Skip to main content

Synthesis, Characterization, and Applications of Nanoporous Materials for Sensing and Separation

  • Reference work entry
Handbook of Nanoparticles

Abstract

In the past two decades, nanoparticles have been widely studied from fundamental and applications viewpoints. They have been used in a range of applications including chemical and biosensing, gene and drug delivery, and electronics, mechanical, and optical device fabrication. The synthesis of nanoparticles with controlled dimensions is important because the properties of nanoparticles are size and shape dependent. This chapter emphasizes template-assisted synthesis and characterization of nanoparticles. Template synthesis provides nanoparticles with controlled shape and size with high reproducibility and yield. The chapter also includes synthesis and characterization of different templates including nanoporous alumina and polymer membranes, zeolites, and self-assembled organic and biomaterials as well. The application of biosensing and bioseparation using nanoparticles is discussed in detail and special emphasis is given to single pore-based detection and sensing of nucleic acids and proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Polarz, B. Smarsly, Nanoporous materials. J. Nanosci. Nanotechnol. 2, 581–612 (2002)

    Article  Google Scholar 

  2. M.E. Davis, C. Saldarriaga, C. Montes, J. Garces, C. Crowdert, A molecular sieve with eighteen-membered rings. Nature 331, 698–699 (1988)

    Article  Google Scholar 

  3. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992)

    Article  Google Scholar 

  4. H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999)

    Article  Google Scholar 

  5. M.E. Davis, Ordered porous materials for emerging applications. Nature 417, 813–821 (2002)

    Article  Google Scholar 

  6. L.T. Sexton, L.P. Horne, C.R. Martin, Developing synthetic conical nanopores for biosensing applications. Mol. Biosyst. 3, 667–685 (2007)

    Article  Google Scholar 

  7. J.S. Foresi, P.R. Villeneuve, J. Ferrera, E.R. Thoen, G. Steinmeyer, S. Fan, J.D. Joannopoulos, L.C. Kimerling, H.I. Smith, E.P. Ippen, Photonic-bandgap microcavities in opticalwaveguides. Nature 390, 3 (1997)

    Article  Google Scholar 

  8. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 4 (1987)

    Article  Google Scholar 

  9. S.B. Lee, D.T. Mitchell, L. Trofin, T.K. Nevanen, H. Söderlund, C.R. Martin, Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science 296, 2198–2200 (2002)

    Article  Google Scholar 

  10. D.T. Mitchell, S.B. Lee, L. Trofin, N. Li, T.K. Nevanen, H. Söderlund, C.R. Martin, Smart nanotubes for bioseparations and biocatalysis. J. Am. Chem. Soc. 124, 11864–11865 (2002)

    Article  Google Scholar 

  11. D. Figeys, D. Pinto, Lab-on-a-chip: a revolution in biological and medical sciences. Anal. Chem. 72, 330 A–335 A (2000)

    Article  Google Scholar 

  12. F. Keller, M.S. Hunter, D.L. Robinson, Structural features of oxide coatings on aluminum. J. Electrochem. Soc. 100, 411–419 (1953)

    Article  Google Scholar 

  13. M. Satoh, H. Masuda, Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn. J. Appl. Phys. 35, 4 (1996)

    Article  Google Scholar 

  14. A.P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, Fabrication and microstructuring of hexagonally ordered two-dimensional nanopore arrays in anodic alumina. Adv. Mater. 11, 5 (1999)

    Google Scholar 

  15. H. Masuda, K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 3 (1995)

    Article  Google Scholar 

  16. O. Jessensky, F. Muller, U. Gosele, Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 72, 3 (1998)

    Article  Google Scholar 

  17. A.P. Li, F. Muller, A. Birner, K. Nielsch, U. Gösele, Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 84, 4 (1998)

    Google Scholar 

  18. M.H. Lee, N. Lim, D.J. Ruebusch, A. Jamshidi, R. Kapadia, R. Lee, T.J. Seok, K. Takei, K.Y. Cho, Z. Fan, H. Jang, M. Wu, G. Cho, A. Javey, Roll-to-Roll anodization and etching of aluminum foils for high-throughput surface nanotexturing. Nano Lett. 11, 6 (2011)

    Google Scholar 

  19. H. Masuda, K. Takenaka, T. Ishii, K. Nishio, Long-range-ordered anodic porous alumina with less-than-30 nm hole interval. Jpn. J. Appl. Phys. Part 2 45, L1165–L1167 (2006)

