Skip to main content

Nanoparticles and Fluorescence

  • Reference work entry

Abstract

Nanoparticles of three different categories of condensed matter, namely, metal, semiconductor, and insulator, exhibit fluorescence through radiative recombination of charge carriers though the origin and mechanism of light emission is vastly different. Whereas fluorescence from metal nanoparticles, e.g., Au and Ag, falls in the visible region due to sp–d band transition of electrons, the fluorescence gets enhanced due to interaction with localized surface plasmon. Semiconductor quantum dots form a special class of fluorescent materials where the emission color can be tuned by tailoring the particle size as a manifestation of quantum confinement effect. Doped semiconductor nanoparticles offer another category of multifunctional materials with tunable emission and desired electronic/magnetic properties. Rare earth-doped insulators are conventionally used as phosphors for various display and lighting applications. Nanoparticles of various rare earth-doped complex insulators emit intense monochromatic light and can be synthesized by various techniques such as sol–gel, wet chemistry, coprecipitation, hydrothermal, etc. Synthesis and elimination of surface states by passivation/capping play an important role in arresting non-radiative pathways to augment fluorescence efficiency of nanoparticles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. V.K. La Mer, R.H. Dinegar, J. Am. Chem. Soc. 72, 4847 (1950)

    Article  Google Scholar 

  2. V.K. La Mer, Ind. Eng. Chem. 44, 1270 (1952)

    Article  Google Scholar 

  3. W. Ostwald, Z. Phys. Chem. 37, 385 (1901)

    Google Scholar 

  4. E.M. Pileni, Nanocrystals Forming Mesoscopic Structures, Wiley-VCH, Weinheim, 2005

    Book  Google Scholar 

  5. C.W. Song, S.C. Haur, A.T.S. Wee, Science at the Nanoscale, An Introductory Textbook (Pan Stanford Publishing, Singapore 2009). www.panstanford.com/nanotextbook

  6. A.P. Alivisatos, J. Phys. Chem. 110, 13226–13239 (1996)

    Article  Google Scholar 

  7. R. Viswanatha, D.D. Sarma, Nanomaterials chemistry, in Growth of Nanocrystals in Solution, ed. by C.N.R. Rao, A. Muller, A.K. Cheetham (Wiley-VCH, Weinheim, 2007). ISBN 978-3-527-31664-9

