Skip to main content

Sonochemistry: A Greener Protocol for Nanoparticles Synthesis

  • Reference work entry
Handbook of Nanoparticles

Abstract

Current nanoparticles synthetic methodologies are focused on greener aspects which eliminate or minimize the use of hazardous chemicals or conventional energy sources. Typical greener techniques involve the use of sonochemical, microwave, electrochemical, hydrothermal, supercritical solvents, biosynthesis, and solar energy. Among this sonochemical route of nanoparticles synthesis is a well-developed and well-explored area due to its simplicity and diverse applicability. Sonochemistry arises from acoustic cavitation which involves the formation, growth, and implosive collapse of bubbles in a liquid which create high pressure and temperature followed by high rate of cooling. These properties are often responsible for shape and size selective nanoparticles synthesis.

Present chapter mainly focused on the basic concept of ultrasound and its application toward the synthesis of inorganic nanocrystalline materials like nanoparticles of metal, metal oxides, and metal sulfides. In addition, it covers the USP system for nanosize material synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Roucoux, J. Schulz, H. Patin, Reduced transition metal colloids: a novel family of reusable catalysts? Chem. Rev. 102, 3757–3778 (2002)

    Article  Google Scholar 

  2. T. Hyeon, M. Fang, K.S. Suslick, Nanostructured molybdenum carbide: sonochemical synthesis and catalytic properties. J. Am. Chem. Soc. 118, 5492–5493 (1996)

    Article  Google Scholar 

  3. K. Bhatte, P. Tambade, S. Fujita, M. Arai, B. Bhanage, Microwave-assisted additive free synthesis of nanocrystalline zinc oxide. Powder Technol. 203, 415–418 (2010)

    Article  Google Scholar 

  4. K. Bhatte, D. Sawant, R. Watile, B. Bhanage, A rapid, one step microwave assisted synthesis of nanosize zinc oxide. Mater. Lett. 69, 66–68 (2012)

    Article  Google Scholar 

  5. K. Bhatte, D. Sawant, K. Deshmukh, B.M. Bhanage, Additive free microwave assisted synthesis of nanocrystalline Mg(OH)2 and MgO. Particuology 10, 384–387 (2012)

    Article  Google Scholar 

  6. M. Bhosale, K. Bhatte, B.M. Bhanage, A rapid, one pot microwave assisted synthesis of nanosize cuprous oxide. Powder Technol. 235, 516–519 (2013)

    Article  Google Scholar 

  7. K.M. Deshmukh, Z.S. Qureshi, K.D. Bhatte, K.A. Venkatesan, T.G. Srinivasan, P.R. Vasudeva Rao, B.M. Bhanage, One-pot electrochemical synthesis of palladium nanoparticles and their application in the Suzuki reaction. New J. Chem. 35, 2747–2751 (2011)

    Article  Google Scholar 

  8. A. Patil, S. Lanke, K. Deshmukh, A. Pandit, B. Bhanage, Solar energy assisted palladium nanoparticles synthesis in aqueous medium. Mater. Lett. 79, 1–3 (2012)

    Article  Google Scholar 

  9. A. Patil, D. Patil, B. Bhanage, ZnO nanoparticle by solar energy and their catalytic application for α-amino phosphonates synthesis. Mater. Lett. 86, 50–53 (2012)

    Article  Google Scholar 

  10. A. Patil, D. Patil, B. Bhanage, Selective and efficient synthesis of decahedral palladium nanoparticles and its catalytic performance for Suzuki coupling reaction. J. Mol. Catal. A 365, 146–153 (2012)

    Article  Google Scholar 

  11. A.Y. Baranchikov, V.K. Ivanov, Y.D. Tretyakov, Sonochemical synthesis of inorganic materials. Russ. Chem. Rev. 76, 133–151 (2007)

    Article  Google Scholar 

  12. K.S. Suslick, Ultrasound: Its Chemical, Physical, and Biological Effects (Wiley-VCH, New York, 1988)

    Google Scholar 

  13. K.S. Suslick, S.J. Doktycz, The effects of ultrasound on solids. Adv. Sonochem. 1, 197–230 (1990)

    Google Scholar 

  14. E.B. Flint, K.S. Suslick, The temperature of cavitation. Science 253, 1397–1399 (1991)

    Article  Google Scholar 

  15. S.J. Doktycz, K.S. Suslick, Interparticle collisions driven by ultrasound. Science 247, 1067–1069 (1990)

    Article  Google Scholar 

  16. H. Frenzel, H. Schultes, Luminescenz im ultraschallbeschickten wasser (Luminescence in the ultrasound-fed water). Z. Phys. Chem. 27b, 421–424 (1934)

