Skip to main content

Nanoparticles as Nonviral Transfection Agents

  • Reference work entry
Handbook of Nanoparticles

Abstract

A series of studies have been carried out for delivery and controlled release of genes, miRNAs, peptide structures, siRNAs, and pharmacological agents to the target tissues through different nanoparticles. Agents to be delivered are either attached on or entrapped in nanoparticle structure. In the delivery process, the nanocarriers face many different delivery tasks and different physiological microenvironments. Considering the changes in the environment, nanocarriers are designed and synthesized in such a manner that enables these structures to overcome the challenges faced during delivery. In this chapter nanoparticle structures as cationic lipids, polycationic polymers, and dendrimers used in drug and gene delivery are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Zhang, H.F. Chan, K.W. Leong, Advanced materials and processing for drug delivery: the past and the future. Adv. Drug Deliv. Rev. 65, 104–120 (2013)

    Article  Google Scholar 

  2. T. Govender, S. Stolnik, M.C. Garnett, L. Illum, S.S. Davis, PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J. Control. Release 57, 171–185 (1999)

    Article  Google Scholar 

  3. T. Govender, T. Riley, T. Ehtezazi, M.C. Garnett, S. Stolnik, L. Illum, S.S. Davis, Defining the drug incorporation properties of PLA-PEG nanoparticles. Int. J. Pharm. 199, 95–110 (2000)

    Article  Google Scholar 

  4. J. Panyam, V. Labhasetwar, Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55, 329–347 (2003)

    Article  Google Scholar 

  5. J. Panyam, V. Labhasetwar, Sustained cytoplasmic delivery of drugs with intracellular receptors using biodegradable nanoparticles. Mol. Pharm. 1, 77–84 (2004)

    Article  Google Scholar 

  6. R. Singh, J.W. Lillard Jr., Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 86, 215–223 (2009)

    Article  Google Scholar 

  7. M. Hans, A. Lowman, Biodegradable nanoparticles for drug delivery and targeting. Curr. Opin. Solid State Mater. Sci. 6, 319–327 (2002)

    Article  Google Scholar 

  8. W. Tiyaboonchai, Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ. J. 11(3), 51–66 (2003)

    Google Scholar 

  9. T. Nakamura, R. Moriguchi, K. Kogure, A. Minoura, Delivery of condensed DNA by liposomal non-viral gene delivery system into nucleus of dendritic cells. Biol. Pharm. Bull. 29(6), 1290–1293 (2006)

    Article  Google Scholar 

  10. A.A. Baoum, Nonviral vectors for gene delivery. Diss. Abstr. Int. 72(7), 235 (2011)

    Google Scholar 

  11. M.R. Park, K.O. Han, I.K. Han, M. Cho, J.W. Nah, Y.J. Choi, C.S. Cho, Degradable polyethylenimine-alt-poly(ethylene glycol) as novel gene carriers. J. Control. Release 105(3), 367–380 (2005)

    Article  Google Scholar 

  12. P. Gerwins, E. Skoldenberg, L. Claesson-Welsh, Function of fibroblast growth factors and vascular endothelial growth factors and their receptors in angiogenesis. Crit. Rev. Oncol. Hematol. 34(3), 185 (2000)

    Article  Google Scholar 

  13. S. Muro, R. Wiewrodt, A. Thomas, L. Koniaris, S.M. Albelda, V.R. Muzykantov, M. Koval, A novel endocytic pathway induced by clustering endothelial ICAM-1 or PECAM-1. J. Cell Sci. 116(8), 1599–1609 (2003)

    Article  Google Scholar 

  14. M.P. Desai et al., Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm. Res. 13(12), 1838–1845 (1996)

    Article  Google Scholar 

  15. S. Mishra, P. Webster, M.E. Davis et al., PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur. J. Cell Biol. 83(3), 97–111 (2004)

    Article  Google Scholar 

  16. A. Fontana, B. Spolaore, A. Mero, F.M. Veronese, Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Adv. Drug Deliv. Rev. 60(1), 13–28 (2008)

    Article  Google Scholar 

  17. C.R. Dass, P.F. Choong, Biophysical delivery of peptides: applicability for cancer therapy. Peptides 27, 3479–3488 (2006)

    Article  Google Scholar 

  18. R.A. Jain, The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21(23), 2475–2490 (2000)

    Article  Google Scholar 

  19. H. Cohen et al., Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther. 7(22), 1896 (2000)

    Article  Google Scholar 

  20. J. Panyam, V. Labhasetwar, Dynamics of endocytosis and exocytosis of poly (d,l-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm. Res. 20(2), 212–220 (2003)

