Skip to main content

Nanoparticle Arrays

  • Reference work entry
Handbook of Nanoparticles

Abstract

Arrays of metal nanoparticles in an organic matrix have attracted a lot of interest due to their diverse electronic and optoelectronic properties. By varying parameters such as the nanoparticle material, the matrix material, the nanoparticle size, and the interparticle distance, the electronic behavior of the nanoparticle array can be substantially tuned and controlled. For strong tunnel coupling between adjacent nanoparticles, the assembly exhibits conductance properties similar to the bulk properties of the nanoparticle material. When the coupling between the nanoparticles is reduced, a metal insulator transition is observed in the overall assembly. Recent work demonstrates that nanoparticle arrays can be further utilized to incorporate single molecules, such that the nanoparticles act as electronic contacts to the molecules. Furthermore, via the excitation of the surface plasmon polaritons, the nanoparticles can be optically excited and electronically read out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.N. Shipway, E. Katz, I. Willner, Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem. Phys. Chem. 1, 18 (2000)

    Google Scholar 

  2. D.V. Talapin, J.-S. Lee, M.V. Kovalenko, E.V. Shevchenko, Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389 (2010)

    Article  Google Scholar 

  3. M. Homberger, U. Simon, On the application potential of gold nanoparticles in nanoelectronics and biomedicine Phil. Trans. R. Soc. A 368, 1405–1453 (2010)

    Article  Google Scholar 

  4. C.B. Murray, C.R. Kagan, M.G. Bawendi, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545 (2000)

    Article  Google Scholar 

  5. A.R. Tao, S. Habas, P.D. Yang, Shape control of colloidal metal nanocrystals. Small 4, 310 (2008)

    Article  Google Scholar 

  6. M. Grzelczak, J. Perez-Juste, P. Mulvaney, L.M. Liz-Marzan, Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37, 1783 (2008)

    Article  Google Scholar 

  7. R. Sardar, A.M. Funston, P. Mulvaney, R.W. Murray, Gold nanoparticles: past, present, and future. Langmuir 25, 13480 (2009)

    Article  Google Scholar 

  8. R.L. Whetten, J.T. Khoury, M.M. Alvarez, S. Murthy, I. Vezmar, Z.L. Wang, P.W. Stephens, C.L. Clevelend, W.D. Luedtke, U. Landman, Nanocrystal gold molecules. Adv. Mater. 8, 428 (1996)

    Article  Google Scholar 

  9. L. Motte, F. Billoudet, M.P. Pileni, Self-assembled monolayer of nanosized particles differing by their sizes. J. Phys. Chem. 99, 16425 (1995)

    Article  Google Scholar 

  10. C.J. Kiely, J. Fink, M. Brust, D. Bethell, D.J. Schiffrin, Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 396, 444 (1998)

    Article  Google Scholar 

  11. M. Giersig, P. Mulvaney, Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 9, 3408 (1993)

    Article  Google Scholar 

  12. P.C. Ohara, D.V. Leff, J.R. Heath, W.M. Gelbart, Crystallization of opals from polydisperse nanoparticles. Phys. Rev. Lett. 75(19), 3466 (1995)

    Article  Google Scholar 

  13. S. Narayanan, J. Wang, Dynamical self-assembly of nanocrystal superlattices during colloidal droplet evaporation by in situ small angle X-ray scattering. Phys. Rev. Lett. 93(13), 135503 (2004)

    Article  Google Scholar 

  14. T.P. Bigioni, X.-M. Lin, T.T. Nguyen, E.I. Corwing, T.A. Witten, H.M. Jaeger, Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat. Mater. 5, 265 (2006)

    Article  Google Scholar 

  15. X.M. Lin, H.M. Jaeger, C.M. Sorensen, K.J. Klabunde, Formation of long-range-ordered nanocrystal superlattices on silicon nitride substrates. J. Phys. Chem. B 105, 3353–3357 (2001)

    Article  Google Scholar 

  16. J.P. Bourgoin, C. Kergueris, E. Lefevre, S. Palacin, Langmuir–Blodgett films of thiol-capped gold nanoclusters: fabrication and electrical properties. Thin Solid Films 327–329, 515 (1998)

    Article  Google Scholar 

  17. G. Markovich, C.P. Collier, S.E. Hendrichs, F. Remacle, D.R. Levine, J.R. Heath, Architectonic quantum dot solids. Acc. Chem. Res. 32, 415 (1999)