    Article  Google Scholar 

  20. T. Yanagishita, K. Nishio, H. Masuda, Fabrication of metal nanohole arrays with high aspect ratios using two-step replication of anodic porous alumina. Adv. Mater. 17, 2241–2243 (2005)

    Article  Google Scholar 

  21. S. Grimm, R. Giesa, K. Sklarek, A. Langner, U. Gosele, H.-W. Schmidt, M. Steinhart, Nondestructive replication of self-ordered nanoporous alumina membranes via cross-linked polyacrylate nanofiber arrays. Nano Lett. 8, 6 (2008)

    Article  Google Scholar 

  22. W. Chen, J.S. Wu, X.H. Xia, Porous anodic alumina with continuously manipulated pore/cell size. ACS Nano 2, 7 (2008)

    Article  Google Scholar 

  23. W. Lee, R. Ji, U. Gosele, K. Nielsch, Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 5, 741–747 (2006)

    Article  Google Scholar 

  24. Z.S. Siwy, Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv. Funct. Mater. 16, 12 (2006)

    Article  Google Scholar 

  25. M. Nishizawa, V.P. Menon, C.R. Martin, Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science 268, 3 (1995)

    Article  Google Scholar 

  26. T.R. Gaborski, J.L. Snyder, C.C. Striemer, D.Z. Fang, M. Hoffman, P.M. Fauchet, J.L. McGrath, High-performance separation of nanoparticles with ultrathin porous nanocrystalline silicon membranes. ACS Nano 4, 6973–6981 (2010)

    Article  Google Scholar 

  27. E.A. Jackson, M.A. Hillmyer, Nanoporous membranes derived from block copolymers: from drug delivery to water filtration. ACS Nano 4, 3548–3553 (2010)

    Article  Google Scholar 

  28. J. Li, M. Gershow, D. Stein, E. Brandin, J.A. Golovchenko, DNA molecules and configurations in a solid-state nanopore microscope. Nat. Mater. 2, 611–615 (2003)

    Article  Google Scholar 

  29. Z. Siwy, L. Trofin, P. Kohli, L.A. Baker, C. Trautmann, C.R. Martin, Protein biosensors based on biofunctionalized conical gold nanotubes. J. Am. Chem. Soc. 127, 5000–5001 (2005)

    Article  Google Scholar 

  30. M. Ali, B. Yameen, R. Neumann, W. Ensinger, W. Knoll, O. Azzaroni, Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries. J. Am. Chem. Soc. 130, 7 (2008)

    Google Scholar 

  31. Z. Chen, Y. Jiang, D.R. Dunphy, D.P. Adams, C. Hodges, N. Liu, N. Zhang, G. Xomeritakis, X. Jin, N.R. Aluru, S.J. Gaik, H.W. Hillhouse, C.J. Brinker, DNA translocation through an array of kinked nanopores. Nat. Mater. 9(8), 667–675 (2010)

    Article  Google Scholar 

  32. B.M. Venkatesan, R. Bashir, Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 6, 615–624 (2011)

    Article  Google Scholar 

  33. P.Y. Apel, Y.E. Korchev, Z. Siwy, R. Spohr, M. Yoshida, Diode-like single-ion track membrane prepared by electro-stopping. Nucl. Instrum. Meth. Phys. Res. B 184, 10 (2001)

    Article  Google Scholar 

  34. C.C. Harrell, P. Kohli, Z. Siwy, C.R. Martin, DNA-nanotube artificial ion channels. J. Am. Chem. Soc. 126, 2 (2004)

    Article  Google Scholar 

  35. C.P. Bean, W. DeSorbo, Porous bodies and method of making (General Electric Company, Schenectady, 1968)

    Google Scholar 

  36. C.C. Harrell, Z.S. Siwy, C.R. Martin, Conical nanopore membranes: controlling the nanopore shape. Small 2, 5 (2006)

    Google Scholar 

  37. Z. Siwy, L. Trofin, P. Kohli, L.A. Baker, C. Trautmann, C.R. Martin, Protein biosensors based on biofunctionalized conical gold nanotubes. J. Am. Chem. Soc. 127, 2 (2005)

    Article  Google Scholar 

  38. H. Mukaibo, L.P. Horne, D. Park, C.R. Martin, Controlling the length of conical pores etched in ion-tracked poly(ethylene terephthalate) membranes. Small 5, 6 (2009)

