Skip to main content

Electrochemical Sensors Based on Nanostructured Materials

  • Reference work entry
  • First Online:
Handbook of Nanoelectrochemistry

Abstract

Nanostructured materials became in the past years the materials of choice for the design of new electrochemical sensors. Enhanced electrocatalytic properties obtained due to the increase of active surface and the electrocatalytic activity of the nanostructured material were recorded for the amperometric sensors. Stochastic sensors based on channel conductivity improved the quality and reliability of measurements especially when used in biomedical analysis. Design of sensors based on graphene, carbon nanotube, and carbon nanopowder will be discussed. Surface analysis is essential in the evaluation of the active area of the sensors. The most important applications of the sensors based on nanostructured materials will be shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arvand M, Anvari M (2013) A graphene-based electrochemical sensor for sensitive detection of quercetin in foods. J Iran Chem Soc. doi:10.1007/s13738-013-0219-3

    Google Scholar 

  2. Arvinte A, Mahosenaho M, Pinteala M, Sesay A-M, Virtanen V (2011) Electrochemical oxidation of p-nitrophenol using graphene-modified electrodes, and a comparison to the performance of MWNT-based electrodes. Microchim Acta 174:337–343

    Article  CAS  Google Scholar 

  3. Bakker E, Telting-Diaz M (2002) Electrochemical sensors. Anal Chem 74:2781–2800

    Article  CAS  Google Scholar 

  4. Bo Y, Yang H, Hu Y, Yao T, Huang S (2011) A novel electrochemical DNA biosensor based on graphene and polyaniline nanowires. Electrochim Acta 56:2676–2681

    Article  CAS  Google Scholar 

  5. Brett Christopher MA, Oliveira-Brett AM (2011) Electrochemical sensing in solution-origins, applications and future perspectives. J Solid State Electrochem 15:1487–1494

    Article  Google Scholar 

  6. Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Review A13:2287–2298

    Article  Google Scholar 

  7. Byon HR, Choi HC (2006) Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications. J Am Chem Soc 128:2188–2189

    Article  CAS  Google Scholar 

  8. Cash KJ, Clark HA (2010) Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends Mol Med 16:584–593

    Article  CAS  Google Scholar 

  9. Champion Y, Langlois C, Guerin-Mailly S, Langlois P, Bonnentien J, Hytch MJ (2003) Near-perfect elastoplasticity in pure nanocrystalline copper. Science 300:310–311

    Article  CAS  Google Scholar 

  10. Chiroiu V, Stiuca P, Munteanu L, Donescu S (2005) Introduction to nanomechanics. Ed. Academiei Romane, Bucuresti

    Google Scholar 

  11. Choi W, Lahiri I, Seelaboyina R, Kang Y (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35:52–71

    Article  CAS  Google Scholar 

  12. Coulter WH (1953) Means for counting particles suspended in a fluid. US Patent, 2656508

    Google Scholar 

  13. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  14. Dey RS, Bera RK, Raj CR (2013) Nanomaterial-based functional scaffolds for amperometric sensing of bioanalytes. Anal Bioanal Chem 405:3431–3448

    Article  CAS  Google Scholar 

  15. Du H, Ye J, Zhang J, Huang X, Yu CJ (2011) A voltammetric sensor based on graphene-modified electrode for simultaneous determination of catechol and hydroquinone. J Electroanal Chem 650:209–2013

    Article  CAS  Google Scholar 

  16. Gan T, Hu S (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1–19

    Article  CAS  Google Scholar 

  17. Goh MS, Pumera M (2011) Graphene-based electrochemical sensor for detection of 2,4,6-trinitrotoluene (TNT) in seawater: the comparison of single-, few-, and multilayer graphene nanoribbons and graphite microparticles. Anal Bioanal Chem 399:127–131

    Article  CAS  Google Scholar 

  18. Goldestien AN, Echer CM, Alivisatos AP (1992) Melting in semiconductor nanocrystals. Science 256:1425–1427

    Article  Google Scholar 

  19. Gu LQ, Braha O, Conlan S, Cheley S, Bayley H (1999) Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398:686–690

    Article  CAS  Google Scholar 

  20. Gyurcsanyi RE (2008) Chemically-modified nanopores for sensing. Trends Anal Chem 27:628–639

    Article  Google Scholar 

  21. Harris PJF (1999) Carbon nanotubes and related structures: new materials for the 21st century. Cambridge University Press, Cambridge

