Skip to main content

Self-Assembled Peptide Nanostructures for the Development of Electrochemical Biosensors

  • Reference work entry
  • First Online:
Handbook of Nanoelectrochemistry

Abstract

Biological building blocks such as peptides or proteins are able to self-organize into nanostructures with particular properties. There are several possibilities for their use in varying applications such as drug delivery, biosensing, clean-room fabrication methods, and tissue engineering. These biological nanostructures have recently been utilized for bionanotechnological applications thanks to their easy and low-cost fabrication, their stability, and their facile functionalization. These features suggest the usage of self-assembled peptide nanostructures in the development of biosensing platforms, and the present chapter explores their use for such purposes. Several immobilization strategies, mechanisms, and detected substrates are described. Moreover, different possibilities to functionalize and modify their structure toward utilization in sensing applications are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garcia M, Batalla P, Escarpa A (2014) Metallic and polymeric nanowires for electrochemical sensing and biosensing. Trends Anal Chem 57:6–22

    Article  CAS  Google Scholar 

  2. Choi Y, Moon D, Choi J, Ahn J (2014) Fabrication of nanowires and their applications. In: Kim DM, Jeong YH (eds) Nanowire field effect transistors: principles and applications. Springer, New York

    Google Scholar 

  3. Du F, Zhu L, Dai L (2013) Carbon nanotube-based electrochemical biosensors. In: Li J, Wu N (eds) Biosensors based on nanomaterials and nanodevices. CRC Press, Boca Raton

    Google Scholar 

  4. Guell AG, Meadows KE, Dudin PV, Ebejer N, Macpherson JV, Unwin PR (2014) Mapping nanoscale electrochemistry of individual single-walled carbon nanotubes. Nano Lett 14:220–224

    Article  CAS  Google Scholar 

  5. Wanekaya AK, Chen W, Myung NV, Mulchandani A (2006) Nanowire-based electrochemical biosensors. Electroanalysis 18:533–550

    Article  CAS  Google Scholar 

  6. Andersen KB, Christiansen NO, Castllo-León J, Rozlosnik N, Svendsen WE (2013) Fabrication and characterization of PEDOT nanowires based on self-assembled peptide nanotube lithography. Organ Electron 14:1370–1375

    Article  CAS  Google Scholar 

  7. Guo CX, Ng SR, Li CM (2013) Graphene-based electrochemical biosensors. In: Li J, Wu N (eds) Biosensors based on nanomaterials and nanodevices. CRC Press, Boca Raton

    Google Scholar 

  8. de la Rica R, Matsui H (2010) Bioinspired target-specific crystallization on peptide nanotubes for ultrasensitive Pb ion detection. Chem Soc Rev 39:3499–3509

    Article  Google Scholar 

  9. Ryu J, Park CB (2010) High stability of self-assembled peptide nanowires against thermal, chemical, and proteolytic attacks. Biotechnol Bioeng 105:221–230

    Article  CAS  Google Scholar 

  10. Scanlon S, Aggeli A (2008) Self-assembling peptide nanotubes. Nano Today 3:22–30

    Article  CAS  Google Scholar 

  11. Yan XH, Zhu PL, Li JB (2010) Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev 39:1877–1890

    Article  CAS  Google Scholar 

  12. Chen AC, Chatterjee S (2013) Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev 42:5425–5438

    Article  CAS  Google Scholar 

  13. Li HH, Liu SQ, Dai ZH, Bao JC, Yang XD (2009) Applications of nanomaterials in electrochemical enzyme biosensors. Sensors 9:8547–8561

    Article  CAS  Google Scholar 

  14. Amit M, Cheng G, Hamley IW, Ashkenasy N (2012) Conductance of amyloid beta based peptide filaments: structure-function relations. Soft Matter 8:8690–8696

    Article  CAS  Google Scholar 

  15. Andersen KB, Castillo-Leon J, Hedstrom M, Svendsen WE (2011) Stability of diphenylalanine peptide nanotubes in solution. Nanoscale 3:994–998

    Article  CAS  Google Scholar 

  16. Beker P, Koren I, Amdursky N, Gazit E, Rosenman G (2010) Bioinspired peptide nanotubes as supercapacitor electrodes. J Mater Sci 45:6374–6378