    Article  Google Scholar 

  18. J.J. Brown, J.A. Porter, C.P. Daghlian, U.J. Gibson, Ordered arrays of amphiphilic gold nanoparticles in langmuir monolayers. Langmuir 17, 7966 (2001)

    Article  Google Scholar 

  19. J.R. Heath, C.M. Knobler, D.V. Leff, Pressure/temperature phase diagrams and superlattices of organically functionalized metal nanocrystal monolayers: the influence of particle size, size distribution, and surface passivant. J. Phys. Chem. B 101, 189–197 (1997)

    Article  Google Scholar 

  20. I. Langmuir, K.B. Blodgett, A new method of investigating unimolecular films. Kolloid Z. 73, 258–263 (1935)

    Article  Google Scholar 

  21. S. Huang, H. Sakaue, S. Shingubara, T. Takahagi, Self-organization of a two-dimensional array of gold nanodots encapsulated by alkanethiol. Jpn. J. Appl. Phys. 37, 7198 (1998)

    Article  Google Scholar 

  22. V. Santhanam, J. Liu, R. Agarwal, R. Andres, Self-assembly of uniform monolayer arrays of nanoparticles. Langmuir 19, 7881–7887 (2003)

    Article  Google Scholar 

  23. P. Müller-Buschbaum, Grazing incidence small-angle X-ray scattering: an advanced scattering technique for the investigation of nanostructured polymer films. Anal. Bioanal. Chem. 376, 3 (2003)

    Google Scholar 

  24. J.R. Levine, J.B. Cohen, Y.W. Chung, P. Georgopoulos, Grazing incidence small-angle X-ray scattering: new tool for studying thin film growth. J. Appl. Crystallogr. 22, 528 (1989)

    Article  Google Scholar 

  25. G. Renaud, R. Lazzari, F. Leroy, Probing surface and interface morphology with grazing incidence small angle X-ray scattering. Surf. Sci. Rep. 64, 255 (2009)

    Article  Google Scholar 

  26. M.A. Mangold, M.A. Niedermeier, M. Rawolle, B. Dirks, J. Perlich, S.V. Roth, A.W. Holleitner, P. Müller-Buschbaum, Correlation between structure and optoelectronic properties in a two-dimensional nanoparticle assembly. Phys. Status Solidi RRL 5, 16 (2011)

    Article  Google Scholar 

  27. R. Lazzari, IsGISAXS: a program for grazing-incidence small-angle X-ray scattering analysis of supported islands. J. Appl. Crystallogr. 35, 406 (2002)

    Article  Google Scholar 

  28. I.S. Beloborodov, A.V. Lopatin, V.M. Vinokur, K.B. Efetov, Granular electronic systems. Rev. Mod. Phys. 79, 469 (2007)

    Article  Google Scholar 

  29. S.-H. Kim, G. Medeiros-Ribeiro, D.A.A. Ohlberg, R.S. Williams, J.R. Heath, Individual and collective electronic properties of Ag nanocrystals. J. Phys. Chem. B 103, 10341 (1999)

    Article  Google Scholar 

  30. A. Tao, P. Sinsermsuksasul, P. Yang, Tunable plasmonic lattices of silver nanocrystals. Nat. Nanotechnol. 2, 435 (2007)

    Article  Google Scholar 

  31. L. Bernard, Ph.D. Thesis, University of Basel, 2011. http://edoc.unibas.ch/546/

  32. H. Liu, B.S. Mun, G. Thornton, S.R. Isaacs, Y.-S. Shon, D.F. Ogletree, M. Salmeron, Electronic structure of ensembles of gold nanoparticles: size and proximity effects. Phys. Rev. B 72, 155430 (2005)

    Article  Google Scholar 

  33. A. Zabet-Khosousi, P.-E. Trudeau, Y. Suganuma, A.-A. Dhirani, B. Statt, Metal to insulator transition in films of molecularly linked gold nanoparticles. Phys. Rev. Lett. 96, 156403 (2006)

    Article  Google Scholar 

  34. J. Liao, L. Bernard, M. Langer, C. Schönenberger, M. Calame, Reversible formation of molecular junctions in 2D nanoparticle arrays. Adv. Mater. 18, 2444 (2006)

