Skip to main content

Scanning Electrochemical Microscopy: A Multiplexing Tool for Electrochemical DNA Biosensing

  • Reference work entry
  • First Online:
Handbook of Nanoelectrochemistry

Abstract

Scanning electrochemical microscopy (SECM) translates the current generated by an electrochemical reaction occurring at a tip electrode scanned across a surface substrate into an image. SECM not only provides a simple electrochemical image of the conductive and/or insulating substrate but also provides kinetic information of the heterogeneous electron transfer reactions when the tip electrode approaches the surface. Applications including biosensing have been demonstrated. In this chapter, we will focus on recent advances in the application of SECM toward the label-free detection of base pair mismatches in DNA.

Despite having nanometer dimensions, the base pair mismatches along a DNA strand can be readily detected by SECM in an array format through exploiting the negative charge in the vicinity of self-assembled DNA films. The response can be amplified using metal ions to enhance the discrimination between matched and mismatched DNA films. This simple strategy has been used to probe the position of a single nucleotide mismatch, the type of the mismatch, and hybridization position of complementary strand and even allows the identification of various animal species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elodie F, Yann D, Pascal M, Thierry L, Sabine S (2005) Micro-imprinting of oligonucleotides and oligonucleotide gradients on gold surfaces: a new approach based on the combination of scanning electrochemical microscopy and surface plasmon resonance imaging (SECM/ SPR-i). Electroanalysis 17:495–503

    Article  Google Scholar 

  2. Wang K, Goyer C, Anne A, Demaille C (2007) Exploring the motional dynamics of end-grafted DNA oligonucleotides by in situ electrochemical atomic force microscopy. J Phys Chem B 111:6051–6058

    Article  CAS  Google Scholar 

  3. Wittstock G, Burchardt M, Pust S, Shen Y, Zhao C (2006) Scanning electrochemical microscopy for direct imaging of reaction rates. Angew Chem Int Ed Engl 46:1584–1617

    Article  Google Scholar 

  4. Sun P, Laforge F, Mirkin M (2007) Scanning electrochemical microscopy in the 21st century. Phys Chem Chem Phys 9:802–823

    Article  CAS  Google Scholar 

  5. Edwards M, Martin S, Whitworth A, Macpherson J, Unwin P (2006) Scanning electrochemical microscopy: principles and applications to biophysical systems. Physiol Meas 27:R63–R108

    Article  Google Scholar 

  6. Roberts WS, Lonsdale DJ, Griffiths J, Higson SPJ (2007) Advances in the application of scanning electrochemical microscopy to bioanalytical systems. Biosens Bioelectron 23:301–318

    Article  CAS  Google Scholar 

  7. Bergner S, Vatsyayan P, Matysik F-M (2013) Recent advances in high resolution scanning electrochemical microscopy of living cells – a review. Anal Chim Acta 775:1–13

    Article  CAS  Google Scholar 

  8. Engstrom RC, Weber M, Wunder DJ, Burgess R, Winquist S (1986) Measurements within the diffusion layer using a microelectrode probe. Anal Chem 58:844–848

    Article  CAS  Google Scholar 

  9. Liu H-Y, Fan F-RF, Lin CW, Bard AJ (1986) Scanning electrochemical and tunneling ultramicroelectrode microscope for high-resolution examination of electrode surfaces in solution. J Am Chem Soc 108:3838–3839

    Article  CAS  Google Scholar 

  10. (a) Kwak J, Bard AJ (1989) Scanning electrochemical microscopy. Apparatus and two-dimensional scans of conductive and insulating substrates. Anal Chem 61:1794–1799; (b) Kwak J, Bard AJ (1989) Scanning electrochemical microscopy. Theory of the feedback mode. Anal Chem 6:1221–1227

    Google Scholar 

  11. Jonathan LA, Guy D (1998) Scanning electrochemical microscopy (SECM): an investigation of the effects of tip geometry on amperometric tip response. J Phys Chem B 102:9946–9951

    Article  Google Scholar 

  12. Diakowski P, Kraatz H-B (2011) Towards the electrochemical identification of species. Chem Commun 47:431–1433

    Article  Google Scholar 

  13. Lefrou C, Cornut R (2010) Analytical expressions for quantitative scanning electrochemical microscopy (SECM). Chemphyschem 1:547–556

    Article  Google Scholar 

  14. Kiani A, Alpuche-Aviles M-A, Eggers PK, Jones M, Gooding JJ, Paddon-Row M-N, Bard AJ (2008) Scanning electrochemical microscopy. 59. Effect of defects and structure on electron transfer through self-assembled monolayers. Langmuir 24:2841–2849

    Article  CAS  Google Scholar 

  15. Velmurugan J, Sun P, Mirkin MV (2009) Scanning electrochemical microscopy with gold nanotips: the effect of electrode material on electron transfer rates. J Phys Chem C 113:459–464

    Article  CAS  Google Scholar 

  16. Otokiti E, Sheardy R (1997) Effect of base pair A/C and G/T mismatches on the thermal stabilities of DNA oligomers that form B-Z junctions. Biochemistry 36:11419–11427