    Google Scholar 

  17. J.H. Bang, K.S. Suslick, Applications of ultrasound to the synthesis of nanostructured materials. Adv. Mater. 22, 1039–1059 (2010)

    Article  Google Scholar 

  18. K.S. Suslick, S.B. Choe, A.A. Cichowlas, M.W. Grinstaff, Sonochemical synthesis of amorphous iron. Nature 353, 414–416 (1991)

    Article  Google Scholar 

  19. H. Liu, X. Zhang, X. Wu, L. Jiang, C. Burda, J.-J. Zhu, Rapid sonochemical synthesis of highly luminescent non-toxic AuNCs and Au@AgNCs and Cu (II) sensing. Chem. Commun. 47, 4237–4239 (2011)

    Article  Google Scholar 

  20. N.A. Dhas, A. Gedanken, Sonochemical preparation and properties of nanostructured palladium metallic clusters. J. Mater. Chem. 8, 445–450 (1998)

    Article  Google Scholar 

  21. N.A. Dhas, C. Paul Raj, A. Gedanken, Synthesis, characterization, and properties of metallic copper nanoparticles. Chem. Mater. 10, 1446–1452 (1998)

    Article  Google Scholar 

  22. T. Fujimoto, S. Terauchi, H. Umehara, I. Kojima, W. Henderson, Sonochemicalpreparation of single-dispersion metal nanoparticles from metal salts. Chem. Mater. 13, 1057–1060 (2001)

    Article  Google Scholar 

  23. A. Nemamcha, J.-L. Rehspringer, D. Khatmi, Synthesis of palladium nanoparticles by sonochemicalreduction of palladium(II) nitrate in aqueous solution. J. Phys. Chem. B 110, 383–387 (2006)

    Article  Google Scholar 

  24. Y. He, K. Vinodgopal, M. Ashokkumar, F. Grieser, Sonochemical synthesis of ruthenium nanoparticles. Res. Chem. Intermed. 32, 709–715 (2006)

    Article  Google Scholar 

  25. H. Khalil, D. Mahajan, M. Rafailovich, M. Gelfer, K. Pandya, Synthesis of zerovalentnanophase metal particles stabilized with poly(ethylene glycol). Langmuir 20, 6896–6903 (2004)

    Article  Google Scholar 

  26. K.S. Suslick, T. Hyeon, M. Fang, A.A. Cichowlas, Sonochemical synthesis of nanostructured catalysts. Mater. Sci. Eng. A204, 186–192 (1995)

    Article  Google Scholar 

  27. X.F. Qui, J.J. Zhu, H.Y. Chen, Controllable synthesis of nanocrystalline gold assembled whiskery structures via sonochemical route. J. Cryst. Growth 257, 378–383 (2003)

    Article  Google Scholar 

  28. Z.L. Wang, Characterizing the structure and properties of individual wire-like nanoentities. Adv. Mater. 12, 1295–1298 (2000)

    Article  Google Scholar 

  29. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001)

    Article  Google Scholar 

  30. C. Dekker, Carbon nanotubes as molecular quantum wires. Phys. Today May, 22–28 (1999)

    Article  Google Scholar 

  31. S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer, Carbon nanotube quantum resistors. Science 280, 1744–1746 (1998)

    Article  Google Scholar 

  32. B. Gates, B. Mayers, A. Grossmn, Y. Xia, A sonochemical approach to the synthesis of crystalline selenium nanowires in solutions and on solid supports. Adv. Mater. 14, 1749–1752 (2002)

    Article  Google Scholar 

  33. S.T. Lakshmikvmar, A.C. Rastogi, Selenization of Cu and In thin films for the preparation of selenide photo-absorber layers in solar cells using Se vapour source. Sol. Energy Mater. Sol. Cells 32, 7–19 (1994)