    Article  Google Scholar 

  35. M. Mangold, Ph.D. Thesis, Technische Universität München, 2011

    Google Scholar 

  36. L. Bernard, Y. Kamdzhilov, M. Calame, S.J. van der Molen, J. Liao, C. Schönenberger, Spectroscopy of molecular junction networks obtained by place exchange in 2d nanoparticle arrays. J. Phys. Chem. C 111, 18445–18450 (2007)

    Article  Google Scholar 

  37. J. Liao, Y. Zhou, C. Huang, Y. Wang, L. Peng, Fabrication, transfer, and transport properties of monolayered freestanding nanoparticle sheets. Small 7(5), 583–587 (2011)

    Article  Google Scholar 

  38. J. Liao, J. Agustsson, S. Wu, O. Jeannin, Y.-F. Ran, S.-X. Liu, S. Decurtins, Y. Leroux, M. Mayor, C. Schönenberger, M. Calame, Cyclic conductance switching in networks of redox-active molecular junctions. Nano Lett. 10(3), 759–764 (2010)

    Article  Google Scholar 

  39. A. Zabet-Khosousi, A.A. Dhirani, Charge transport in nanoparticle assemblies. Chem. Rev. 108, 4072 (2008)

    Article  Google Scholar 

  40. N.V. Smith, G.K. Wertheim, S. Hüfner, M.M. Traum, Photoemission spectra and band structures of d-band metals. IV. X-ray photoemission spectra and densities of states in Rh, Pd, Ag, Ir, Pt, and Au. Phys. Rev. B 10, 3197 (1974)

    Article  Google Scholar 

  41. A.J. Quinn, P. Beecher, D. Iacopino, L. Floyd, G. De Marzi, E.V. Shevchenko, H. Weller, G. Redmond, Manipulating the charging energy of nanocrystal arrays. Small 1, 613 (2005)

    Article  Google Scholar 

  42. K. Elteto, E.G. Antonyan, T.T. Nguyen, H.M. Jaeger, Model for the onset of transport in systems with distributed thresholds for conduction. Phys. Rev. B 71, 064206 (2005)

    Article  Google Scholar 

  43. P. Beecher, A.J. Quinn, E.V. Shevchenko, H. Weller, G. Redmond, Insulator-to-metal transition in nanocrystal assemblies driven by in situ mild thermal annealing. Nano Lett. 4, 1289 (2004)

    Article  Google Scholar 

  44. G. Markovich, C.P. Collier, J.R. Heath, Reversible metal-insulator transition in ordered metal nanocrystal monolayers observed by impedance spectroscopy. Phys. Rev. Lett. 80, 3807 (1998)

    Article  Google Scholar 

  45. A.A. Middleton, N.S. Wingreen, Collective transport in arrays of small metallic dots. Phys. Rev. Lett. 71, 3198 (1993)

    Article  Google Scholar 

  46. R. Parthasarathy, X.-M. Lin, H.M. Jaeger, Electronic transport in metal nanocrystal arrays: the effect of structural disorder on scaling behavior. Phys. Rev. Lett. 87, 186807 (2001)

    Article  Google Scholar 

  47. R. Parthasarathy, X.-M. Lin, K. Elteto, T.F. Rosenbaum, H.M. Jaeger, Percolating through networks of random thresholds: finite temperature electron tunneling in metal nanocrystal arrays. Phys. Rev. Lett. 92, 076801 (2004)

    Article  Google Scholar 

  48. J.C. Wierman, Adv. Appl. Probab. 13, 298 (1981)

    Article  Google Scholar 

  49. B. Abeles, P. Sheng, M.D. Coutts, Y. Arie, Structural and electrical properties of granular metal films. Adv. Phys. 24, 407 (1975)

    Article  Google Scholar 

  50. T.B. Tran, I.S. Beloborodov, X.M. Lin, T.P. Bigioni, V.M. Vinokur, H.M. Jaeger, Multiple cotunneling in large quantum dot arrays. Phys. Rev. Lett. 95, 076806 (2005)

    Article  Google Scholar 

  51. A.L. Efros, B.I. Shklovskii, Coulomb gap and low temperature conductivity of disordered systems. J. Phys. C Solid State Phys. 8, L49 (1975)