    Book  Google Scholar 

  22. Hecht S (2003) Welding, organizing, and planting organic molecules on substrate surfaces-promising approaches towards nanoarchitectonics from the bottom up. Angew Chem Int Ed Engl 42:24–26

    Article  CAS  Google Scholar 

  23. Heyrovsky J (1922) Elektrolysa se rtutovou kapkovou Kathodu. Chem Listy 16:256–304

    Google Scholar 

  24. Holland ALR, Menard LD, Ramsey JM (2008) Stochastic sensing using chemically modified solid-state nanopores. In: Twelfth international conference on miniaturized systems for chemistry and life sciences, San Diego, 12–16 Oct 2008, pp 662–664

    Google Scholar 

  25. Holze R, Eftekhari A (2009) Nanostructured materials in electrochemistry. J Solid State Electrochem 13:1621–1622

    Article  CAS  Google Scholar 

  26. Huang X-J, Choi Y-K (2007) Chemical sensors based on nanostructured materials. Sens Actuators B 122:659–671

    Article  CAS  Google Scholar 

  27. Hulanicki A, Geab S, Ingman F (1991) Chemical sensors definitions and classification. Pure App Chern 63:1247–1250

    Google Scholar 

  28. Iijima S (1991) Synthesis of carbon nanotubes. Nature 354:56–58

    Article  CAS  Google Scholar 

  29. Jacobs BC, Peairs MJ, Venton BJ (2010) Review: carbon nanotube based electrochemical sensors for biomolecules. Anal Chim Acta 662:105–127

    Article  CAS  Google Scholar 

  30. Justino CIL, Rocha-Santos TA, Duarte AC (2010) Review of analytical figures of merit of sensors and biosensors in clinical applications. Trends Anal Chem 29:1172–1183

    Article  CAS  Google Scholar 

  31. Justino CIL, Rocha-Santos TAP, Cardoso S, Duarte AC (2013) Strategies for enhancing the analytical performance of nanomaterial-based sensors. Trends Anal Chem 47:27–36

    Article  CAS  Google Scholar 

  32. Kang XH, Wang J, Wu H, Aksay IA, Liu J, Lin YH (2009) Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25:901–905

    Article  CAS  Google Scholar 

  33. Kang X, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 81:754–759

    Article  CAS  Google Scholar 

  34. Kim JP, Lee BY, Lee J, Hong S, Sim SJ (2009) Enhancement of sensitivity and specificity by surface modification of carbon nanotube in diagnosis of prostate cancer based on carbon nanotube field effect transistors. Biosens Bioelectron 24:3372–3378

    Article  CAS  Google Scholar 

  35. Kim KS, Kim D, Jeon S (2012) Electrochemical determination of serotonin on glassy carbon electrode modified with various graphene nanomaterials. Sens Actuators B 174:285–291

    Article  CAS  Google Scholar 

  36. Lahiff E, Lynam C, Gilmartin N, O’Kennedy R, Diamond D (2010) The increasing importance of carbon nanotubes and nanostructured conducting polymers in biosensors. Anal Bioanal Chem 398:1575–1589

    Article  CAS  Google Scholar 

  37. Leoni L, Desai TA (2001) Biocapsules for the encapsulation of insulinoma cells: biotransport and biocompatibility considerations. IEEE Trans Biomedical Eng 48:1335–1341

    Article  CAS  Google Scholar 

  38. Lieber CM (2003) Nanoscale science and technology: building a big future from small things. MRS Bull 28:486–491

    Article  CAS  Google Scholar 

  39. Lines MG (2008) Nanomaterials for practical functional uses. J Alloys Compd 449:242–245

    Article  CAS  Google Scholar 

  40. Ling YY, Huang QA, Zhu MS, Feng DX, Li XZ, Wei Y (2013) A facile one-step electrochemical fabrication of reduced graphene oxide–mutilwall carbon nanotubes–phospotungstic acid composite for dopamine sensing. J Electroanal Chem 693:9–15

    Article  CAS  Google Scholar 

  41. Mortimer RJ, Beech AAC (2002) Impedance characteristics of solid-state planar electrochemical carbon monoxide sensors with nafion as solid polymer electrolyte. Electrochim Acta 47:3383–3387

    Article  CAS  Google Scholar 

  42. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  43. Park C, Yoon J, Thomas EL (2003) Enabling nanotechnology with self-assembled block copolymer patterns. Polymer 44:6725–6760

