsumi, T. Matsumoto, Effect of solvent exchange on the supramolecular structure, the molecular mobility and the dissolution behavior of cellulose in LiCl/DMAc. Carbohydr. Res. 343(5), 919–928 (2008)

    Article  Google Scholar 

  227. Y. Peng, D.J. Gardner, Y. Han, Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19(1), 91–102 (2012)

    Article  Google Scholar 

  228. J. Han, C. Zhou, Y. Wu, F. Liu, Q. Wu, Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromolecules 14(5), 1529–1540 (2013)

    Article  Google Scholar 

  229. D. Roy, M. Semsarilar, J.T. Guthrie, S. Perrier, Cellulose modification by polymer grafting: a review. Chem. Soc. Rev. 38(7), 2046–2064 (2009)

    Article  Google Scholar 

  230. B. Braun, J.R. Dorgan, Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromolecules 10(2), 334–341 (2009)

    Article  Google Scholar 

  231. Y. Habibi, H. Chanzy, M.R. Vignon, TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13(6), 679–687 (2006)

    Article  Google Scholar 

  232. N. Lin, J. Huang, P.R. Chang, J. Feng, J. Yu, Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydr. Polym. 83(4), 1834–1842 (2011)

    Article  Google Scholar 

  233. A. Pei, Q. Zhou, L.A. Berglund, Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA) – crystallization and mechanical property effects. Compos. Sci. Technol. 70(5), 815–821 (2010)

    Article  Google Scholar 

  234. S. Dong, M. Roman, Fluorescently labeled cellulose nanocrystals for bioimaging applications. J. Am. Chem. Soc. 129, 13810–13811 (2007)

    Article  Google Scholar 

  235. G. Morandi, L. Heath, W. Thielemans, Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25(14), 8280–8286 (2009)

    Article  Google Scholar 

  236. J. Yi, Q. Xu, X. Zhang, H. Zhang, Chiral-nematic self-ordering of rodlike cellulose nanocrystals grafted with poly(styrene) in both thermotropic and lyotropic states. Polymer 49(20), 4406–4412 (2008)

    Article  Google Scholar 

  237. Q. Xu, J. Yi, X. Zhang, H. Zhang, A novel amphotropic polymer based on cellulose nanocrystals grafted with azo polymers. Eur. Polym. J. 44(9), 2830–2837 (2008)

    Article  Google Scholar 

  238. J. Majoinen, A. Walther, J.R. McKee, E. Kontturi, V. Aseyev, J.M. Malho, J. Ruokolainen, O. Ikkala, Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization. Biomacromolecules 12(8), 2997–3006 (2011)

    Article  Google Scholar 

  239. G. Morandi, W. Thielemans, Synthesis of cellulose nanocrystals bearing photocleavable grafts by ATRP. Polym. Chem. 3(6), 1402 (2012)

    Article  Google Scholar 

  240. J.O. Zoppe, Y. Habibi, O.J. Rojas, R.A. Venditti, L.S. Johansson, K. Efimenko, M. Osterberg, J. Laine, Poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals via surface-initiated single-electron transfer living radical polymerization. Biomacromolecules 11(10), 2683–2691 (2010)

    Article  Google Scholar 

  241. J. Yi, Q. Xu, X. Zhang, H. Zhang, Temperature-induced chiral nematic phase changes of suspensions of poly(N, N-dimethylaminoethyl methacrylate)-grafted cellulose nanocrystals. Cellulose 16(6), 989–997 (2009)

    Article  Google Scholar 

  242. J.K. Pandey, W.S. Chu, C.S. Kim, C.S. Lee, S.H. Ahn, Bio-nano reinforcement of environmentally degradable polymer matrix by cellulose whiskers from grass. Compos. Part B Eng. 40(7), 676–680 (2009)

    Article  Google Scholar 

  243. P.T. Sébastien Perrier, J. Westwood, D.M. Lewis, Versatile chain transfer agents for Reversible Addition Fragmentation Chain Transfer (RAFT) polymerization to synthesize functional polymeric architectures. Macromolecules 37, 2709–2717 (2004)

    Article  Google Scholar 

  244. J. Chen, J. Yi, P. Sun, Z.-T. Liu, Z.-W. Liu, Grafting from ramie fiber with poly(MMA) or poly(MA) via reversible addition-fragmentation chain transfer polymerization. Cellulose 16(6), 1133–1145 (2009)

    Article  Google Scholar 

  245. M. Barsbay, O. Guven, M.H. Stenzel, T.P. Davis, C. Barner-Kowollik, L. Barner, Verification of controlled grafting of styrene from cellulose via radiation-induced RAFT polymerization. Macromolecules 40, 7140–7147 (2007)

    Article  Google Scholar 

  246. M. Salajková, L.A. Berglund, Q. Zhou, Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. J. Mater. Chem. 22(37), 19798 (2012)

