Skip to main content

Advanced Engineering Approaches in the Development of PLGA-Based Nanomedicines

  • Reference work entry
Handbook of Nanoparticles

Abstract

Drug molecules often display little affinity for nonhealthy tissues and/or cells, leading to inefficiency, and high incidence of severe side effects. To face the problem, numerous strategies have been postulated, i.e., chemical modifications to the drug molecule, and proper engineering of drug nanocarriers. In this line, the introduction of poly(d,l-lactide-co-glycolide) nanoparticles in the drug delivery arena has been hypothesized to optimize drug biodistribution and concentration into the targeted site, thus improving the therapeutic effect while reducing the associated drug toxicity. Recent advances in the field have been devoted to the optimization of the in vivo fate and effectiveness of poly(d,l-lactide-co-glycolide)-based drug nanocarriers, i.e., by passive targeting strategies based on the functionalization of the particle surface with special biomolecules, and/or active targeting stratagems thanks to modifications leading to stimuli-responsive nanoparticles. In this chapter, we analyze the current state of the art and future perspectives in the formulation of poly(d,l-lactide-co-glycolide)-based nanomedicines against severe diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

17-AAG:

17-Allylamino-17-demethoxygeldanamycin

AEMA:

2-Aminoethyl methacrylamide

ALE:

Alendronate

anti-DR5:

Anti-death receptor 5

anti-EGFR:

Anti-epidermal growth factor receptor

anti-EpCAM:

Anti-epithelial cell adhesion molecule

anti-HER2:

Anti-human epidermal growth factor receptor 2

APO-1:

Apoptosis antigen 1

Apt:

Aptamer

7α-APTADD:

7α-(4′-Amino)phenylthio-1,4-androstadiene-3,17-dione

BBB:

Blood-brain barrier

BP:

Bisphosphonate

bPEI:

Branched poly(ethyleneimine)

BSA:

Bovine serum albumin

cLABL:

cyclo(1,12)PenITDGEATDSGC

CLR:

C-type lectin receptor

CPP:

Cell-penetrating peptide

CPT:

Camptothecin

cRGD:

Cyclic arginine-glycine-aspartic acid

DC:

Dendritic cell

DNA:

Deoxyribonucleic acid

DOPE:

1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine

DOSPA:

2,3-Dioleyloxy-N-[2(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanaminium trifluoroacetate

DOX:

Doxorubicin

DSPE:

1,2-Distearoyl-sn-glycero-3-phosphoethanolamine

DTPA:

Diethylenetriaminepentaacetic acid

EDC:

1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide

EPR:

Enhanced permeability and retention

FA:

Folic acid

FDA:

Food and Drug Administration

FR:

Far red

G-rich:

Guanosine-rich

gWiz-Luc:

Firefly luciferase reporter gene

HIV-1:

Human immunodeficiency virus type 1

HUVEC:

Human umbilical vein endothelial cell

IC50 :

Half maximum inhibitory concentration

ICAM-1:

Intercellular adhesion molecule-1

ICG:

Indocyanine green

KC:

Kupffer cell

MAb:

Monoclonal antibody

MAN:

Mannan

MDR1:

Multidrug resistance 1

Mw :

Molecular weight

Neu5Ac:

N-Acetylneuraminic acid

NHS:

N-Hydroxysucinimide

NIR:

Near infrared

NP:

Nanoparticle

OL:

Odorranalectin

OVA:

Ovalbumin

pDNA:

Plasmid deoxyribonucleic acid

PE:

l-α-Phosphatidylethanolamine

PEG:

Poly(ethylene glycol)

pEGFP:

Plasmid enhanced green fluorescent protein

PEI:

Poly(ethyleneimine)

P-gp:

P-glycoprotein

PLGA:

Poly(d,l-lactide-co-glycolide)

PSMA:

Prostate-specific membrane antigen

PTX:

Paclitaxel

PVA:

Polyvinyl alcohol

RES:

Reticuloendothelial system

RGD:

Arginine-glycine-aspartic acid

RNA:

Ribonucleic acid

SA:

Sialic acid

siRNA:

Small interfering ribonucleic acid

STL:

Solanum tuberosum lectin

TAT:

Transactivating transcriptional activator

Tf:

Transferrin

Tg:

Glass transition temperature

TNF:

Tumor necrosis factor

VCR:

Vincristine

WGA:

Wheat germ agglutinin

ζ:

Zeta potential

References

  1. S. Acharya, F. Dilnawaz, S.K. Sahoo, Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials 30, 5737–5750 (2009)

    Article  Google Scholar 

  2. F. Alexis, Factors affecting the degradation and drug-release mechanism of poly(lactic acid) and poly[(lactic acid)-co-(glycolic acid). Polymer Int. 54, 36–46 (2005)

    Article  Google Scholar 

  3. A. Aravind, P. Jeyamohan, R. Nair, S. Veeranarayanan, Y. Nagaoka, Y. Yoshida, T. Maekawa, D.S. Kumar, AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery. Biotechnol. Bioeng. 109, 2920–2931 (2012)

    Article  Google Scholar 

  4. A. Aravind, S.H. Varghese, S. Veeranarayanan, A. Mathew, Y. Nagaoka, S. Iwai, T. Fukuda, T. Hasumura, Y. Yoshida, T. Maekawa, D.S. Kumar, Aptamer-labeled PLGA nanoparticles for targeting cancer cells. Cancer Nanotechnol. 3, 1–12 (2012)

    Article  Google Scholar 

  5. A. Aravind, R. Nair, S. Raveendran, S. Veeranarayanan, Y. Nagaoka, T. Fukuda, T. Hasumura, H. Morimoto, Y. Yoshida, T. Maekawa, D.S. Kumar, Aptamer conjugated paclitaxel and magnetic fluid loaded fluorescently tagged PLGA nanoparticles for targeted cancer therapy. J. Magn. Magn. Mater. 344, 116–123 (2013)

    Article  Google Scholar 

  6. J.L. Arias, Drug targeting strategies in cancer treatment: an overview. Mini Rev. Med. Chem. 11, 1–17 (2011)

    Article  Google Scholar 

  7. J.L. Arias, Advanced methodologies to formulate nanotheragnostic agents for combined drug delivery and imaging. Expert Opin. Drug Deliv. 8, 1589–1608 (2011)

    Article  Google Scholar 

  8. C.E. Astete, C.M. Sabliov, Synthesis and characterization of PLGA nanoparticles. J. Biomater. Sci. Polym. Ed. 17, 247–289 (2006)

    Article  Google Scholar 

  9. A. Bicho, I.N. Peça, A.C. Roque, M.M. Cardoso, Anti-CD8 conjugated nanoparticles to target mammalian cells expressing CD8. Int. J. Pharm. 399, 80–86 (2010)

    Article  Google Scholar 

  10. L. Bondioli, L. Costantino, A. Ballestrazzi, D. Lucchesi, D. Boraschi, F. Pellati, S. Benvenuti, G. Tosi, M.A. Vandelli, PLGA nanoparticles surface decorated with the sialic acid, N-acetylneuraminic acid. Biomaterials 31, 3395–3403 (2010)

    Article  Google Scholar 

  11. E. Cenni, S. Avnet, D. Granchi, C. Fotia, M. Salerno, D. Micieli, M.G. Sarpietro, R. Pignatello, F. Castelli, N. Baldini, The effect of poly(d, l-lactide-co-glycolide)-alendronate conjugate nanoparticles on human osteoclast precursors. J. Biomater. Sci. Polym. Ed. 23, 1285–1300 (2012)

    Google Scholar 

  12. J. Chang, Y. Jallouli, M. Kroubi, X.B. Yuan, W. Feng, C.S. Kang, P.Y. Pu, D. Betbeder, Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood-brain barrier. Int. J. Pharm. 379, 285–292 (2009)