    Article  CAS  Google Scholar 

  44. Pumera M (2009) Electrochemistry of graphene: new horizons for sensing and energy storage. Chem Rec 9:211–223

    Article  CAS  Google Scholar 

  45. Rao CNR, Cheetham AK (2001) Science and technology of nanomaterials: current status and future Prospects. J Mater Chem 11:2887–2894

    Article  CAS  Google Scholar 

  46. Sailor MJ (1997) In: Canham L (ed) Properties of porous silicon, INSPEC, London. DERA, Malvern

    Google Scholar 

  47. Sardesai N, Pan SM, Rusling J (2009) Electrochemiluminescent immunosensor for detection of protein cancer biomarkers using carbon nanotube forests and [Ru-(bpy)3]2+ -doped silica nanoparticles. Chem Commun 33:4968–4970

    Article  Google Scholar 

  48. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 62:652–655

    Article  Google Scholar 

  49. Schneider R (2002) High-resolution analytical TEM of nanostructured materials. Anal Bioanal Chem 374:639–645

    Article  CAS  Google Scholar 

  50. Seal S, Dahotre NB (2002) Nanostructured materials and the role of surface engineering. JOM 54:20–21

    Google Scholar 

  51. Shaw LL (2000) Processing nanostructured materials: an overview. JOM 52:41–45

    Google Scholar 

  52. Shioyama H, Akita T (2003) A new route to carbon nanotubes. Carbon 41:179–181

    Article  CAS  Google Scholar 

  53. Siwy Z, Trofin L, Kohli P, Baker LA, Martin CR (2005) Protein biosensors based on biofunctionalized conical gold nanotubes. J Am Chem Soc 127:5000–5001

    Article  CAS  Google Scholar 

  54. Snider RM, Ciobanu M, Rue AE, Cliffel DE (2008) A multiwalled carbon nanotube/dihydropyran composite film electrode for insulin detection in a microphysiometer chamber. Anal Chim Acta 609:44–52

    Article  CAS  Google Scholar 

  55. Srinivasan C (2007) Graphene–mother of all graphitic materials. Curr Sci 92:1338–1339

    CAS  Google Scholar 

  56. Srivastava D, Menon M, Cho K (2001) Computational nanotechnology with carbon nanotubes and fullerenes. Comput Sci Eng 3:42–45

    Article  CAS  Google Scholar 

  57. Stefan RI, Aboul-Enein HY, van Staden FJ (2001) Electrochemical sensors in bioanalysis. Marcel Dekker., New York

    Google Scholar 

  58. Stefan-van Staden RI, Moldoveanu I, Sava DF, Kapnissi-Christodoulou C, van Staden JF (2013) Enantioanalysis of pipecolic acid with stochastic and potentiometric microsensors. Chirality 25:114–118

    Article  CAS  Google Scholar 

  59. Stetter JN, Penrose WR, Sheng Y (2003) Sensors, chemical sensors, electrochemical sensors, and ECS. J Electrochem Soc 150:S11–S16

    Article  CAS  Google Scholar 

  60. Stradiotto NR, Yamanaka H, Zanoni MVB (2003) Electrochemical sensors: a powerful tool in analytical chemistry. J Braz Chem Soc 14:159–173

    Article  CAS  Google Scholar 

  61. Su-Juan L, Yun X, Gui-Fang W (2012) A graphene-based electrochemical sensor for sensitive and selective determination of hydroquinone. Microchim Acta 176:163–168

    Article  Google Scholar 

  62. Tang L, Wang Y, Li Y, Feng H, Lu J, Li J (2009) Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv Funct Mater 19:2782–2789

    Article  CAS  Google Scholar 

  63. Theavenot RD, Toth K, Durst RA, Wilson GS (1999) Electrochemical biosensors: recommended definitions and classification (technical report). Pure Appl Chem 71:2333–2348

    Google Scholar 

  64. Vaseashta A, Erdem A, Irudayaraj J (2004) Nanoparticles, nanoporous and carbon nanotube based devices for bio-molecular detection, in Nanostructured and Advanced Materials for Applications in Sensors, Optoelectronic and Photovoltaic Technology (2005), 391–394, Springer, Netherlands

    Google Scholar 

  65. Vaseashta A (2003) Field emission characteristics of carbon nanotubes and their applications in photonic devices. J Mat Sci Mater Electron 14:653–656