    Article  Google Scholar 

  21. J. Panyam, W. Zhou, S. Prabha, S.K. Sahoo, V. Labhasetware, Rapid endo-lysosomal escape of poly (dl-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 16(10), 1217–1226 (2002)

    Article  Google Scholar 

  22. Z. Li, W. Ning, J. Wang, A. Choi, P.Y. Lee, P. Tyagi, L. Huang, Controlled gene delivery system based on thermosensitive biodegradable hydrogel. Pharm. Res. 20(6), 884–888 (2003)

    Article  Google Scholar 

  23. J.H. Jeong, S.W. Kim, T.G. Park, Biodegradable triblock copolymer of PLGA-PEG-PLGA enhances gene transfection efficiency. Pharm. Res. 21(1), 50–54 (2004)

    Article  Google Scholar 

  24. K. Avgoustakis et al., PLGA–mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J. Control. Release 79(1), 123–135 (2002)

    Article  Google Scholar 

  25. C. Fonseca, S. Simoes, R. Gaspar, Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J. Control. Release 83(2), 273–286 (2002)

    Article  Google Scholar 

  26. K. Derakhshandeh et al., Encapsulation of 9-nitrocamptothecin, a novel anticancer drug, in biodegradable nanoparticles: factorial design, characterization and release kinetics. Eur. J. Pharm. Biopharm. 66(1), 34–41 (2007)

    Article  Google Scholar 

  27. P.S. Kumar, T.R. Saini, D. Chandrasekar, Novel approach for delivery of insulin loaded poly (lactide-co-glycolide) nanoparticles using a combination of stabilizers. Drug Deliv. 14(8), 517–523 (2007)

    Article  Google Scholar 

  28. K. Avgoustakis, Pegylated poly (lactide) and poly (lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery. Curr. Drug Deliv. 1(4), 321–333 (2004)

    Article  Google Scholar 

  29. J. Yang et al., Intravascular site-specific delivery of a therapeutic antisense for the inhibition of restenosis. Eur. J. Pharm. Sci. 35(5), 427–434 (2008)

    Article  Google Scholar 

  30. X. Niu, W. Zou, C. Liu, N. Zhang et al., Modified nanoprecipitation method to fabricate DNA-loaded PLGA nanoparticles. Drug Dev. Ind. Pharm. 35(11), 1375–1383 (2009)

    Article  Google Scholar 

  31. B. Semete, L. Booysen, Y. Lemmer, L. Kalombo, L. Katata, J. Verschoor, H.S. Swai, In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomedicine 6, 662–671 (2010)

    Article  Google Scholar 

  32. E.S. Papazoglou, A. Parthasarathy, Bionanotechnology. Synth. Lect. Biomed. Eng. 2(1), 1–139 (2007)

    Google Scholar 

  33. J.D. Byrne et al., Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev. 60(15), 1615–1626 (2008)

    Article  Google Scholar 

  34. P. Chan et al., Synthesis and characterization of chitosan chitosan-g-poly (ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery. Biomaterials 28(3), 540–549 (2007)

    Article  Google Scholar 

  35. L. Li et al., A novel antiangiogenesis therapy using an integrin antagonist or anti–Flk-1 antibody coated 90Y-labeled nanoparticles. Int. J. Radiat. Oncol. Biol. Phys. 58(4), 1215–1227 (2004)

    Article  Google Scholar 

  36. J.D. Hood, R. Frausto, W.B. Kiosses, M.A. Schwartz, D.A. Cheresh, Differential αv integrin–mediated Ras-ERK signaling during two pathways of angiogenesis. J. Cell Biol. 162(5), 933–943 (2003)

    Article  Google Scholar 

  37. H.S. Yoo, T.G. Park, Folate receptor targeted biodegradable polymeric doxorubicin micelles. J. Control. Release 96(2), 273–283 (2004)

    Article  Google Scholar 

  38. M.E. Mathew, J.C. Mohan, K. Manzoor, S.V. Nair et al., Folate conjugated carboxymethyl chitosan–manganese doped zinc sulphide nanoparticles for targeted drug delivery and imaging of cancer cells. Carbohydr. Polym. 80(2), 442–448 (2010)

    Article  Google Scholar 

  39. J. Kreuter, Application of nanoparticles for the delivery of drugs to the brain. Int. Congr. Ser. 1277, 85–94 (2005)

    Article  Google Scholar 

  40. A. Kumar, A. Srivastava, I.Y. Galaev, Smart polymers: physical forms and bioengineering applications. Prog. Polym. Sci. 32(10), 1205–1237 (2007)