    Article  Google Scholar 

  52. M.J. Hostetler, A.C. Templeton, R.W. Murray, Langmuir 15, 3782 (1999)

    Article  Google Scholar 

  53. S. Wu, R. Huber, M.T. Gonzalez, S. Grunder, M. Mayor, C. Schönenberger, M. Calame, Molecular junctions based on aromatic coupling. Nat. Nanotechnol. 3, 569–574 (2008)

    Article  Google Scholar 

  54. J. Liao, M. Mangold, S. Grunder, M. Mayor, C. Schönenberger, M. Calame, Interlinking Au nanoparticles in 2D arrays via conjugated dithiolated molecules. New J. Phys. 10, 065019 (2008)

    Article  Google Scholar 

  55. J. Agusstsson, Ph.D. Thesis, University of Basel, 2011. http://edoc.unibas.ch/1457/

  56. M. Šuvakov, B. Tadić, Modeling collective charge transport in nanoparticle assemblies. J. Phys. Condens. Matter 22(16), 163201 (2010)

    Article  Google Scholar 

  57. C. George, I. Szleifer, M. Ratner, Multiple-time-scale motion in molecularly linked nanoparticle arrays. ACS Nano 7(1), 108 (2013)

    Article  Google Scholar 

  58. J.-F. Dayen, E. Devid, M.V. Kamalakar, D. Golubev, C. Guédon, V. Faramarzi, B. Doudin, S.J. van der Molen, Adv. Mater. 25, 400 (2013)

    Article  Google Scholar 

  59. G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330, 377 (1908)

    Article  Google Scholar 

  60. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin/Heidelberg, 1995)

    Book  Google Scholar 

  61. L. Novotny, B. Hecht, Principles of Nano Optics (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  62. R.C. Weast, D.R. Lide (eds.), Handbook of Chemistry and Physics, 70th edn. (CRC, Boca Raton, 1990)

    Google Scholar 

  63. S.K. Ghosh, T. Pal, Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev. 107, 4797 (2007)

    Article  Google Scholar 

  64. U. Kreibig, L. Genzel, Optical absorption of small metallic particles. Surf. Sci. 156, 678 (1985)

    Article  Google Scholar 

  65. L. Genzel, T.P. Martin, U. Kreibig, Dielectric function and plasma resonances of small metal particles. Zeitschrift für Physik B Condensed Matter 21, 339 (1975)

    Article  Google Scholar 

  66. L. Genzel, U. Kreibig, Dielectric function and infrared absorption of small metal particles. Zeitschrift für Physik B Condensed Matter 37, 93 (1980)

    Article  Google Scholar 

  67. M. Quinten, Optical constants of gold and silver clusters in the spectral range between 1.5 eV and 4.5 eV. Zeitschrift für Physik B Condensed Matter 101, 211 (1996)

    Article  Google Scholar 

  68. J. Cao, Y. Gao, H.E. Elsayed-Ali, R.J.D. Miller, D.A. Mantell, Femtosecond photoemission study of ultrafast electron dynamics in single crystal Au(111) films. Phys. Rev. B 58, 10948 (1998)

    Article  Google Scholar 

  69. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Thomson Learning, London, 2003)

    Google Scholar 

  70. J.C. Garnett, Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. Lond. A 203, 385 (1904)

    Article  Google Scholar 

  71. L. Genzel, T.P. Martin, Infrared absorption by surface phonons and surface plasmons in small crystals. Surf. Sci. 34, 33 (1973)

    Article  Google Scholar 

  72. T. Ung, L.M. Liz-Marzán, P. Mulvaney, Gold nanoparticle thin films. Colloids Surf. A Physicochem. Eng. Asp. 202, 119 (2002)

    Article  Google Scholar 

  73. N.E. Christensen, B.O. Seraphin, Relativistic band calculation and the optical properties of gold. Phys. Rev. B 4, 3321 (1971)

    Article  Google Scholar 

  74. M.A. Mangold, C. Weiss, M. Calame, A.W. Holleitner, Surface plasmon enhanced photoconductance of gold nanoparticle arrays with incorporated alkane linkers. Appl. Phys. Lett. 94, 161104 (2009)

    Article  Google Scholar 

  75. P. Banerjee, D. Conklin, S. Nanayakkara, T.H. Park, M.J. Therien, D.A. Bonnell, Plasmon-induced electrical conduction in molecular devices. ACS Nano 4, 1019 (2010)

    Article  Google Scholar 

  76. H. Chen, G.C. Schatz, M.A. Rattner, Experimental and theoretical studies of plasmon–molecule interactions. Rep. Prog. Phys. 75, 096402 (2012)