    Article  Google Scholar 

  13. S. Chen, X. Zhao, J. Chen, J. Chen, L. Kuznetsova, S.S. Wong, I. Ojima, Mechanism-based tumor-targeting drug delivery system. Validation of efficient vitamin receptor-mediated endocytosis and drug release. Bioconjug. Chem. 21, 979–987 (2010)

    Article  Google Scholar 

  14. J. Chen, S. Li, Q. Shen, Folic acid and cell-penetrating peptide conjugated PLGA-PEG bifunctional nanoparticles for vincristine sulfate delivery. Eur. J. Pharm. Sci. 47, 430–443 (2012)

    Article  Google Scholar 

  15. J. Chen, C. Zhang, Q. Liu, X. Shao, C. Feng, Y. Shen, Q. Zhang, X. Jiang, Solanum tuberosum lectin-conjugated PLGA nanoparticles for nose-to-brain delivery: in vivo and in vitro evaluations. J. Drug Target. 20, 174–184 (2012)

    Article  Google Scholar 

  16. J. Cheng, B.A. Teply, I. Sherifi, J. Sung, G. Luther, F.X. Gu, E. Levy-Nissenbaum, A.F. Radovic-Moreno, R. Langer, O.C. Farokhzad, Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 28, 869–876 (2007)

    Article  Google Scholar 

  17. C. Chittasupho, S.X. Xie, A. Baoum, T. Yakovleva, T.J. Siahaan, C.J. Berkland, ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells. Eur. J. Pharm. Sci. 37, 141–150 (2009)

    Article  Google Scholar 

  18. Y. Cui, Q. Xu, P.K. Chow, D. Wang, C.H. Wang, Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment. Biomaterials 34, 8511–8520 (2013)

    Article  Google Scholar 

  19. T.R. Daniels, E. Bernabeu, J.A. Rodríguez, S. Patel, M. Kozman, D.A. Chiappetta, E. Holler, J.Y. Ljubimova, G. Helguera, M.L. Penichet, The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim. Biophys. Acta 1820, 291–317 (2012)

    Article  Google Scholar 

  20. V.G. Deepagan, B. Sarmento, D. Menon, A. Nascimento, A. Jayasree, M. Sreeranganathan, M. Koyakutty, S.V. Nair, J. Rangasamy, In vitro targeted imaging and delivery of camptothecin using cetuximab-conjugated multifunctional PLGA-ZnS nanoparticles. Nanomedicine (Lond.) 7, 507–519 (2012)

    Article  Google Scholar 

  21. S. Dhar, F.X. Gu, R. Langer, O.C. Farokhzad, S.J. Lippard, Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 105, 17356–17361 (2008)

    Article  Google Scholar 

  22. R. Dinarvand, N. Sepehri, S. Manoochehri, H. Rouhani, F. Atyabi, Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int. J. Nanomedicine 6, 877–895 (2011)

    Article  Google Scholar 

  23. H. Ding, K.T. Yong, I. Roy, R. Hu, F. Wu, L. Zhao, W.C. Law, W. Zhao, W. Ji, L. Liu, E.J. Bergey, P.N. Prasad, Bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles as novel tumor targeting carriers. Nanotechnology 22, 165101 (2011)

    Article  Google Scholar 

  24. D.E. Discher, A. Eisenberg, Polymer vesicles. Science 297, 967–973 (2002)

    Article  Google Scholar 

  25. O.C. Farokhzad, J. Cheng, B.A. Teply, I. Sherifi, S. Jon, P.W. Kantoff, J.P. Richie, R. Langer, Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. U. S. A. 103, 6315–6320 (2006)

    Article  Google Scholar 

  26. F. Fay, K.M. McLaughlin, D.M. Small, D.A. Fennell, P.G. Johnston, D.B. Longley, C.J. Scott, Conatumumab (AMG 655) coated nanoparticles for targeted pro-apoptotic drug delivery. Biomaterials 32, 8645–8653 (2011)

    Article  Google Scholar 

  27. S. Fredenberg, M. Wahlgren, M. Reslow, A. Axelsson, The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems – a review. Int. J. Pharm. 415, 34–52 (2011)