    Google Scholar 

  8. Y. Qian, Adv. Mater. 11, 1101 (1999)

    Article  Google Scholar 

  9. S. Shionoya, W.M. Yen (eds.), Phosphors Handbook (CRC Press, Washington, DC, 1999), pp. 238–255

    Google Scholar 

  10. G. Blasse, B. Grabmaier, Luminescent Materials (Springer, New York, 1994)

    Book  Google Scholar 

  11. M. Faraday, Philos. Trans. R. Soc. Lond. 147, 145–181 (1857)

    Article  Google Scholar 

  12. A. Mie, Phys. IV 25, 377–455 (1908)

    Google Scholar 

  13. A. Moordian, Phys. Rev. Lett. 22, 185–187 (1969)

    Article  Google Scholar 

  14. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007), p. 173. p. 75

    Google Scholar 

  15. J. Turkevich, P.C. Stevenson, J. Hellier, Discuss. Faraday Soc. 11, 55–75 (1951)

    Article  Google Scholar 

  16. P.C. Lee, D.J. Meisel, J. Phys. Chem. B 86, 3391–3395 (1982)

    Article  Google Scholar 

  17. J.A. Creighton, C.G. Blatchford, M.G. Albrecht, J. Chem. Soc. Faraday Trans. II 75, 790–798 (1979)

    Article  Google Scholar 

  18. D.D. Evanoff Jr., G. Chumanov, J. Phys. Chem. 6, 1221–1231 (2005)

    Google Scholar 

  19. X. Lu, M. Rycenga, S.E. Skrabalak et al., Annu. Rev. Phys. Chem. 60, 167–192 (2009)

    Article  Google Scholar 

  20. H. Zhang, Y. Li, I.A. Ivanov, Y. Qu et al., Angew. Chem. Int. Ed. 49, 2865–2868 (2010)

    Article  Google Scholar 

  21. M. Brust, M. Walker, D. Bethell et al., J. Chem. Soc. Chem. Commun. 801 (1994). doi:10.1039/C39940000801

    Google Scholar 

  22. W.W. Weare, S.M. Reed, M.G. Warner et al., J. Am. Chem. Soc. 122, 12890 (2000)

    Article  Google Scholar 

  23. S.W. Joo, W.J. Kim, W.S. Yoon et al., J. Raman Spectrosc. 34, 271 (2003)

    Article  Google Scholar 

  24. T.K. Misra, L.Y. Liu, J. Nanoparticle Res. 11, 1053 (2009)

    Article  Google Scholar 

  25. B.M. Amoli, S. Gumfekar, A. Hu et al., J. Mater. Chem. 22, 20048 (2012)

    Article  Google Scholar 

  26. E. Dulkeith et al., Phys. Rev. B 70, 205424 (2004)

    Article  Google Scholar 

  27. S. Link, M.A. El-Sayed, Int. Rev. Phys. Chem. 19(3), 409–453 (2000)

    Article  Google Scholar 

  28. R.W. Boyd, Non-linear Optics (Academic, San Diego, 2003)

    Google Scholar 

  29. J.P. Wilcoxon, J.E. Martin, F. Paraspour, B. Wiedman, D.F. Kelly, J. Chem. Phys. 108, 9137 (1998)

    Article  Google Scholar 

  30. M.B. Mohamed, V. Volkov, S. Link, M.A. El-Syed, Chem. Phys. Lett. 317, 517 (2000)

    Article  Google Scholar 

  31. D. Basak, S. Karan, B. Mallik, Chem. Phys. Lett. 420, 115 (2006)

    Article  Google Scholar 

  32. A.P. Zhang, J.Z. Zhang, Y. Fang, J. Lumin. 128, 1635 (2008)

    Article  Google Scholar 

  33. O.A. Yeschenko, I.M. Dmitruk et al., Mater. Sci. Eng. B 137, 247 (2007)

    Article  Google Scholar 

  34. Q. Darugar, W. Qian, M.A. El-Syed, M.P. Pileni, J. Phys. Chem. B 110, 143 (2006)

    Article  Google Scholar 

  35. A. Oleg, I.M. Dmitruk et al., Phys. Rev. B 79, 235438 (2009)

    Article  Google Scholar 

  36. A.I. Ekimov, A.A. Onushchenko, JETP Lett. 34, 345–349 (1981)

    Google Scholar 

  37. M.A. Reed, J.N. Randall, R.J. Aggarwal et al., Phys. Rev. Lett. 60(6), 535–537 (1988)

    Article  Google Scholar 

  38. H. Weller, Adv. Mater. 5, 88 (1993)

    Article  Google Scholar 

  39. L. Brus, J. Phys. Chem. 90, 2555 (1986) and references cited therein