    Google Scholar 

  39. V.P. Menon, C.R. Martin, Fabrication and evaluation of nanoelectrode ensembles. Anal. Chem. 67, 9 (1995)

    Article  Google Scholar 

  40. S. Yu, N. Li, J. Wharton, C.R. Martin, Nano wheat fields prepared by plasma-etching gold nanowire-containing membranes. Nano Lett. 3, 4 (2003)

    Google Scholar 

  41. P.R. Rajasekaran, J. Wolf, C. Zhou, M. Kinsel, C. Trautmann, S. Aouadib, P. Kohli, Two dimensional anisotropic etching in tracked glass. J. Mater. Chem. 19, 8 (2009)

    Article  Google Scholar 

  42. T. James, Y.V. Kalinin, C.C. Chan, J.S. Randhawa, M. Gaevski, D.H. Gracias, Voltage-gated ion transport through semiconducting conical nanopores formed by metal nanoparticle-assisted plasma etching. Nano Lett. 12, 6 (2012)

    Article  Google Scholar 

  43. C. Zhou, P. Ramiah Rajasekaran, J. Wolff, X. Li, P. Kohli, Photo-pens: a simple and versatile tool for Maskless photolithography. Langmuir 26, 17726–17732 (2010)

    Article  Google Scholar 

  44. X. Li, S. Matthews, P. Kohli, Fluorescence resonance energy transfer in polydiacetylene liposomes. J. Phys. Chem. B 112, 13263–13272 (2008)

    Article  Google Scholar 

  45. M.W.T. Weihua Deng, H. Brent, Shanks: surfactant-assisted synthesis of alumina with hierachical nanopores. Adv. Funct. Mater. 13, 5 (2003)

    Google Scholar 

  46. S. Cabrera, J.E. Haskouri, J. Alamo, A. Beltrμn, D. Beltrán, S. Mendioroz, M. Dolores Marcos, P. Amorós, Surfactant-assisted synthesis of mesoporous alumina showing continuously adjustable pore sizes. Adv. Mater. 11, 3 (1999)

    Google Scholar 

  47. B. Naik, N.N. Ghosh, A review on chemical methodologies for preparation of mesoporous silica and alumina based materials. Recent Pat. Nanotechnol. 3, 12 (2009)

    Article  Google Scholar 

  48. R. Rinaldia, F. Schüth, Design of solid catalysts for the conversion of biomass. Energy Environ. Sci. 2, 17 (2009)

    Google Scholar 

  49. M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo, Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 416, 4 (2009)

    Google Scholar 

  50. K. Na, C. Jo, J. Kim, K. Cho, J. Jung, Y. Seo, R.J. Messinger, B.F. Chmelka, R. Ryoo, Directing zeolite structures into hierarchically nanoporous architectures. Science 333, 5 (2011)

    Article  Google Scholar 

  51. K. Na, M. Choi, W. Park, Y. Sakamoto, O. Terasaki, R. Ryoo, Pillared MFI zeolite nanosheets of a single-unit-cell thickness. J. Am. Chem. Soc. 132, 4169–4177 (2010)

    Article  Google Scholar 

  52. J. Li, C. Papadopoulos, J. Xu, Nanoelectronics: growing Y-junction carbon nanotubes. Nature 402, 253–254 (1999)

    Google Scholar 

  53. J. Broughton, G.A. Davies, Porous cellular ceramic membranes: a stochastic model to describe the structure of an anodic oxide membrane. J. Membr. Sci. 106, 89–101 (1995)

    Article  Google Scholar 

  54. K. Nielsch, J. Choi, K. Schwirn, R.B. Wehrspohn, U. Gösele, Self-ordering regimes of porous alumina: the 10 porosity rule. Nano Lett. 2, 677–680 (2002)

    Article  Google Scholar 

  55. R. Zakeri, C. Watts, H. Wang, P. Kohli, Synthesis and characterization of nonlinear nanopores in alumina films. Chem. Mater. 19, 1954–1963 (2007)

    Article  Google Scholar 

  56. S. Mintova, T. Bein, Microporous films prepared by spin-coating stable colloidal suspensions of zeolites. Adv. Mater. 13(24), 1880–1883 (2001)

    Article  Google Scholar 

  57. M.H. Ree, J.W. Yoon, K.Y. Heo, Imprinting well-controlled closed-nanopores in spin-on polymeric dielectric thin films. J. Mater. Chem. 16, 13 (2006)