    Article  Google Scholar 

  28. M. Garinot, V. Fiévez, V. Pourcelle, F. Stoffelbach, A. des Rieux, L. Plapied, I. Theate, H. Freichels, C. Jérôme, J. Marchand-Brynaert, Y.J. Schneider, V. Préat, PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J Control Release 120, 195–204 (2007)

    Article  Google Scholar 

  29. J. Geng, K. Li, K.Y. Pu, D. Ding, B. Liu, Conjugated polymer and gold nanoparticle co-loaded PLGA nanocomposites with eccentric internal nanostructure for dual-modal targeted cellular imaging. Small 8, 2421–2429 (2012)

    Article  Google Scholar 

  30. Z. Ghotbi, A. Haddadi, S. Hamdy, R.W. Hung, J. Samuel, A. Lavasanifar, Active targeting of dendritic cells with mannan-decorated PLGA nanoparticles. J. Drug Target. 19, 281–292 (2011)

    Article  Google Scholar 

  31. C.N. Grama, D.D. Ankola, M.N.V. Ravi Kumar, Poly(lactide-co-glycolide) nanoparticles for peroral delivery of bioactives. Curr. Opin. Colloid. Interface Sci. 16, 238–245 (2011)

    Article  Google Scholar 

  32. F. Gu, L. Zhang, B.A. Teply, N. Mann, A. Wang, A.F. Radovic-Moreno, R. Langer, O.C. Farokhzad, Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc. Natl. Acad. Sci. U. S. A. 105, 2586–2591 (2008)

    Article  Google Scholar 

  33. J. Guo, X. Gao, L. Su, H. Xia, G. Gu, Z. Pang, X. Jiang, L. Yao, J. Chen, H. Chen, Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 32, 8010–8020 (2011)

    Article  Google Scholar 

  34. S. Hamdy, A. Haddadi, A. Shayeganpour, J. Samuel, A. Lavasanifar, Activation of antigen-specific T cell-responses by mannan-decorated PLGA nanoparticles. Pharm. Res. 28, 2288–2301 (2011)

    Article  Google Scholar 

  35. H. He, S. Chen, J. Zhou, Y. Dou, L. Song, L. Che, X. Zhou, X. Chen, Y. Jia, J. Zhang, S. Li, X. Li, Cyclodextrin-derived pH-responsive nanoparticles for delivery of paclitaxel. Biomaterials 34, 5344–5358 (2013)

    Article  Google Scholar 

  36. M.A. Holgado, J. Alvarez-Fuentes, M. Fernández-Arévalo, J.L. Arias, Possibilities of poly(d, l-lactide-co-glycolide) in the formulation of nanomedicines against cancer. Curr. Drug Targets 12, 1096–1111 (2011)

    Article  Google Scholar 

  37. X. Hu, R. Han, L.H. Quan, C.Y. Liu, Y.H. Liao, Stabilization and sustained release of zeylenone, a soft cytotoxic drug, within polymeric micelles for local antitumor drug delivery. Int. J. Pharm. 450, 331–337 (2013)

    Article  Google Scholar 

  38. R.A. Jain, The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21, 2475–2490 (2000)

    Article  Google Scholar 

  39. L. Jia, M.X. Qiao, H.Y. Hu, X.L. Zhao, D.W. Chen, The characterisitics of temperature/pH sensitive block copolymer micelles in vitro. Yao Xue Xue Bao 46, 839–844 (2011)

    Google Scholar 

  40. C. Jin, N. Qian, W. Zhao, W. Yang, L. Bai, H. Wu, M. Wang, W. Song, K. Dou, Improved therapeutic effect of DOX-PLGA-PEG micelles decorated with bivalent fragment HAb18 F(ab')(2) for hepatocellular carcinoma. Biomacromolecules 11, 2422–2431 (2010)

    Article  Google Scholar 

  41. S. Khoee, R. Rahmatolahzadeh, Synthesis and characterization of pH-responsive and folated nanoparticles based on self-assembled brush-like PLGA/PEG/AEMA copolymer with targeted cancer therapy properties: a comprehensive kinetic study. Eur. J. Med. Chem. 50, 416–427 (2012)