    Article  Google Scholar 

  34. T. Gao, T. Wang, Sonochemical synthesis of SnO2nanobelt/CdS nanoparticle core/shell heterostructures. Chem. Commun. 22, 2558–2559 (2004)

    Article  Google Scholar 

  35. H.-l. Li, Y.-c. Zhu, S.-g. Chen, O. Palchik, J.-p. Xiong, Y. Koltypin, Y. Gofer, A. Gedanken: A novel ultrasound-assisted approach to the synthesis of CdSe and CdS nanoparticles. J. Solid State Chem. 172, 102–110 (2003)

    Google Scholar 

  36. W.Z. Wang, Y. Geng, P. Yan, F.Y. Liu, Y. Xie, Y.T. Qian, A novel mild route to nanocrystallineselenides at room temperature. J. Am. Chem. Soc. 121, 4062–4063 (1999)

    Article  Google Scholar 

  37. W.Z. Wang, P. Yan, F.Y. Liu, Y. Xie, Y. Geng, Y.T. Qian, Preparation and characterization of nanocrystalline Cu2–xSe by a novel solvothermal pathway. J. Mater. Chem. 8, 2321–2322 (1998)

    Article  Google Scholar 

  38. J.-J. Zhu, S. Xu, H. Wang, J.-M. Zhu, H.-Y. Chen, Sonochemical synthesis of CdSe hollow spherical assemblies via an in-situ template route. Adv. Mater. 15, 156–159 (2003)

    Article  Google Scholar 

  39. H. Wang, S. Xu, X.-N. Zhao, J.-J. Zhu, X.-Q. Xin, Sonochemical synthesis of size-controlled mercury selenide nanoparticles. Mater. Sci. Eng. B 96, 60–64 (2002)

    Article  Google Scholar 

  40. B. Li, Y. Xie, J. Huang, Y. Qian, Sonochemical synthesis of silver, copper and lead selenides. Ultrason. Sonochem. 6, 217–220 (1999)

    Article  Google Scholar 

  41. J. Zhu, Y. Koltypin, A. Gedanken, General sonochemicalmethod for the preparation of nanophasicselenides: synthesis of ZnSenanoparticles. Chem. Mater. 12, 73–78 (2000)

    Article  Google Scholar 

  42. K. Okitsu, Y. Nagata, Y. Mizukoshi, Y. Maeda, H. Bandow, T.A. Yamamoto, Synthesis of palladium nanoparticles with interstitial carbon by sonochemical reduction of tetrachloropalladate(II) in aqueous solution. J. Phys. Chem. B 101, 5470–5472 (1997)

    Article  Google Scholar 

  43. K.S. Suslick, T. Hyeon, M. Fang, J.T. Ries, A.A. Cichowlas, Sonochemical synthesis of nanophase metals, alloys, and carbides. Mater. Sci. Forum 225–227, 903–912 (1996)

    Article  Google Scholar 

  44. Y. Mizukoshi, K. Okitsu, Y. Maeda, T.A. Yamamoto, R. Oshima, Y. Nagata, Sonochemical preparation of bimetallic nanoparticles of gold/palladium in aqueous solution. J. Phys. Chem. B 101, 7033–7037 (1997)

    Article  Google Scholar 

  45. T. Egami, Magnetic amorphous alloys: physics and technological applications. Rep. Prog. Phys. 47, 1601–1725 (1984)

    Article  Google Scholar 

  46. K. Shafi, A. Gedanken, R. Prozorov, Sonochemical preparation and characterization of nanosized amorphous Co–Ni alloy powders. J. Mater. Chem. 8, 769–773 (1998)

    Article  Google Scholar 

  47. Q. Li, H. Li, V.G. Pol, I. Bruckental, Y. Koltypin, J. Calderon-Moreno, I. Nowik, A. Gedanken, Sonochemical synthesis, structural and magnetic properties of air-stable Fe/Co alloy nanoparticles. New J. Chem. 27, 1194–1199 (2003)

    Article  Google Scholar 

  48. K. Vinodgopal, Y. He, M. Ashokkumar, F. Grieser, Sonochemically prepared platinum − ruthenium bimetallic nanoparticles. J. Phys. Chem. B 110, 3849–3852 (2006)