    Article  Google Scholar 

  41. J.E. Chung, M. Yokoyama, T. Okano, Inner core segment design for drug delivery control of thermo-responsive polymeric micelles. J. Control. Release 65, 93–103 (2000)

    Article  Google Scholar 

  42. Y. Shigemasa et al., Chemical modification of chitin and chitosan 1: preparation of partially deacetylated chitin derivatives via a ring-opening reaction with cyclic acid anhydrides in lithium chloride/W, W-dimethylacetamide. Carbohydr. Polym. 39(3), 237–243 (1999)

    Article  Google Scholar 

  43. D.W. Lee, K. Yun, H. Ban, W. Choe, S.K. Lee, Y. Lee, Preparation and characterization of chitosan/polyguluronate nanoparticles for siRNA delivery. J. Control. Release 139(2), 146–152 (2009)

    Article  Google Scholar 

  44. L. Zhang et al., Thermo and pH dual-responsive nanoparticles for anti-cancer drug delivery. Adv. Mater. 19(19), 2988–2992 (2007)

    Article  Google Scholar 

  45. C.-M.J. Hu, L. Zhang, Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem. Pharmacol. 83, 1104–1111 (2012)

    Article  Google Scholar 

  46. Y. Liu, X. Cao, M. Luo, Z. Le, W. Xu, Self-assembled micellar nanoparticles of a novel star copolymer for thermo and pH dual-responsive drug release. J. Colloid Interface Sci. 329(2), 244–252 (2009)

    Article  Google Scholar 

  47. N. Saranya et al., Chitosan and its derivatives for gene delivery. Int. J. Biol. Macromol. 48(2), 234–238 (2011)

    Article  Google Scholar 

  48. H.Q. Mao, K. Roy, V.L. Troung-Le, K.A. Janes et al., Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J. Control. Release 70(3), 399–421 (2001)

    Article  Google Scholar 

  49. D. Qu, H. Lin, N. Zhang, J. Xue, C. Zhang, In vitro evaluation on novel modified chitosan for targeted antitumor drug delivery. Carbohydrate polymers, 92(1), 545–554 (2013)

    Article  Google Scholar 

  50. A. Nagayasu, K. Uchiyama, H. Kiwada, The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv. Drug Deliv. 40(1), 75 (1999)

    Article  Google Scholar 

  51. Y. Yan et al., A poly (l-lysine)-based hydrophilic star block co-polymer as a protein nanocarrier with facile encapsulation and pH-responsive release. Acta Biomater. 8(6), 2113–2120 (2012)

    Article  Google Scholar 

  52. C.J. Cheng, W.M. Saltzman, Polymer nanoparticle-mediated delivery of microRNA inhibition and alternative splicing. Mol. Pharm. 9, 1481–1488 (2012)

    Google Scholar 

  53. M.D. Shau et al., A one-step process in preparation of cationic nanoparticles with poly (lactide-co-glycolide)-containing polyethylenimine gives efficient gene delivery. Eur. J. Pharm. Sci. 46(5), 522–529 (2012)

    Article  Google Scholar 

  54. Z. Liu, Y. Jiao, Y. Wang, C. Zhou, Z. Zhang, Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Deliv. Rev. 60, 1650–1662 (2008)

    Article  Google Scholar 

  55. V.R. Sinha, R. Kumria, Polysaccharides in colon-specific drug delivery. Int. J. Pharm. 224(1–2), 19–38 (2001)

    Article  Google Scholar 

  56. H.H. Tonnesen, J. Karlsen, Alginate in drug delivery systems. J. Drug Dev. Ind. Pharm. 28(6), 621–630 (2002)

    Article  Google Scholar 

  57. I. Aynie, C. Vauthier, H. Chacun, E. Fattal, P. Couvreur, Spongelike alginate nanoparticles as a new potential system for the delivery of antisense oligonucleotides. Antisense Nucleic Acid Drug Dev. 9, 301–312 (1999)

    Article  Google Scholar 

  58. S.A. Agnihotri et al., Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J. Control. Release 100(1), 5–28 (2004)

    Article  Google Scholar 

  59. M. Huang, C.W. Fong, E. Khor, L.Y. Lim, Transfection efficiency of chitosan vectors: effect of polymer molecular weight and degree of deacetylation. J. Control. Release 106(3), 391–406 (2005)

    Article  Google Scholar 

  60. X. Zhao et al., Transfection of primary chondrocytes using chitosan-pEGFP nanoparticles. J. Control. Release 112(2), 223–228 (2006)