    Article  Google Scholar 

  42. K. Knop, R. Hoogenboom, D. Fischer, U.S. Schubert, Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. Engl. 49, 6288–6308 (2010)

    Article  Google Scholar 

  43. Y. Kohl, C. Kaiser, W. Bost, F. Stracke, M. Fournelle, C. Wischke, H. Thielecke, A. Lendlein, K. Kratz, R. Lemor, Preparation and biological evaluation of multifunctional PLGA-nanoparticles designed for photoacoustic imaging. Nanomedicine 7, 228–237 (2011)

    Article  Google Scholar 

  44. F. Kong, L. Ge, X. Liu, N. Huang, F. Zhou, Mannan-modified PLGA nanoparticles for targeted gene delivery. Int. J. Photoenergy 2012, 926754 (2012)

    Article  Google Scholar 

  45. S.D. Kong, M. Sartor, C.M. Hu, W. Zhang, L. Zhang, S. Jin, Magnetic field activated lipid-polymer hybrid nanoparticles for stimuli-responsive drug release. Acta Biomater. 9, 5447–5452 (2013)

    Article  Google Scholar 

  46. M.N. Koopaei, R. Dinarvand, M. Amini, H. Rabbani, S. Emami, S.N. Ostad, F. Atyabi, Docetaxel immunonanocarriers as targeted delivery systems for HER 2-positive tumor cells: preparation, characterization, and cytotoxicity studies. Int. J. Nanomedicine 6, 1903–1912 (2011)

    Google Scholar 

  47. Y. Koyamatsu, T. Hirano, Y. Kakizawa, F. Okano, T. Takarada, M. Maeda, pH-responsive release of proteins from biocompatible and biodegradable reverse polymer micelles. J. Control. Release 173, 89–95 (2014)

    Article  Google Scholar 

  48. K. Li, D. Ding, D. Huo, K.Y. Pu, N.N.P. Thao, Y. Hu, Z. Li, B. Liu, Conjugated polymer based nanoparticles as dual-modal probes for targeted in vivo fluorescence and magnetic resonance imaging. Adv. Funct. Mater. 22, 3107–3115 (2012)

    Article  Google Scholar 

  49. Y. Liu, K. Li, B. Liu, S.S. Feng, A strategy for precision engineering of nanoparticles of biodegradable copolymers for quantitative control of targeted drug delivery. Biomaterials 31, 9145–9155 (2010)

    Article  Google Scholar 

  50. E. Locatelli, M. Comes Franchini, Biodegradable PLGA-b-PEG polymeric nanoparticles: synthesis, properties, and nanomedical applications as drug delivery system. J. Nanopart. Res. 14, 1–17 (2012)

    Article  Google Scholar 

  51. L. Lu, S.J. Peter, M.D. Lyman, H.L. Lai, S.M. Leite, J.A. Tamada, S. Uyama, J.P. Vacanti, R. Langer, A.G. Mikos, In vitro and in vivo degradation of porous poly(dl-lactic-co-glycolic acid) foams. Biomaterials 21, 1837–1845 (2000)

    Article  Google Scholar 

  52. Y. Ma, M. Sadoqi, J. Shao, Biodistribution of indocyanine green-loaded nanoparticles with surface modifications of PEG and folic acid. Int. J. Pharm. 436, 25–31 (2012)

    Article  Google Scholar 

  53. L. Martín-Banderas, E. Sáez-Fernández, M.Á. Holgado, M.M. Durán-Lobato, J.C. Prados, C. Melguizo, J.L. Arias, Biocompatible gemcitabine-based nanomedicine engineered by flow focusing for efficient antitumor activity. Int. J. Pharm. 443, 103–109 (2013)

    Article  Google Scholar 

  54. L. Martin-Banderas, M. Durán-Lobato, I. Muñoz-Rubio, J. Alvarez-Fuentes, M. Fernández-Arevalo, M.A. Holgado, Functional PLGA NPs for oral drug delivery: recent strategies and developments. Mini Rev. Med. Chem. 13, 58–69 (2013)