    Article  Google Scholar 

  40. Y. Wang, N. Herron, J. Phys. Chem. 95, 525 (1991) and references cited therein

    Article  Google Scholar 

  41. W.E. Buhro, V.L. Colvin, Semiconductor nanocrystals – shape matters. Nat. Mater. 2, 138 (2003)

    Article  Google Scholar 

  42. Y. Mo, Y. Tang, F. Gao et al., Ind. Eng. Chem. Res. 51, 5995–6000 (2012)

    Article  Google Scholar 

  43. X. Peng, J. Wickham, A.P. Alivisatos, J. Am. Chem. Soc. 120, 5343 (1998)

    Article  Google Scholar 

  44. M.J. Bowers II, J.R. McBride, S.J. Rosenthal et al., J. Am. Chem. Soc. 127, 15378–15379 (2005)

    Article  Google Scholar 

  45. T.E. Rosson, S.M. Claiborne, J.R. McBride et al., J. Am. Chem. Soc. 134, 8006–8009 (2012)

    Article  Google Scholar 

  46. U.K. Gautam, K. Sardar, F.L. Deepak et al., Pramana J. Phys. 65(4), 549–564 (2005)

    Article  Google Scholar 

  47. L. Spanhel, H. Haase, A. Henglein, J. Am. Chem. Soc. 109, 5649 (1987)

    Article  Google Scholar 

  48. A. Aboulaich, D. Billaud, M. Abyan, L. Balan et al., ACS Appl. Mater. Interfaces 4, 2561–2569 (2012)

    Article  Google Scholar 

  49. A.M. Suhail, M.J. Khalifa, N.M. Saeed et al., Eur. Phys. J. Appl. Phys. 49, 30601 (2010)

    Article  Google Scholar 

  50. Y.T. Didenko, K.S. Suslick, J. Am. Chem. Soc. 127(35), 12196–12197 (2005)

    Article  Google Scholar 

  51. H. Zhang, B. Hu, L. Sun et al., Nano Lett. 11, 5356–5361 (2011)

    Article  Google Scholar 

  52. C.B. Murray, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc. 115(19), 8706 (1993)

    Article  Google Scholar 

  53. S. Neeleshwar, C. Chen et al., Phys. Rev. B 71, 201307 (2005)

    Article  Google Scholar 

  54. C.R. Bullen, P. Mulvaney, Nano Lett. 4, 2303 (2004)

    Article  Google Scholar 

  55. W.W. Yu, L. Qu, X. Peng, Chem. Mater. 15, 2854 (2003)

    Article  Google Scholar 

  56. A.M. Smith, S. Nie, Acc. Chem. Res. 43, 190–200 (2010). doi: 10.1021/ar9001069

    Google Scholar 

  57. A.V. Malko, Y.S. Park, S. Sampat et al., Nano Lett. 11(12), 5213–5218 (2011)

    Article  Google Scholar 

  58. H. Sun, H. Zhang, J. Zhang, H. Wei et al., J. Mater. Chem. 19, 6740–6744 (2009)

    Article  Google Scholar 

  59. N. Gaponik, A.L. Rogach, Phys. Chem. Chem. Phys. 12, 8685–8693 (2010)

    Article  Google Scholar 

  60. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov et al., J. Appl. Phys. 98, 041301 (2005) and references cited therein

    Article  Google Scholar 

  61. I.Y. Jung et al., Appl. Phys. Lett. 87, 191908 (2005)

    Article  Google Scholar 

  62. M.H. Huang, S. Mao, H. Feick et al., Science 292, 1897 (2001)

    Article  Google Scholar 

  63. X. Fang, Y. Bando, U.K. Gautam, Crit. Rev. Solid State Mater. Sci. 34, 190–223 (2009)

    Article  Google Scholar 

  64. X. Xu, C. Xu, Z. Shi et al., J. Appl. Phys. 111, 083521 (2012)

    Article  Google Scholar 

  65. L. Irimpan et al., J. Appl. Phys. 102, 063524 (2007)

    Article  Google Scholar 

  66. D. Haranath, S. Sahai, A.G. Joshi et al., Nanotechnology 20(42), 425701 E (2009)

    Article  Google Scholar 

  67. V.A. Fonoberov, A.A. Balandin, Chapter 38, in A Handbook of Semiconductor Nanostructures and Nanodevices, ed. by A.A. Balandin, K.L. Wang, vol. 1 (American Scientific Publishers, Los Angeles 2006), pp. 1–40. ISBN 1-58883-973-X