    Article  Google Scholar 

  247. M. Roman, W. Winter, Cellulose Nanocomposites: Processing, Characterization, and Properties. ACS Symposium Series (American Chemical Society, Washington, DC, 2006)

    Google Scholar 

  248. M. Grunert, W.T. Winter, Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J. Polym. Environ. 10(1–2), 27–30 (2002)

    Article  Google Scholar 

  249. M. Grunert, W.T. Winter, Progress in the development of cellulose reinforced nanocomposites. Polym. Mater. Sci. Eng. 82, 232 (2000)

    Google Scholar 

  250. J. Lu, P. Askeland, L.T. Drzal, Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49(5), 1285–1296 (2008)

    Article  Google Scholar 

  251. A.G. Cunha, A. Gandini, Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose. Cellulose 17(5), 875–889 (2010)

    Article  Google Scholar 

  252. A.G. Cunha, A. Gandini, Turning polysaccharides into hydrophobic materials: a critical review. Part 2. Hemicelluloses, chitin/chitosan, starch, pectin and alginates. Cellulose 17(6), 1045–1065 (2010)

    Article  Google Scholar 

  253. A. Berendjchi, R. Khajavi, M.E. Yazdanshenas, Fabrication of superhydrophobic and antibacterial surface on cotton fabric by doped silica-based sols with nanoparticles of copper. Nanoscale Res. Lett. 6(1), 594 (2011)

    Article  Google Scholar 

  254. L.C. Tomé, M.G. Freire, L.P.N. Rebelo, A.J.D. Silvestre, C.P. Neto, I.M. Marrucho, C.S.R. Freire, Surface hydrophobization of bacterial and vegetable cellulose fibers using ionic liquids as solvent media and catalysts. Green Chem. 13(9), 2464 (2011)

    Article  Google Scholar 

  255. M.J. Lucero, C. Claro, M. Casas, M.R. Jimenez-Castellanos, Drug diffusion from disperse systems with a hydrophobically modified polysaccharide: enhancer vs Franz cells. Carbohydr. Polym. 92(1), 149–156 (2013)

    Article  Google Scholar 

  256. Z. Liu, Y. Jiao, Y. Wang, C. Zhou, Z. Zhang, Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Deliv. Rev. 60(15), 1650–1662 (2008)

    Article  Google Scholar 

  257. G.D. Lars Wågberg, M. Norgren, T. Lindström, M. Ankerfors, K. Axnäs, The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24(3), 784–795 (2008)

    Article  Google Scholar 

  258. P. Podsiadlo, S.Y. Choi, B. Shim, J. Lee, M. Cuddihy, N.A. Kotov, Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. Biomacromolecules 6(6), 2914–2918 (2005)

    Article  Google Scholar 

  259. E.D. Cranston, D.G. Gray, M.W. Rutland, Direct surface force measurements of polyelectrolyte multilayer films containing nanocrystalline cellulose. Langmuir 26(22), 17190–17197 (2010)

    Article  Google Scholar 

  260. B. Jean, F. Dubreuil, L. Heux, F. Cousin, Structural details of cellulose nanocrystals/polyelectrolytes multilayers probed by neutron reflectivity and AFM. Langmuir 24(7), 3452–3458 (2008)

    Article  Google Scholar 

  261. H. Wang, M. Roman, Formation and properties of chitosan-cellulose nanocrystal polyelectrolyte-macroion complexes for drug delivery applications. Biomacromolecules 12(5), 1585–1593 (2011)

    Article  Google Scholar 

  262. R. de Francisco, P. Tiemblo, M. Hoyos, C. González-Arellano, N. García, L. Berglund, A. Synytska, Multipurpose Ultra and Superhydrophobic Surfaces Based on Oligodimethylsiloxane-Modified Nanosilica. ACS Appl. Mater. Interfaces 6, 18998–19010 (2014)

    Google Scholar 

  263. Y. Habibi, A. Dufresne, Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromolecules 9, 1974–1980 (2008)

    Article  Google Scholar 

  264. X. Cao, Y. Habibi, L.A. Lucia, One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. J. Mater. Chem. 19(38), 7137 (2009)

    Article  Google Scholar 

  265. N. Ljungberg, C. Bonini, F. Bortolussi, C. Boisson, L. Heux, J.Y. Cavaille, New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6(5), 2732–2739 (2005)

    Article  Google Scholar 

  266. M.W. Jun Araki, S. Kuga, Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17, 21–27 (2001)

    Article  Google Scholar 

  267. A.P. Mangalam, J. Simonsen, A.S. Benight, Cellulose/DNA hybrid nanomaterials. Biomacromolecules 10, 497–504 (2009)

    Article  Google Scholar 

  268. F. Azzam, L. Heux, J.L. Putaux, B. Jean, Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals. Biomacromolecules 11(12), 3652–3659 (2010)