    Article  Google Scholar 

  55. C. Mattu, R.M. Pabari, M. Boffito, S. Sartori, G. Ciardelli, Z. Ramtoola, Comparative evaluation of novel biodegradable nanoparticles for the drug targeting to breast cancer cells. Eur. J. Pharm. Biopharm. 85, 463–472 (2013)

    Article  Google Scholar 

  56. P.A. McCarron, W.M. Marouf, D.J. Quinn, F. Fay, R.E. Burden, S.A. Olwill, C.J. Scott, Antibody targeting of camptothecin-loaded PLGA nanoparticles to tumor cells. Bioconjug. Chem. 19, 1561–1569 (2008)

    Article  Google Scholar 

  57. D. Mishra, H.C. Kang, Y.H. Bae, Reconstitutable charged polymeric (PLGA)(2)-b-PEI micelles for gene therapeutics delivery. Biomaterials 32, 3845–3854 (2011)

    Article  Google Scholar 

  58. Y. Mo, L.Y. Lim, Preparation and in vitro anticancer activity of wheat germ agglutinin (WGA)-conjugated PLGA nanoparticles loaded with paclitaxel and isopropyl myristate. J. Control. Release 107, 30–42 (2005)

    Article  Google Scholar 

  59. Y. Mo, L.Y. Lim, Paclitaxel-loaded PLGA nanoparticles: potentiation of anticancer activity by surface conjugation with wheat germ agglutinin. J. Control. Release 108, 244–262 (2005)

    Article  Google Scholar 

  60. Y. Patil, T. Sadhukha, L. Ma, J. Panyam, Nanoparticle-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance. J. Control. Release 136, 21–29 (2009)

    Article  Google Scholar 

  61. Y.B. Patil, S.K. Swaminathan, T. Sadhukha, L. Ma, J. Panyam, The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance. Biomaterials 31, 358–365 (2010)

    Article  Google Scholar 

  62. R. Pignatello, E. Cenni, D. Micieli, C. Fotia, M. Salerno, D. Granchi, S. Avnet, M.G. Sarpietro, F. Castelli, N. Baldini, A novel biomaterial for osteotropic drug nanocarriers: synthesis and biocompatibility evaluation of a PLGA-ALE conjugate. Nanomedicine (Lond.) 4, 161–175 (2009)

    Article  Google Scholar 

  63. R. Pignatello, M.G. Sarpietro, F. Castelli, Synthesis and biological evaluation of a new polymeric conjugate and nanocarrier with osteotropic properties. J. Funct. Biomater. 3, 79–99 (2012)

    Article  Google Scholar 

  64. E. Roger, S. Kalscheuer, A. Kirtane, B.R. Guru, A.E. Grill, J. Whittum-Hudson, J. Panyam, Folic acid functionalized nanoparticles for enhanced oral drug delivery. Mol. Pharm. 9, 2103–2110 (2012)

    Article  Google Scholar 

  65. H. Sah, L.A. Thoma, H.R. Desu, E. Sah, G.C. Wood, Concepts and practices used to develop functional PLGA-based nanoparticulate systems. Int. J. Nanomedicine 8, 747–765 (2013)

    Article  Google Scholar 

  66. S.K. Sahoo, J. Panyam, S. Prabha, V. Labhasetwar, Residual polyvinyl alcohol associated with poly (d, l-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J. Control. Release 82, 105–114 (2002)

    Article  Google Scholar 

  67. S.K. Sahoo, W. Ma, V. Labhasetwar, Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int. J. Cancer 112, 335–340 (2004)

    Article  Google Scholar 

  68. S.K. Sahoo, V. Labhasetwar, Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Mol. Pharm. 2, 373–383 (2005)

    Article  Google Scholar 

  69. V. Saxena, Y. Naguib, M.D. Hussain, Folate receptor targeted 17-allylamino-17-demethoxygeldanamycin (17-AAG) loaded polymeric nanoparticles for breast cancer. Colloids Surf. B Biointerfaces 94, 274–280 (2012)