    Article  CAS  Google Scholar 

  17. Carny O, Shalev DE, Gazit E (2006) Fabrication of coaxial metal nanocables using a self-assembled peptide nanotube scaffold. Nano Lett 6:1594–1597

    Article  CAS  Google Scholar 

  18. del Mercato LL, Pompa PP, Maruccio G, Della Torre A, Sabella S, Tamburro AM, Cingolani R, Rinaldi R (2007) Charge transport and intrinsic fluorescence in amyloid-like fibrils. Proc Natl Acad Sci U S A 104:18019–18024

    Article  Google Scholar 

  19. Lakshmanan A, Zhang SG, Hauser CAE (2012) Short self-assembling peptides as building blocks for modern nanodevices. Trends Biotechnol 30:155–165

    Article  CAS  Google Scholar 

  20. Scheibel T, Parthasarathy R, Sawicki G, Lin XM, Jaeger H, Lindquist SL (2003) Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc Natl Acad Sci U S A 100:4527–4532

    Article  CAS  Google Scholar 

  21. Takahashi R, Wang H, Lewis JP (2007) Electronic structures and conductivity in peptide nanotubes. J Phys Chem B 111:9093–9098

    Article  CAS  Google Scholar 

  22. Xu HX, Das AK, Horie M, Shaik MS, Smith AM, Luo Y, Lu XF, Collins R, Liem SY, Song AM, Popelier PLA, Turner ML, Xiao P, Kinloch IA, Ulijn RV (2010) An investigation of the conductivity of peptide nanotube networks prepared by enzyme-triggered self-assembly. Nanoscale 2:960–966

    Article  CAS  Google Scholar 

  23. Adler-Abramovich L, Aronov D, Beker P, Yevnin M, Stempler S, Buzhansky L, Rosenman G, Gazit E (2009) Self-assembled arrays of peptide nanotubes by vapour deposition. Nat Nanotechnol 4:849–854

    Article  CAS  Google Scholar 

  24. Castillo-Leon J, Rodriguez-Trujillo R, Gauthier S, Jensen ACO, Svendsen WE (2011) Micro-“factory” for self-assembled peptide nanostructures. Microelectron Eng 88:1685–1688

    Article  CAS  Google Scholar 

  25. Reches M, Gazit E (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300:625–627

    Article  CAS  Google Scholar 

  26. Yu LT, Banerjee IA, Gao XY, Nuraje N, Matsui H (2005) Fabrication and application of enzyme-incorporated peptide nanotubes. Bioconjugate Chem 16:1484–1487

    Article  CAS  Google Scholar 

  27. Porrata P, Goun E, Matsui H (2002) Size-controlled self-assembly of peptide nanotubes using polycarbonate membranes as templates. Chem Mat 14:4378–4381

    Article  CAS  Google Scholar 

  28. Tarabout C, Roux S, Gobeaux F, Fay N, Pouget E, Meriadec C, Ligeti M, Thomas D, Ijsselstijn M, Besselievre F, Buisson DA, Verbavatz JM, Petitjean M, Valery C, Perrin L, Rousseau B, Artzner F, Paternostre M, Cintrat JC (2011) Control of peptide nanotube diameter by chemical modifications of an aromatic residue involved in a single close contact. Proc Natl Acad Sci U S A 108:7679–7684

    Article  CAS  Google Scholar 

  29. Ryu J, Park CB (2008) High-temperature self-assembly of peptides into vertically well-aligned nanowires by aniline vapor. Adv Mater 20:3754

    Article  CAS  Google Scholar 

  30. Taskin MB, Sasso L, Dimaki M, Svendsen WE, Castillo-Leon J (2013) Combined cell culture-biosensing platform using vertically aligned patterned peptide nanofibers for cellular studies. ACS Appl Mater Interfaces 5:3323–3328

    Article  CAS  Google Scholar 

  31. Cipriano TC, Takahashi PM, de Lima D, Oliveira VX, Souza JA, Martinho H, Alves WA (2010) Spatial organization of peptide nanotubes for electrochemical devices. J Mater Sci 45:5101–5108

    Article  CAS  Google Scholar 

  32. Yemini M, Reches M, Gazit E, Rishpon J (2005) Peptide nanotube-modified electrodes for enzyme-biosensor applications. Anal Chem 77:5155–5159

    Article  CAS  Google Scholar 

  33. Castillo J, Tanzi S, Dimaki M, Svendsen W (2008) Manipulation of self-assembly amyloid peptide nanotubes by dielectrophoresis. Electrophoresis 29:5026–5032