    Article  Google Scholar 

  58. M. Zhang, L. Yang, S. Yurt, M.J. Misner, J.-T. Chen, E.B. Coughlin, D. Venkataraman, T.P. Russell, Highly ordered nanoporous thin films from cleavable polystyrene-block-poly(ethylene oxide). Adv. Mater. 19, 6 (2007)

    Google Scholar 

  59. K.-H. Lo, R.-M. Ho, Y.-M. Liao, C.-S. Hsu, F. Massuyeau, Y.-C. Zhao, S. Lefrant, J.-L. Duvail, Induced chain alignment of conjugated polymers within nanoporous template. Adv. Funct. Mater. 21, 8 (2011)

    Google Scholar 

  60. A.S. Zalusky, R. Olayo-Valles, J.H. Wolf, M.A. Hillmyer, Ordered nanoporous polymers from polystyrene-polylactide block copolymers. JACS 124, 13 (2002)

    Article  Google Scholar 

  61. J.-H. Ryu, S. Park, B. Kim, A. Klaikherd, T.P. Russell, S. Thayumanavan, Highly ordered gold nanotubes using thiols at a cleavable block copolymer interface. JACS. 131, 2 (2009)

    Google Scholar 

  62. M.K. Hiroki Uehara, M. Sekiya, D. Sakuma, T. Yamonobe, N. Takano, A. Barraud, E. Meurville, P. Ryser, Size-selective diffusion in nanoporous but flexible membranes for glucose sensors. ACS Nano. 3, 924 (2009)

    Google Scholar 

  63. L. Chen, W.A. Phillip, E.L. Cussler, M.A. Hillmyer, Robust nanoporous membranes templated by a doubly reactive block copolymer. J. Am. Chem. Soc. 129, 13786–13787 (2007)

    Article  Google Scholar 

  64. V. Muralidharan, C.-Y. Hui, Stability of nanoporous materials. Macromol. Rapid Commun. 25, 1487–1490 (2004)

    Article  Google Scholar 

  65. M. Seo, M.A. Hillmyer, Reticulated nanoporous polymers by controlled polymerization-induced microphase separation. Science 336, 1422–1425 (2012)

    Article  Google Scholar 

  66. A.S. Zalusky, R. Olayo-Valles, J.H. Wolf, M.A. Hillmyer, Ordered nanoporous polymers from polystyrene−polylactide block copolymers. J. Am. Chem. Soc. 124, 12761–12773 (2002)

    Article  Google Scholar 

  67. J. Zhou, A.V. Ellis, N.H. Voelcker, Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 31, 15 (2009)

    Google Scholar 

  68. K. Jiao, C.L. Graham, J.Wolff, R.G. Iyer, P. Kohli, Modulating molecular and nanoparticle transport in flexible polydimethylsiloxane membranes. J. Memb. Sci. 401–402, 8 (2012); (b) P.R. Rajasekaran, P. Sharifi, J. Wolff, P. Kohli, Fabrication and characterization of non-linear parabolic microporous membranes. J. Membr. Sci. 473, 28–35 (2015)

    Google Scholar 

  69. A.N. Zhe-Xue Lu, M.M. Collinson, Self-supporting nanopore membranes with controlled pore size and shape. ACS Nano 2(5), 993–999 (2008)

    Article  Google Scholar 

  70. R. Gasparac, P. Kohli, M.O. Mota, L. Trofin, C.R. Martin, Template synthesis of nano test tubes. Nano Lett. 4, 4 (2004)

    Google Scholar 

  71. H. Hillebrenner, F. Buyukserin, M. Kang, M.O. Mota, J.D. Stewart, C.R. Martin, Corking nano test tubes by chemical self-assembly. J. Am. Chem. Soc. 128, 2 (2006)

    Google Scholar 

  72. S.H. Joo, S.J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412, 169–172 (2001)

    Article  Google Scholar 

  73. J. Pyun, S. Jia, T. Kowalewski, G.D. Patterson, K. Matyjaszewski, Synthesis and characterization of organic/inorganic hybrid nanoparticles: kinetics of surface-initiated atom transfer radical polymerization and morphology of hybrid nanoparticle ultrathin films. Macromolecules 36, 5094–5104 (2003)

    Article  Google Scholar 

  74. I.H. Wildeson, D.A. Ewoldt, R. Colby, E.A. Stach, T.D. Sands, Controlled growth of ordered nanopore arrays in GaN. Nano Lett 11, 6 (2011)