    Article  Google Scholar 

  70. N. Schleich, P. Sibret, P. Danhier, B. Ucakar, S. Laurent, R.N. Muller, C. Jérôme, B. Gallez, V. Préat, F. Danhier, Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging. Int. J. Pharm. 447, 94–101 (2013)

    Article  Google Scholar 

  71. E.J. Seo, I.H. Jang, E.K. Do, H.C. Cheon, S.C. Heo, Y.W. Kwon, G.O. Jeong, B.R. Kim, J.H. Kim, Efficient production of retroviruses using PLGA/bPEI-DNA nanoparticles and application for reprogramming somatic cells. PLoS One 8, e76875 (2013)

    Article  Google Scholar 

  72. N. Shah, K. Chaudhari, P. Dantuluri, R.S. Murthy, S. Das, Paclitaxel-loaded PLGA nanoparticles surface modified with transferrin and Pluronic((R))P85, an in vitro cell line and in vivo biodistribution studies on rat model. J. Drug Target. 17, 533–542 (2009)

    Article  Google Scholar 

  73. G. Sharma, P. Karmali, M. Ramirez, H. Xie, E. Ruoslahti, J. Smith, Targeting tumor associated macrophages using clodronate-loaded PLGA nanoparticles. Nanotechnol. 3, 382–385 (2010)

    Google Scholar 

  74. Q. Song, L. Yao, M. Huang, Q. Hu, Q. Lu, B. Wu, H. Qi, Z. Rong, X. Jiang, X. Gao, J. Chen, H. Chen, Mechanisms of transcellular transport of wheat germ agglutinin-functionalized polymeric nanoparticles in Caco-2 cells. Biomaterials 33, 6769–6782 (2012)

    Article  Google Scholar 

  75. S. Subramanian, U. Pandey, D. Gugulothu, V. Patravale, G. Samuel, Modification of PLGA nanoparticles for improved properties as a 99mTc-labeled agent in sentinel lymph node detection. Cancer Biother. Radiopharm. 28, 598–606 (2013)

    Article  Google Scholar 

  76. B. Sun, B. Ranganathan, S.S. Feng, Multifunctional poly(d, l-lactide-co-glycolide)/montmorillonite (PLGA/MMT) nanoparticles decorated by Trastuzumab for targeted chemotherapy of breast cancer. Biomaterials 29, 475–486 (2008)

    Article  Google Scholar 

  77. S. Svenson, Theranostics: are we there yet? Mol. Pharm. 10, 848–856 (2013)

    Article  Google Scholar 

  78. V.P. Torchilin, Cell penetrating peptide-modified pharmaceutical nanocarriers for intracellular drug and gene delivery. Biopolymers 90, 604–610 (2008)

    Article  Google Scholar 

  79. G. Tosi, A.V. Vergoni, B. Ruozi, L. Bondioli, L. Badiali, F. Rivasi, L. Costantino, F. Forni, M.A. Vandelli, Sialic acid and glycopeptides conjugated PLGA nanoparticles for central nervous system targeting: in vivo pharmacological evidence and biodistribution. J. Control. Release 145, 49–57 (2010)

    Article  Google Scholar 

  80. U.S. Toti, B.R. Guru, A.E. Grill, J. Panyam, Interfacial activity assisted surface functionalization: a novel approach to incorporate maleimide functional groups and cRGD peptide on polymeric nanoparticles for targeted drug delivery. Mol. Pharm. 7, 1108–1117 (2010)

    Article  Google Scholar 

  81. C. Wang, P.C. Ho, L.Y. Lim, Wheat germ agglutinin-conjugated PLGA nanoparticles for enhanced intracellular delivery of paclitaxel to colon cancer cells. Int. J. Pharm. 400, 201–210 (2010)

    Article  Google Scholar 

  82. H. Wang, S. Wang, Z. Liao, P. Zhao, W. Su, R. Niu, J. Chang, Folate-targeting magnetic core-shell nanocarriers for selective drug release and imaging. Int. J. Pharm. 430, 342–349 (2012)