    Article  CAS  Google Scholar 

  34. de la Rica R, Mendoza E, Lechuga LM and Matsui H (2008) Label-free pathogen detection with sensor chips assembled from peptide nanotubes. Angew Chem-Int Edit 47:9752–9755

    Article  CAS  Google Scholar 

  35. Domigan L, Andersen KB, Sasso L, Dimaki M, Svendsen WE, Gerrard JA, Castillo-Leon J (2013) Dielectrophoretic manipulation and solubility of protein nanofibrils formed from crude crystallins. Electrophoresis 34:1105–1112

    Article  CAS  Google Scholar 

  36. Adler-Abramovich L, Gazit E (2008) Controlled patterning of peptide nanotubes and nanospheres using inkjet printing technology. J Pept Sci 14:217–223

    Article  CAS  Google Scholar 

  37. Reches M, Gazit E (2006) Controlled patterning of aligned self-assembled peptide nanotubes. Nat Nanotechnol 1:195–200

    Article  CAS  Google Scholar 

  38. Zhao Z, Matsui H (2007) Accurate immobilization of antibody-functionalized peptide nanotubes on protein-patterned Arrays by optimizing their ligand-receptor interactions. Small 3:1390–1393

    Article  CAS  Google Scholar 

  39. Zhao ZY, Banerjee PA, Matsui H (2005) Simultaneous targeted immobilization of anti-human IgG-coated nanotubes and anti-mouse IgG-coated nanotubes on the complementary antigen-patterned surfaces via biological molecular recognition. J Am Chem Soc 127:8930–8931

    Article  CAS  Google Scholar 

  40. Farsari M, Mitraki A (2011) Self-assembled peptide nanostructures and their controlled positioning on surfaces. In: Kumar C (ed) Nanomaterials for the life sciences, vol 10. Wiley-VCH, Weinham

    Google Scholar 

  41. Dinca V, Kasotakis E, Catherine J, Mourka A, Mitraki A, Popescu A, Dinescu M, Farsari M, Fotakis C (2007) Development of peptide-based patterns by laser transfer. Appl Surf Sci 254:1160–1163

    Article  CAS  Google Scholar 

  42. Dinca V, Kasotakis E, Catherine J, Mourka A, Ranella A, Ovsianikov A, Chichkov BN, Farsari M, Mitraki A, Fotakis C (2008) Directed three-dimensional patterning of self-assembled peptide fibrils. Nano Lett 8:538–543

    Article  CAS  Google Scholar 

  43. Castillo J, Dimaki M, Svendsen W (2011) Micro and nano techniques for the handling of biological samples. CRC Press, Boca Raton

    Google Scholar 

  44. Castillo J, Dimaki M, Svendsen WE (2009) Manipulation of biological samples using micro and nano techniques. Integr Biol 1:30–42

    Article  CAS  Google Scholar 

  45. Reches M, Gazit E (2007) Biological and chemical decoration of peptide nanostructures via biotin-avidin interactions. J Nanosci Nanotechnol 7:2239–2245

    Article  CAS  Google Scholar 

  46. Kartal F, Kilinc A, Timur S (2007) Lipase biosensor for tributyrin and pesticide detection. Int J Environ Anal Chem 87:715–722

    Article  CAS  Google Scholar 

  47. Park BW, Yoon DY, Kim DS (2010) Encapsulation of enzymes inside peptide nanotube for hydrogen peroxide detection. ECS transactions, Las Vegas, NV, 2010

    Book  Google Scholar 

  48. Park BW, Zheng R, Ko KA, Cameron BD, Yoon DY, Kim DS (2012) A novel glucose biosensor using bi-enzyme incorporated with peptide nanotubes. Biosens Bioelectron 38:295–301

    Article  CAS  Google Scholar 

  49. Kasotakis E, Mossou E, Adler-Abramovich L, Mitchell EP, Forsyth VT, Gazit E, Mitraki A (2009) Design of metal-binding sites onto self-assembled peptide fibrils. Biopolymers 92:164–172

    Article  CAS  Google Scholar 

  50. Yang H, Fung SY, Pritzker M, Chen P (2009) Ionic-complementary peptide matrix for enzyme immobilization and biomolecular sensing. Langmuir 25:7773–7777