    Article  Google Scholar 

  75. A. Burt, D.A. Carter, G.L. Koenig, T.J. White, J.W. Taylor, Molecular markers reveal cryptic sex in the human pathogen Coccidioides immitis. Proc. Natl. Acad. Sci. 93, 770–773 (1996)

    Article  Google Scholar 

  76. M. Akeson, D. Branton, J.J. Kasianowicz, E. Brandin, D.W. Deamer, Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys. J. 77, 3227–3233 (1999)

    Article  Google Scholar 

  77. P. Jin, H. Mukaibo, L.P. Horne, G.W. Bishop, C.R. Martin, Electroosmotic flow rectification in pyramidal-pore mica membranes. J. Am. Chem. Soc. 132, 2 (2010)

    Article  Google Scholar 

  78. H.P. Fröhlich, D. Woermann, Modification of electrochemical properties of pore wall of track-etched mica membranes. Colloid Polym. Sci. 264, 159–166 (1986)

    Article  Google Scholar 

  79. J. Cervera, B. Schiedt, P. Ramírez, A Poisson/Nernst-Planck model for ionic transport through synthetic conical nanopores. EPL (Europhys. Lett.) 71, 35 (2005)

    Article  Google Scholar 

  80. T.P. Lodge, Block copolymers: past successes and future challenges. Macromol. Chem. Phys. 204, 265–273 (2003)

    Article  Google Scholar 

  81. H. Uehara, M. Kakiage, M. Sekiya, D. Sakuma, T. Yamonobe, N. Takano, A. Barraud, E. Meurville, P. Ryser, Size-selective diffusion in nanoporous but flexible membranes for glucose sensors. ACS Nano 3, 924–932 (2009)

    Article  Google Scholar 

  82. S.Y. Yang, I. Ryu, H.Y. Kim, J.K. Kim, S.K. Jang, T.P. Russell, Nanoporous membranes with ultrahigh selectivity and flux for the filtration of viruses. Adv. Mater. 18, 4 (2006)

    Google Scholar 

  83. U. Jeong, D.Y. Ryu, D.H. Kho, J.K. Kim, J.T. Goldbach, D.H. Kim, T.P. Russell, Enhancement in the orientation of the microdomain in block copolymer thin films upon the addition of homopolymer. Adv. Mater. 16, 533–536 (2004)

    Article  Google Scholar 

  84. A. Asatekin, K.K. Gleason, Polymeric nanopore membranes for hydrophobicity-based separations by conformal initiated chemical vapor deposition. Nano Lett. 11, 10 (2011)

    Article  Google Scholar 

  85. S. Howorka, Z.S. Siwy, Nanopores as protein sensors. Nat. Biotech. 30, 506–507 (2012)

    Article  Google Scholar 

  86. I. Vlassiouk, T.R. Kozel, Z.S. Siwy, Biosensing with nanofluidic diodes. J. Am. Chem. Soc. 131, 8211–8220 (2009)

    Article  Google Scholar 

  87. E. John, P.J. Wharton, L.T. Sexton, L.P. Horne, S.A. Sherrill, W.K. Mino, C.R. Martin, A method for reproducibly preparing synthetic nanopores for resistive-pulse biosensors. Small 3, 7 (2009)

    Google Scholar 

  88. L.T. Sexton, L.P. Horne, S.A. Sherrill, G.W. Bishop, L.A. Baker, C.R. Martin, Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor. J. Am. Chem. Soc. 129, 13144–13152 (2007)

    Article  Google Scholar 

  89. L.T. Sexton, H. Mukaibo, P. Katira, H. Hess, S.A. Sherrill, L.P. Horne, C.R. Martin, An adsorption-based model for pulse duration in resistive-pulse protein sensing. J. Am. Chem. Soc. 132(19), 6755–6763 (2010)

    Article  Google Scholar 

  90. Y. Lu, R. Ganguli, C.A. Drewien, M.T. Anderson, C.J. Brinker, W. Gong, Y. Guo, H. Soyez, B. Dunn, M.H. Huang, J.I. Zink, Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating. Nature 389, 364–368 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Punit Kohli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Jiao, K., Flynn, K.T., Kohli, P. (2016). Synthesis, Characterization, and Applications of Nanoporous Materials for Sensing and Separation. In: Aliofkhazraei, M. (eds) Handbook of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-15338-4_22

Download citation

Publish with us

Policies and ethics