    Google Scholar 

  68. S. Chawla, K. Jayanthi et al., Mater. Des. 31, 1666–1670 (2010)

    Article  Google Scholar 

  69. S. Chawla, K. Jayanthi et al., J. Alloys Compd. 459, 457–460 (2008)

    Article  Google Scholar 

  70. B. Choudhary, S. Chawla et al., Curr. Appl. Phys. 10, 807–812 (2010)

    Article  Google Scholar 

  71. K. Jayanthi, S. Chawla et al., Appl. Surf. Sci. 255, 5869–5875 (2009)

    Article  Google Scholar 

  72. K. Jayanthi, S. Chawla et al., J. Phys. Chem. C 114, 18429–18434 (2010)

    Article  Google Scholar 

  73. K. Jayanthi, S.V. Manorama, S. Chawla, J. Phys. D Appl. Phys. 46, 325101 (2013)

    Article  Google Scholar 

  74. S. Chawla, K.J. Sharda, Appl. Surface Sci. 257, 2935–2939 (2011)

    Google Scholar 

  75. J.M. Coye, M. Venkatesan, C.B. Fitzgerald, Nature 4, 17–179 (2005)

    Article  Google Scholar 

  76. S. Chawla, K. Jayanthi, R.K. Kotnala, Phys. Rev. B 79, 125204 (2009)

    Article  Google Scholar 

  77. S. Chawla, K. Jayanthi, R.K. Kotnala, J. Appl. Phys. 106, 113923 (2009)

    Article  Google Scholar 

  78. S. Chawla, M. Saroha, R.K. Kotnala, Electron. Mater. Lett. 10, 73–80 (2013)

    Article  Google Scholar 

  79. H. Li, W.Y. Shih, W.H. Shih, Nanotechnology 18, 205604 (2007)

    Article  Google Scholar 

  80. H. Li, W.Y. Shih, W.H. Shih, Ind. Eng. Chem. Res. 49, 578–582 (2010)

    Article  Google Scholar 

  81. B. Barman, K.C. Sarma, Chalcogenide Lett. 8, 171–176 (2011)

    Google Scholar 

  82. K. Tarasov, D. Houssein, M. Destarac et al., New J. Chem. 37, 508 (2013)

    Article  Google Scholar 

  83. A. Mandal, A. Dandapat, G. De, Analyst 137, 765 (2012)

    Article  Google Scholar 

  84. G.Y. Lan, Y.W. Lin, Y.F. Huanga et al., J. Mater. Chem. 17, 2661–2666 (2007)

    Article  Google Scholar 

  85. R.N. Bhargava, D. Gallagher, X. Hong et al., Phys. Rev. Lett. 72, 416 (1994)

    Article  Google Scholar 

  86. B. Bhattacharjee, D. Ganguli, K. Iakoubovskii et al., Bull. Mater. Sci. 25, 175 (2002)

    Article  Google Scholar 

  87. B.Y. Geng, L.D. Zhang, G.Z. Wang et al., Appl. Phys. Lett. 84, 2157 (2004)

    Article  Google Scholar 

  88. H.C. Warad, S.C. Ghosh, B. Hemtanon, C. Thanachayanont, J. Dutta, Sci. Technol. Adv. Mater. 6, 296–301 (2005)

    Article  Google Scholar 

  89. A.A. Khosravi, M. Kundu, L. Jatwa et al., Appl. Phys. Lett. 67, 2702 (1995)

    Article  Google Scholar 

  90. S. Lee, D. Song, D. Kim et al., Mater. Lett. 58, 342 (2004)

    Article  Google Scholar 

  91. K. Jayanthi, S. Chawla, H. Chander et al., Cryst. Res. Technol. 42, 976–982 (2007)

    Article  Google Scholar 

  92. W. Chen, J.O. Malm, V. Zwiller et al., Phys. Rev. B 61, 11021 (2000)

    Article  Google Scholar 

  93. S.J. Xu, S.J. Chua, B. Liu et al., Appl. Phys. Lett. 73, 478 (1998)

    Article  Google Scholar 

  94. S. Hou, Y. Yuen, H. Mao, J. Wang, Z. Zhu, J. Phys. D Appl. Phys. 42, 215105 (2009)

    Article  Google Scholar 

  95. A. Hazarika, A. Layek, S. De et al., Phys. Rev. Lett. 110, 267401 (2013)

    Article  Google Scholar 

  96. S. Hohng, T. Ha, J. Am. Chem. Soc. 126, 1324–1325 (2004)

    Article  Google Scholar 

  97. X. Wang, X. Ren, K. Kahen et al., Nature 459, 686689 (2009)

    Google Scholar 

  98. F. Garcia-Santamaria, Y. Chen, J. Vela et al., Nano Lett. 9, 3482–3488 (2009)