    Article  Google Scholar 

  83. B. Weiss, M. Schneider, L. Muys, S. Taetz, D. Neumann, U.F. Schaefer, C.M. Lehr, Coupling of biotin-(poly(ethylene glycol))amine to poly(d, l-lactide-co-glycolide) nanoparticles for versatile surface modification. Bioconjug. Chem. 18, 1087–1094 (2007)

    Article  Google Scholar 

  84. Z. Wen, Z. Yan, R. He, Z. Pang, L. Guo, Y. Qian, X. Jiang, L. Fang, Brain targeting and toxicity study of odorranalectin-conjugated nanoparticles following intranasal administration. Drug Deliv. 18, 555–561 (2011)

    Article  Google Scholar 

  85. Z. Wen, Z. Yan, K. Hu, Z. Pang, X. Cheng, L. Guo, Q. Zhang, X. Jiang, L. Fang, R. Lai, Odorranalectin-conjugated nanoparticles: preparation, brain delivery and pharmacodynamic study on Parkinson’s disease following intranasal administration. J. Control. Release 151, 131–138 (2011)

    Article  Google Scholar 

  86. G. Wu, F. Zhou, L. Ge, X. Liu, F. Kong, Novel mannan-PEG-PE modified bioadhesive PLGA nanoparticles for targeted gene delivery. J Nanomaterials 2012, 981670 (2012)

    Google Scholar 

  87. H.S. Yoo, T.G. Park, Folate receptor targeted biodegradable polymeric doxorubicin micelles. J. Control. Release 96, 273–283 (2004)

    Article  Google Scholar 

  88. C. Yu, Y. Hu, J. Duan, W. Yuan, C. Wang, H. Xu, X.D. Yang, Novel aptamer-nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro. PLoS One 6, e24077 (2011)

    Article  Google Scholar 

  89. Y. Yu, Z. Pang, W. Lu, Q. Yin, H. Gao, X. Jiang, Self-assembled polymersomes conjugated with lactoferrin as novel drug carrier for brain delivery. Pharm. Res. 29, 83–96 (2012)

    Article  Google Scholar 

  90. D. Yu, Y. Zhang, Z. Mao, C. Gao, Study of the selective uptake progress of aptamer-modified PLGA particles by liver cells. Macromol. Biosci. 13, 1413–1421 (2013)

    Article  Google Scholar 

  91. N. Zhang, C. Chittasupho, C. Duangrat, T.J. Siahaan, C. Berkland, PLGA nanoparticle–peptide conjugate effectively targets intercellular cell-adhesion molecule-1. Bioconjug. Chem. 19, 145–152 (2008)

    Article  Google Scholar 

  92. Y. Zheng, B. Yu, W. Weecharangsan, L. Piao, M. Darby, Y. Mao, R. Koynova, X. Yang, H. Li, S. Xu, L.J. Lee, Y. Sugimoto, R.W. Brueggemeier, R.J. Lee, Transferrin-conjugated lipid-coated PLGA nanoparticles for targeted delivery of aromatase inhibitor 7alpha-APTADD to breast cancer cells. Int. J. Pharm. 390, 234–241 (2010)

    Article  Google Scholar 

  93. C. Zheng, M. Zheng, P. Gong, D. Jia, P. Zhang, B. Shi, Z. Sheng, Y. Ma, L. Cai, Indocyanine green-loaded biodegradable tumor targeting nanoprobes for in vitro and in vivo imaging. Biomaterials 33, 5603–5609 (2012)

    Article  Google Scholar 

  94. G.L. Zwicke, G.A. Mansoori, C.J. Jeffery, Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev. 3, 18496 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Arias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

El-Hammadi, M.M., Arias, J.L. (2016). Advanced Engineering Approaches in the Development of PLGA-Based Nanomedicines. In: Aliofkhazraei, M. (eds) Handbook of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-15338-4_45

Download citation

Publish with us

Policies and ethics