    Article  Google Scholar 

  61. C. Van Der Walle (ed.), Peptide and Protein Delivery. Academic Press (2011)

    Google Scholar 

  62. A.L. Silva, R.A. Rosalia, A. Sazak, M.G. Carstens, F. Ossendorp, J. Oostendorp, W. Jiskoot, Optimization of encapsulation of a synthetic long peptide in PLGA nanoparticles: low-burst release is crucial for efficient CD8(+) T cell activation. Eur. J. Pharm. Biopharm. 83, 338–345 (2013)

    Article  Google Scholar 

  63. S. Ahn, I. Lee, E. Lee, H. Kim, Y. Kim, S. Jon, Oral delivery of an anti-diabetic peptide drug via conjugation and complexation with low molecular weight chitosan. J. Control. Release 170(2), 226–232 (2013)

    Article  Google Scholar 

  64. B. Urban-Klein et al., RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 12(5), 461–466 (2004)

    Article  Google Scholar 

  65. N. Yagi et al., A nanoparticle system specifically designed to deliver short interfering RNA inhibits tumor growth in vivo. Cancer Res. 69(16), 6531–6538 (2009)

    Article  Google Scholar 

  66. M.E. Davis, The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol. Pharm. 6(3), 659–668 (2009)

    Article  Google Scholar 

  67. C. Dohmen et al., Defined folate-PEG-siRNA conjugates for receptor-specific gene silencing. Mol. Ther. Nucl. Acids 1(1), 7 (2012)

    Article  Google Scholar 

  68. I.A. Babar et al., Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc. Natl. Acad. Sci. 109(26), E1695–E1704 (2012)

    Article  Google Scholar 

  69. A. Soriano, L. Jubierre, A. Almazán-Moga, C. Molista, J. Roma, J.S. de Toledo, S. Gallego, M.F. Segura, microRNAs as pharmacological targets in cancer. Pharmacol. Res. 75, 3–14 (2013)

    Article  Google Scholar 

  70. S.H. Kim, J.H. Jeong, K.W. Chun, T.G. Park, Target-specific cellular uptake of PLGA nanoparticles coated with poly(l-lysine)-poly(ethylene glycol)-folate conjugate. Langmuir 21(19), 8852–8857 (2005)

    Article  Google Scholar 

  71. H. Hillaireau, T.L. Doan, H. Chacun, J. Janin, P. Couvreur, Encapsulation of mono- and oligo-nucleotides into aqueous-core nanocapsules in presence of various water-soluble polymers. Int. J. Pharm. 331(2), 148–152 (2007)

    Article  Google Scholar 

  72. A. Aigner, Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs. J. Biotechnol. 124(1), 12–25 (2006)

    Article  Google Scholar 

  73. M. Bivas-Benita et al., PLGA–PEI nanoparticles for gene delivery to pulmonary epithelium. Eur. J. Pharm. Biopharm. 58(1), 1–6 (2004)

    Article  Google Scholar 

  74. G.F. Liang, Y.L. Zhu, B. Sun, F.H. Hu, T. Tian, S.C. Li, Z.D. Xiao, PLGA-based gene delivering nanoparticle enhance suppression effect of miRNA in HePG2 cells. Nanoscale Res. Lett 6(1), 1–9 (2011)

    Google Scholar 

  75. J. Zhu, A. Tang, L.P. Law, M. Feng, K.M. Ho, D.K. Lee, F.W. Harris, P. Li, Amphiphilic core-shell nanoparticles with poly(ethylenimine) shells as potential gene delivery carriers. Bioconjug. Chem. 16, 139–146 (2005)

    Article  Google Scholar 

  76. M. Feng, P. Li, PEI-PMMA cationic nanoparticles as carriers for gene transfer. Yao Xue Xue Bao 40(10), 893–897 (2005)

    Google Scholar 

  77. V.A. Sethuraman, K. Na, Y.H. Bae, pH-responsive sulfonamide/PEI system for tumor specific gene delivery: an in vitro study. Biomacromolecules 7, 64–70 (2006)

    Article  Google Scholar 

  78. N. Laçin, G. Utkan, T. Kutsal, B. Dedeoğlu, I.G. Yuluğ, E. Pişkin, TIMP-2 gene transfer by positively charged PEG-lated monosized polycationic carrier to smooth muscle cells. J. Nanopart. Res. 14(2), 1–9 (2012)

    Article  Google Scholar 

  79. S. Naahidi, M. Jafari, F. Edalat, K. Raymond, A. Khademhosseini, P. Chen, Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Release 166, 182–194 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelisa Türkoğlu Laçin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Laçin, N.T., Kızılbey, K. (2016). Nanoparticles as Nonviral Transfection Agents. In: Aliofkhazraei, M. (eds) Handbook of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-15338-4_40

Download citation

Publish with us

Policies and ethics