    Article  CAS  Google Scholar 

  66. Vaseashta A (2005) Nanostructured materials based next generation devices and sensors. Springer, Netherlands pp 1–30

    Google Scholar 

  67. Vashist SK, Zheng D, Al-Rubeaan K, Luong JHT, Sheu FS (2011) Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol Adv 29:169–188

    Article  CAS  Google Scholar 

  68. Viculis LM, Mack JJ, Kaner RB (2003) A chemical route to carbon nanoscrolls. Science 299:1361

    Article  CAS  Google Scholar 

  69. Viswanathan S, Rani C, Anand AV, Ho JAA (2009) Disposable electrochemical immunosensor for carcinoembryonic antigen using ferrocene liposomes and MWCNT screen-printed electrode. Biosens Bioelectron 24:1984–1989

    Article  CAS  Google Scholar 

  70. Wan Y, Deng W, Su Y, Zhu X, Peng C, Hu H, Peng H, Song S, Fan C (2011) Carbon nanotube-based ultrasensitive multiplexing electrochemical immunosensor for cancer biomarkers. Biosens Bioelectron 30:93–99

    Article  CAS  Google Scholar 

  71. Wang J, Musameh M (2004) Electrochemical detection of trace insulin at carbon nanotube modified electrodes. Anal Chim Acta 511:33–36

    Article  CAS  Google Scholar 

  72. Wang J, Yang S, Guo D, Yu P, Li D, Ye J, Mao L (2009) Comparative studies on electrochemical activity of graphene nanosheets and carbon nanotubes. Electrochem Commun 11:1892–1895

    Article  CAS  Google Scholar 

  73. Wang K, Liu Q, Wu XY, Guang QM, Li HN (2010) Graphene enhanced electrochemiluminescence of CdS nanocrystal for H2O2 sensing. Talanta 82:372–376

    Article  CAS  Google Scholar 

  74. Wang Y, Li Y, Tang L, Lu J, Li J (2009) Application of graphene-modified electrode for selective detection of dopamine-Short communication. Electrochem Commun 11:889–892

    Article  CAS  Google Scholar 

  75. Wang Y, Shao Y, Matson D, Li J, Lin Y (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4:1790–1798

    Article  CAS  Google Scholar 

  76. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science (Washington, DC) 295:2418–2421

    Article  CAS  Google Scholar 

  77. Whitesides MG, Kriebel KJ, Mayers TB (2005) Self-assembly and nanostructured materials. Spriger, US

    Google Scholar 

  78. Wu K, Fei J, Bai W, Hu S (2003) Direct electrochemistry of DNA, guanine and adenine at a nanostructured film-modified electrode. Anal Bioanal Chem 376:205–209

    CAS  Google Scholar 

  79. Wu X, Hu Y, Jin J, Zhou N, Wu P, Zhang H, Cai C (2010) Electrochemical approach for detection of extracellular oxygen released from erythrocytes based on graphene film integrated with laccase and 2, 2-azino-bis (3-ethylbenzothiazoline-6- sulfonic acid). Anal Chem 82:3588–3596

    Article  CAS  Google Scholar 

  80. Xu H, Dai H, Chen G (2010) Direct electrochemistry and electrocatalysis of hemoglobin protein entrapped in graphene and chitosan composite film. Talanta 81:334–338

    Article  CAS  Google Scholar 

  81. Yin H, Ma Q, Zhou Y, Ai S, Zhu L (2010) Electrochemical behavior and voltammetric determination of 4-aminophenol based on graphene-chitosan composite film modified glassy carbon electrode. Electrochim Acta 55:7102–7108

    Article  CAS  Google Scholar 

  82. Zhang S (2003) Building from the bottom up. Mater Today 6:20–27

    Article  CAS  Google Scholar 

  83. Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81:5603–5613

    Article  CAS  Google Scholar 

  84. Ma L, Zhao GC (2012) Simultaneous determination of hydroquinone, catechol and resorcinol at graphene doped carbon ionic liquid electrode. International J Electrochem 8

    Google Scholar 

Download references

Acknowledgments

The authors want to thank UEFISCDI, PN-II-CT-ERC-2012-1, contract number 3ERC/02.07.2012, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raluca-Ioana Stefan-van Staden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Moldoveanu, I., Staden, RI.Sv., van Staden, J.F. (2016). Electrochemical Sensors Based on Nanostructured Materials. In: Aliofkhazraei, M., Makhlouf, A. (eds) Handbook of Nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15266-0_47

Download citation

Publish with us

Policies and ethics