    Article  Google Scholar 

  99. B. Fisher, J.M. Caruge, D. Zehender et al., Phys. Rev. Lett. 94, 087403 (2005)

    Article  Google Scholar 

  100. S.A. Ivanov, J. Nanda, A. Piryatinski et al., J. Phys. Chem. B 108, 10626–10630 (2004)

    Google Scholar 

  101. S. Gao, C. Zhang, Y. Liu et al., Opt. Express 19, 5528–5535 (2011)

    Article  Google Scholar 

  102. J.L. Machol, F.W. Wise, R.C. Patel et al., Phys. Rev. B 48, 2819 (1993)

    Article  Google Scholar 

  103. A. Lipovskii, E. Kolobkova, V. Petrikov et al., Appl. Phys. Lett. 71(23), 3406 (1997)

    Article  Google Scholar 

  104. B.N. Pal, I. Robel, A. Mohite, R. Laocharoensuk et al., Adv. Funct. Mater. 22, 1741–1748 (2012)

    Article  Google Scholar 

  105. W.K. Bae, J. Joo, L.A. Padilha et al., J. Am. Chem. Soc. 134, 20160–20168 (2012)

    Article  Google Scholar 

  106. K. Sardar, C.N.R. Rao, Adv. Mater. 16, 425–429 (2004)

    Article  Google Scholar 

  107. C. Chen, C. Liang, Tamkang J. Sci. Eng. 5, 223–226 (2002)

    Google Scholar 

  108. S. Cai, T. Tsuzuki, T.A. Fisher et al., J. Nanoparticle Res. 4, 367–371 (2002)

    Article  Google Scholar 

  109. S. Gao, L. Zhu, Y. Xie, X. Qian, Eur. J. Inorg. Chem. 2004(3), 557–561 (2004)

    Article  Google Scholar 

  110. S. Li, A. Waag, J. Appl. Phys. 111, 071101 (2012)

    Article  Google Scholar 

  111. M. Kumar, M.K. Rajpalke, T.N. Bhat et al., Appl. Phys. 110, 114317 (2011)

    Article  Google Scholar 

  112. H. Amano, M. Aoki, J. Appl. Phys. 19, 2395 (1980)

    Article  Google Scholar 

  113. H. Amano, M. Kitoh, K. Hiramasu, I. Akasaki, J. Electrochem. Soc. 137, 1639 (1990)

    Article  Google Scholar 

  114. D. Gammon, E.S. Snow, B.V. Shanabrook et al., Phys. Rev. Lett. 76(16), 3005 (1996)

    Article  Google Scholar 

  115. X. Wang, J. Zhuang, Q. Peng et al., Nature 437, 121–124 (2005)

    Article  Google Scholar 

  116. F. Bai, D. Wang, Z. Huo et al., Angew. Chem. Int. Ed. 46, 6650–6653 (2007)

    Article  Google Scholar 

  117. W. Guo, Q. Peng, L. Yadong, Acc. Chem. Res. 44, 322–332 (2011)

    Article  Google Scholar 

  118. J. Liu, Y. Li, J. Mater. Chem. 17, 1797–1803 (2007)

    Article  Google Scholar 

  119. G. Mialon, S. Turkcan, A. Alexandron et al., J. Phys. Chem. C 113, 18699–18706 (2009)

    Article  Google Scholar 

  120. V. Natarajan, A.R. Dhobale, C.H. Lu, J. Lumin. 129, 290–293 (2009)

    Article  Google Scholar 

  121. H.K. Yang, J.W. Chung, B.K. Moon et al., J. Lumin. 129, 492–495 (2009)

    Article  Google Scholar 

  122. A.F. Khan, D. Haranath, R. Yadav, S. Singh, V. Dutta, S. Chawla, Appl. Phys. Lett. 93, 073103 (2008)

    Article  Google Scholar 

  123. A. Manavbasi, J.C. LaCombe, J. Mater. Sci. 42, 252–258 (2007)

    Article  Google Scholar 

  124. D. Haranath, H. Chander, P. Sharma, S. Singh, Appl. Phys. Lett. 89, 173118 (2006)

    Article  Google Scholar 

  125. H.H. Kwak, S.J. Kim, H.H. Yoon, J. Electroceram. 23, 397–401 (2009)

    Article  Google Scholar 

  126. S. Chawla, T. Roy, K. Majumdar et al., J. Exp. Nanosci. 1–9, 714481 (2012). doi:10.1080/17458080

    Google Scholar 

  127. Y. Du, Y. Zhang, K. Huang et al., Dalton Trans. 42, 8041 (2013)

    Article  Google Scholar 

  128. C. Feldmann, M. Roming, K. Trampert, Small 2, 1248–1250 (2006)

    Article  Google Scholar 