    Article  Google Scholar 

  269. Y. Habibi, A.-L. Goffin, N. Schiltz, E. Duquesne, P. Dubois, A. Dufresne, Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J. Mater. Chem. 18(41), 5002 (2008)

    Article  Google Scholar 

  270. M. Labet, W. Thielemans, Improving the reproducibility of chemical reactions on the surface of cellulose nanocrystals: ROP of ε-caprolactone as a case study. Cellulose 18(3), 607–617 (2011)

    Article  Google Scholar 

  271. A.L. Goffin, J.M. Raquez, E. Duquesne, G. Siqueira, Y. Habibi, A. Dufresne, P. Dubois, From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules 12(7), 2456–2465 (2011)

    Article  Google Scholar 

  272. K. Missoum, M. Belgacem, J. Bras, Nanofibrillated cellulose surface modification: a review. Materials 6(5), 1745–1766 (2013)

    Article  Google Scholar 

  273. M.N. Anglès, J. Salvadó, A. Dufresne, Steam-exploded residual softwood-filled polypropylene composites. J. Appl. Polym. Sci. 74, 1962–1977 (1999)

    Article  Google Scholar 

  274. P. Stenstad, M. Andresen, B.S. Tanem, P. Stenius, Chemical surface modifications of microfibrillated cellulose. Cellulose 15(1), 35–45 (2008)

    Article  Google Scholar 

  275. M. Andresen, P. Stenstad, T. Moretro, S. Langsrud, K. Syverud, L.S. Johansson, P. Stenius, Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromolecules 8(7), 2149–2155 (2007)

    Article  Google Scholar 

  276. E. Malmström, A. Carlmark, Controlled grafting of cellulose fibres – an outlook beyond paper and cardboard. Polym. Chem. 3(7), 1702 (2012)

    Article  Google Scholar 

  277. Y. Zhou, C. Fuentes-Hernandez, T.M. Khan, J.C. Liu, J. Hsu, J.W. Shim, A. Dindar, J.P. Youngblood, R.J. Moon, B. Kippelen, Recyclable organic solar cells on cellulose nanocrystal substrates. Sci. Rep. 3, 1536 (2013)

    Google Scholar 

  278. A. Pourjavadi, F. Seidi, S.S. Afjeh, N. Nikoseresht, H. Salimi, N. Nemati, Synthesis of soluble N-functionalized polysaccharide derivatives using phenyl carbonate precursor and their application as catalysts. Starch Stärke 63(12), 780–791 (2011)

    Article  Google Scholar 

  279. K. Gopalan Nair, A. Dufresne, A. Gandini, M.N. Belgacem, Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4(6), 1835–1842 (2003)

    Article  Google Scholar 

  280. L. Feng, Z. Zhou, A. Dufresne, J. Huang, M. Wei, L. An, Structure and properties of new thermoforming bionanocomposites based on chitin whisker-graft-polycaprolactone. J. Appl. Polym. Sci. 112(5), 2830–2837 (2009)

    Article  Google Scholar 

  281. Q. Yang, X. Pan, K. Clarke, K. Li, Covalent functionalization of graphene with polysaccharides. Ind. Eng. Chem. Res. 51(1), 310–317 (2012)

    Article  Google Scholar 

  282. K. Kurita, Controlled functionalization of the polysaccharide chitin. Prog. Polym. Sci. 26, 1921–1971 (2001)

    Article  Google Scholar 

  283. J. Mergy, A. Fournier, E. Hachet, R. Auzély-Velty, Modification of polysaccharides via thiol-ene chemistry: a versatile route to functional biomaterials. J. Polym. Sci. Part A Polym. Chem. 50(19), 4019–4028 (2012)

    Article  Google Scholar 

  284. T. Heinze, T. Liebert, B. Heublein, S. Hornig, Functional polymers based on dextran. Adv. Polym. Sci. 205, 199–291 (2006)

    Article  Google Scholar 

  285. P.S. Pramod, K. Takamura, S. Chaphekar, N. Balasubramanian, M. Jayakannan, Dextran vesicular carriers for dual encapsulation of hydrophilic and hydrophobic molecules and delivery into cells. Biomacromolecules 13(11), 3627–3640 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Spanish Ministry via Project MAT2011-29174-C02-02 and Alberto Mejía’s FPI Grant. Raquel de Francisco thanks CSIC for funding from JAE-Pre Program. Dra. Gisela Cunha is gratefully acknowledged for helpful discussions on various aspects of the present work and for kindly providing the TEM image of NCC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pilar Tiemblo or Nuria García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Tiemblo, P., García, N., Hoyos, M., Mejía, A., de Francisco, R. (2016). Organic Modification of Hydroxylated Nanoparticles: Silica, Sepiolite, and Polysaccharides. In: Aliofkhazraei, M. (eds) Handbook of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-15338-4_47

Download citation

Publish with us

Policies and ethics