    Article  Google Scholar 

  49. A.-L. Morel, S.I. Nikitenko, K. Gionnet, A. Wattiaux, J. Lai-Kee-Him, C. Labrugere, B. Chevalier, G. Deleris, C. Petibois, A. Brisson, M. Simonoff, Sonochemical approach to the synthesis of Fe3O4@SiO2 core − shell nanoparticles with tunable properties. ACS Nano 2, 847–856 (2008)

    Article  Google Scholar 

  50. D.N. Srivastava, S. Chappel, O. Palchik, A. Zaban, A. Gedanken, Sonochemical synthesis of mesoporous tin oxide. Langmuir 18, 4160–4164 (2002)

    Article  Google Scholar 

  51. D.N. Srivastava, N. Perkas, A. Gedanken, I. Felner, Sonochemicalsynthesis of mesoporousiron oxide and accounts of its magnetic and catalytic properties. J. Phys. Chem. B 106, 1878–1883 (2002)

    Article  Google Scholar 

  52. J.C. Yu, L. Zhang, J. Yu, Direct sonochemical preparation and characterization of highly active mesoporous TiO2 with a bicrystalline framework. Chem. Mater. 14, 4647–4653 (2002)

    Article  Google Scholar 

  53. Y. Wang, L. Yin, A. Gedanken, Sonochemical synthesis of mesoporous transition metal and rare earth oxides. Ultrason. Sonochem. 9, 285–290 (2002)

    Article  Google Scholar 

  54. S. Zhu, H. Zhou, M. Hibino, I. Honma, M. Ichihara, Synthesis of MnO2 nanoparticles confined in ordered mesoporous carbon using a sonochemical method. Adv. Funct. Mater. 15, 381–386 (2005)

    Article  Google Scholar 

  55. K. Bhatte, S. Fujita, M. Arai, A. Pandit, B. Bhanage, Ultrasound assisted additive free synthesis of nanocrystalline zinc oxide. Ultrason. Sonochem. 18, 54–58 (2011)

    Article  Google Scholar 

  56. S.-H. Jung, E. Oh, K.-H. Lee, Y. Yang, C.G. Park, W. Park, S.-H. Jeong, Sonochemical preparation of shape-selective ZnO nanostructures. Cryst. Growth Des. 8, 265–269 (2008)

    Article  Google Scholar 

  57. R. Vijaya Kumar, Y. Diamant, A. Gedanken, Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem. Mater. 12, 2301–2305 (2000)

    Article  Google Scholar 

  58. T.T. Kodas, M. Hampden-Smith, Aerosol Processing of Materials (Wiley-VCH, New York, 1999)

    Google Scholar 

  59. K. Okuyama, W. Lenggoro, Preparation of nanoparticles via spray route. Chem. Eng. Sci. 58, 537–547 (2003)

    Article  Google Scholar 

  60. G.L. Messing, S.-C. Zhang, G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis. J. Am. Ceram. Soc. 76, 2707 (1993)

    Article  Google Scholar 

  61. R.W. Wood, A.L. Loomis, The physical and biological effects of high-frequency sound-waves of great intensity. Phil. Mag. 7, 417–436 (1927)

    Article  Google Scholar 

  62. R.J. Lang, Ultrasonic atomization of liquids. J. Acoust. Soc. Am. 34, 6–8 (1962)

    Article  Google Scholar 

  63. W.H. Suh, K.S. Suslick, Magnetic and porous nanospheres from ultrasonic spray pyrolysis. J. Am. Chem. Soc. 127, 12007–12010 (2005)

    Article  Google Scholar 

  64. W.H. Suh, A.R. Jang, Y.-H. Suh, K.S. Suslick, Porous, hollow, and ball-in-ball metal oxide microspheres: preparation, endocytosis, and cytotoxicity. Adv. Mater. 18, 1832–1837 (2006)

    Article  Google Scholar 

  65. S.E. Skrabalak, K.S. Suslick, Porous carbon powders prepared by ultrasonic spray pyrolysis. J. Am. Chem. Soc. 128, 12642–12643 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhalchandra M. Bhanage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Patil, A.B., Bhanage, B.M. (2016). Sonochemistry: A Greener Protocol for Nanoparticles Synthesis. In: Aliofkhazraei, M. (eds) Handbook of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-15338-4_4

Download citation

Publish with us

Policies and ethics