  129. J.W. Li, T. Watanabe, N. Sakamoto et al., Chem. Mater. 20, 2095–2105 (2008)

    Article  Google Scholar 

  130. M. Zeuner, P.J. Schmidt, W. Schnick, Chem. Mater. 21, 2467 (2009)

    Article  Google Scholar 

  131. S.M. Loureiro, A. Setlur, W. Heward et al., Chem. Mater. 17, 3108–3113 (2005)

    Article  Google Scholar 

  132. Q.Y. Zhang, C.H. Yang, Appl. Phys. Lett. 90, 021107 (2007)

    Article  Google Scholar 

  133. F. Auzel, F.C.R. Acad. Sci. (Paris) 262(15), 1016 (1966)

    Google Scholar 

  134. V. Ovsyankin, P.P. Feofilov, JETP Lett. 3(12), 317 (1966)

    Google Scholar 

  135. J.F. Suyver et al., Opt. Mater. 27, 1111 (2005)

    Article  Google Scholar 

  136. F. Auzel, Chem. Rev. 104, 139 (2004)

    Article  Google Scholar 

  137. F. Wang et al., Nature 463, 1061–1065 (2010)

    Article  Google Scholar 

  138. F. Wang, D. Banerjee, Y. Liu, X. Chen et al., Analyst 135, 1839–1854 (2010)

    Article  Google Scholar 

  139. T. Trupke, M.A. Green, P. Wũrfel, J. Appl. Phys. 92(7), 4117 (2002)

    Article  Google Scholar 

  140. A. Shalav, R.S. Richards, T. Trupke et al., Appl. Phys. Lett. 86, 013505–013507 (2005)

    Article  Google Scholar 

  141. M. He et al., Adv. Funct. Mater. 21, 4470–4477 (2011)

    Article  Google Scholar 

  142. G. Yi et al., Chem. Mater. 14, 2910–2914 (2002)

    Article  Google Scholar 

  143. L.A. Torres et al., J. Phys. D Appl. Phys. 37, 2489–2495 (2005)

    Article  Google Scholar 

  144. E.D. Rosa et al., Appl. Phys. Lett. 87, 241912 (2005)

    Article  Google Scholar 

  145. V. Fiorenzo, N. Rafik, M. Venkataramanan et al., Adv. Funct. Mater. 19, 1–6 (2009)

    Google Scholar 

  146. A.F. Khan, R. Yadav, P.K. Mukhopadhya, S. Singh, C. Dwivedi, V. Dutta, S. Chawla, J. Nanoparticle Res. 13, 6837–6846 (2011)

    Article  Google Scholar 

  147. X. Qin, T. Yokomori, Y. Ju, Appl. Phys. Lett. 90, 073104 (2007)

    Article  Google Scholar 

  148. Y. Chen, K. Munechika, I.J. Plante, A.M. Munro, S.E. Skrabalak, Y. Xia, D.S. Ginger, Appl. Phys. Lett. 93, 053106 (2008)

    Article  Google Scholar 

  149. K. Munechika, Y. Chen et al., Nano Lett. 10, 2598–2603 (2010)

    Article  Google Scholar 

  150. W. Feng, L.D. Sun, C.H. Yan, Chem. Commun. 29, 4393–4385 (2009)

    Google Scholar 

  151. S. Schietinger, T. Aichele, H. Wang, T. Nann, O. Benson, Nano Lett. 10, 134–138 (2010)

    Article  Google Scholar 

  152. Z. Buch, V. Kumar, H. Mamgain, S. Chawla, Chem. Commun. 49, 9485 (2013)

    Article  Google Scholar 

  153. Z. Buch, V. Kumar, H. Mamgain, S. Chawla, J. Phys. Chem. Lett. 4, 3834–3838 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

I thank my students Zubair Buch for the assistance in writing metal nanoparticles part; Rupali Das for literature survey, editing the manuscript, and references; and A.F. Khan for drawing Fig. 1. Effort has been made to acknowledge the sources from where information has been gathered; if some sources remain unreferred to, my sincere apology to them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santa Chawla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Chawla, S. (2016). Nanoparticles and Fluorescence. In: Aliofkhazraei, M. (eds) Handbook of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-15338-4_43

Download citation

Publish with us

Policies and ethics