    Article  Google Scholar 

  77. A.O. Govorov, H. Zhang, Y.K. Gun’Ko, Theory of photo-injection of hot plasmonic carriers in metal–semiconductor nanostructures and surface molecules. J. Phys. Chem. C 117, 16616 (2013)

    Article  Google Scholar 

  78. H. Nakanishi, K.J.M. Bishop, B. Kowalczyk, A. Nitzan, E.A. Weiss, K.V. Tretiakov, M.M. Apodaca, R. Klajn, J.F. Stoddart, B.A. Grzybowski, Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles. Nature 460, 371 (2009)

    Article  Google Scholar 

  79. A.O. Govorov, H.H. Richardson, Generating heat with metal nanoparticles. Nano Today 2, 30 (2007)

    Article  Google Scholar 

  80. A.O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, N.A. Kotov, Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res. Lett. 1, 84 (2006)

    Article  Google Scholar 

  81. M.A. Mangold, C. Weiss, B. Dirks, A.W. Holleitner, Optical field-enhancement in metal nanoparticle arrays contacted by electron beam induced deposition. Appl. Phys. Lett. 98, 243108 (2011)

    Article  Google Scholar 

  82. Q. Park, Optical antennas and plasmonics. Contemp. Phys. 50, 407 (2009)

    Article  Google Scholar 

  83. M.A. Mangold, M. Calame, M. Mayor, A.W. Holleitner, Negative differential photoconductance in gold nanoparticle arrays in the Coulomb blockade regime. ACS Nano 6, 4181 (2012)

    Article  Google Scholar 

  84. D.C. Guhr, D. Rettinger, J. Boneberg, A. Erbe, P. Leiderer, E. Scheer, Influence of laser light on electronic transport through atomic-size contacts. Phys. Rev. Lett. 99, 086801 (2007)

    Article  Google Scholar 

  85. G. Noy, A. Ophir, Y. Selzer, Response of molecular junctions to surface plasmon polaritons. Angew. Chem. Int. Ed. 49, 5734 (2010)

    Article  Google Scholar 

  86. S.J. van der Molen, J. Liao, T. Kudernac, J.S. Agustsson, L. Bernard, M. Calame, B.J. van Wees, B.L. Feringa, C. Schönenberger, Light-controlled conductance switching of ordered metal-molecule-metal devices. Nano Lett. 9, 76 (2009)

    Article  Google Scholar 

  87. E.I. López-Martínez, L.M. Rodríguez-Valdez, N. Flores-Holguín, A. Márquez-Lucero, D. Glossman-Mitnik, Theoretical study of electronic properties of organic photovoltaic materials. J. Comput. Chem. 30, 1027 (2009)

    Article  Google Scholar 

  88. M.A. Mangold, M. Calame, M. Mayor, A.W. Holleitner, Resonant photoconductance of molecular junctions formed in gold nanoparticle arrays. J. Am. Chem. Soc. 133, 12185–12191 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

Numerous colleagues have contributed to the work presented here. Particular thanks goes to Claire Barrett, Laetitia Bernard, Jianhui Liao, Marcel Mayor, Sense Jan van der Molen, and Christian Schönenberger. For critical reading and comments, we thank Jianhui Liao, Sense Jan van der Molen, Ralph Stoop, Martin Niedermeier, and Anton Vladyka. Following agencies are acknowledged for financial support: the Swiss NCCR “Nanoscale Science,” the Swiss National Science Foundation (SNSF), the European Science Foundation (ESF) through the Eurocores Program on Self-Organized Nanostructures (SONS), the Gebert Rüf Foundation, the DFG excellence cluster “Nanosystems Initiative Munich” (NIM), and the European Commission (EC) via the FP7 projects – “FUNMOLS” (ITN) no. 212942, “FUNMOL” no. 213382, “HYSENS” no. 263091, “NanoREAL” (ERC grant) no. 306754, “SYMONE” no. 318597, and “MOLESCO” (ITN) no. 606728.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. A. Mangold or A. W. Holleitner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Mangold, M.A., Holleitner, A.W., Agustsson, J.S., Calame, M. (2016). Nanoparticle Arrays. In: Aliofkhazraei, M. (eds) Handbook of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-15338-4_27

Download citation

Publish with us

Policies and ethics