    Article  CAS  Google Scholar 

  51. Castillo JJ, Svendsen WE, Rozlosnik N, Escobar P, Martineza F, Castillo-Leon J (2013) Detection of cancer cells using a peptide nanotube-folic acid modified graphene electrode. Analyst 138:1026–1031

    Article  CAS  Google Scholar 

  52. Ryu J, Park CB (2009) Synthesis of Diphenylalanine/Polyaniline Core/Shell Conducting Nanowires by Peptide Self-Assembly. Angew Chem Int Ed 48:4820–4823

    Article  CAS  Google Scholar 

  53. Hamedi M, Herland A, Karlsson RH, Inganas O (2008) Electrochemical devices made from conducting nanowire networks self-assembled from amyloid fibrils and alkoxysulfonate PEDOT. Nano Lett 8:1736–1740

    Article  CAS  Google Scholar 

  54. Ryu J, Kim SW, Kang K, Park CB (2010) Mineralization of Self-assembled Peptide Nanofibers for Rechargeable Lithium Ion Batteries. Adv Mater 22:5537–5541

    Article  CAS  Google Scholar 

  55. Han TH, Lee WJ, Lee DH, Kim JE, Choi EY, Kim SO (2010) Peptide/Graphene Hybrid Assembly into Core/Shell Nanowires. Adv Mater 22:2060

    Article  CAS  Google Scholar 

  56. Turner A (2013) Biosensors: then and now. Trends Biotechnol 31:119–120

    Article  CAS  Google Scholar 

  57. Turner APF (2013) Biosensors: sense and sensibility. Chem Soc Rev 42:3184–3196

    Article  CAS  Google Scholar 

  58. Sun ZF, Deng L, Gan H, Shen RJ, Yang MH, Zhang Y (2012) Sensitive immunosensor for tumor necrosis factor alpha based on dual signal amplification of ferrocene modified self-assembled peptide nanowire and glucose oxidase functionalized gold nanorod. Biosens Bioelectron 39:215–219

    Article  Google Scholar 

  59. Sasso L, Vedarethinam I, Emneus J, Svendsen WE, Castillo-Leon J (2012) Self-assembled Diphenylalanine nanowires for cellular studies and sensor applications. J Nanosci Nanotechnol 12:3077–3083

    Article  CAS  Google Scholar 

  60. Brodkin E, Copes R, Mattman A, Kennedy J, Kling R, Yassi A (2007) Lead and mercury exposures: interpretation and action. Can Med Assoc J 176:59–63

    Article  Google Scholar 

  61. de la Rica R, Mendoza E, Matsui H (2010) Bioinspired target-specific crystallization on peptide nanotubes for ultrasensitive pb ion detection. Small 6:1753–1756

    Article  Google Scholar 

  62. Adler-Abramovich L, Badihi-Mossberg M, Gazit E, Rishpon J (2010) Characterization of peptide-nanostructure-modified electrodes and their application for ultrasensitive environmental monitoring. Small 6:825–831

    Article  CAS  Google Scholar 

  63. Cho EC, Choi JW, Lee MY, Koo KK (2008) Fabrication of an electrochemical immunosensor with self-assembled peptide nanotubes. Colloid Surf A Physicochem Eng Asp 313:95–99

    Article  Google Scholar 

  64. Yemini M, Reches M, Rishpon J, Gazit E (2005) Novel electrochemical biosensing platform using self-assembled peptide nanotubes. Nano Lett 5:183–186

    Article  CAS  Google Scholar 

  65. Yuan JH, Chen JR, Wu XH, Fang KM, Niu L (2011) A NADH biosensor based on diphenylalanine peptide/carbon nanotube nanocomposite. J Electroanal Chem 656:120–124

    Article  CAS  Google Scholar 

  66. Viguier B, Zor K, Kasotakis E, Mitraki A, Clausen CH, Svendsen WE, Castillo-Leon J (2011) Development of an electrochemical meta-ion biosensor using self-assembled peptide nanofibrils. ACS Appl Mater Interfaces 3:1594–1600

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Castillo-León .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Castillo-León, J., Zór, K., Svendsen, W.E. (2016). Self-Assembled Peptide Nanostructures for the Development of Electrochemical Biosensors. In: Aliofkhazraei, M., Makhlouf, A. (eds) Handbook of Nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15266-0_42

Download citation

Publish with us

Policies and ethics