    Article  CAS  Google Scholar 

  17. Urakawa H, Noble PA, El Fantroussi S, Kelly JJ, Stahl DA (2002) Single-base-pair discrimination of terminal mismatches by using oligonucleotide microarrays and neural network analyses. Appl Environ Microbiol 68:235–244

    Article  CAS  Google Scholar 

  18. Liu B, Bard AJ, Mirkin MV, Creager SE (2004) Electron transfer at self-assembled monolayers measured by scanning electrochemical microscopy. J Am Chem Soc 126:1485–1492

    Article  CAS  Google Scholar 

  19. Wittstock G, Hesse R, Schuhmann W (1997) Patterned self-assembled alkanethiolate monolayers on gold. Patterning and imaging by means of scanning electrochemical microscopy. Electroanalysis 9:746–750

    Article  CAS  Google Scholar 

  20. Wilhelm T, Wittstock G (2000) Localized electrochemical desorption of gold alkanethiolate monolayers by means of scanning electrochemical microscopy (SECM). Microchim Acta 133:1–9

    CAS  Google Scholar 

  21. Yamada H, Ogata M, Koike T (2006) Scanning electrochemical microscope observation of defects in a hexadecanethiol monolayer on gold with shear force-based tip–substrate positioning. Langmuir 22:7923–7927

    Article  CAS  Google Scholar 

  22. Boldt F-M, Baltes N, Borgwarth K, Heinze J (2005) Investigation of carboxylic-functionalized and n-alkanethiol self-assembled monolayers on gold and their application as pH-sensitive probes using scanning electrochemical microscopy. Surf Sci 597:51–64

    Article  CAS  Google Scholar 

  23. Burshtain D, Mandler D (2005) Studying the binding of Cd2+ by ω-mercaptoalkanoic acid self assembled monolayers by cyclic voltammetry and scanning electrochemical microscopy (SECM). J Electroanal Chem 581:310–319

    Article  CAS  Google Scholar 

  24. Kenichi Y, Makoto T, Shigeori T, Kazuhiko U, Hiroki K (2001) Visualization of dna microarrays by scanning electrochemical microscopy (SECM). Analyst 126:1210–1211

    Article  Google Scholar 

  25. Jun W, Fayi S, Feimeng Z (2002) Silver-enhanced imaging of dna hybridization at DNA microarrays with scanning electrochemical microscopy. Langmuir 18:6653–6658

    Article  Google Scholar 

  26. Wang J, Zhou F (2002) Scanning electrochemical microscopic imaging of surface-confined DNA probes and their hybridization via guanine oxidation. J Electroanal Chem 537:95–102

    Article  CAS  Google Scholar 

  27. Wain A, Zhou F (2008) Scanning electrochemical microscopy imaging of DNA microarrays using methylene blue as a redox-active intercalator. Langmuir 24:5155–5160

    Article  CAS  Google Scholar 

  28. Hammonda WJ, Arndta J, Nguyena T, Slowinskaa KU, Jacksonb C, Burgoyneb HA, Hillb MG, Slowinskia K (2009) Detection of DNA π-Stack lesions using scanning electrochemical microscopy. ECS Trans 166:55–62

    Article  Google Scholar 

  29. Gorodetsky A, Hammond W, Hill M, Slowinski K, Barton J (2008) Scanning electrochemical microscopy of DNA monolayers modified with Nile Blue. Langmuir 24:14282–14288

    Article  CAS  Google Scholar 

  30. Boussicault F, Robert M (2008) Electron transfer in DNA and in DNA-related biological processes. Electrochemical insights. Chem Rev 108:2622–2645

    Article  CAS  Google Scholar 

  31. Turcu F, Schulte A, Hartwich G, Schuhmann W (2004) Label-free electrochemical recognition of DNA hybridization by means of modulation of the feedback current in SECM. Angew Chem Int Ed Engl 43:3482–3485

    Article  CAS  Google Scholar 

  32. Turcu F, Schulte A, Hartwich G, Schuhmann W (2004) Imaging immobilised ssDNA and detecting DNA hybridisation by means of the repelling mode of scanning electrochemical microscopy (SECM). Biosens Bioelectron 20:925–932

    Article  CAS  Google Scholar 

  33. Palchetti I, Laschi S, Marrazza G, Mascini M (2007) Electrochemical imaging of localized sandwich DNA hybridization using scanning electrochemical microscopy. Anal Chem 79:7206–7213

    Article  CAS  Google Scholar 

  34. Neugebauer S, Zimdars A, Liepold P, Gebala M, Schuhmann W, Hartwich G (2009) Optimization of an electrochemical DNA assay by using a 48-electrode array and redox amplification studies by means of scanning electrochemical microscopy. Chem Bio Chem 10:1193–1199

    Article  CAS  Google Scholar 

  35. Zhang Z, Zhou J, Tang A, Wu Z, Shen G, Yu R (2010) Scanning electrochemical microscopy assay of DNA based on hairpin probe and enzymatic amplification biosensor. Biosens Bioelectron 25:1953–1957

    Article  CAS  Google Scholar 

  36. Roberts W, Davis F, Higson S (2009) Scanning electrochemical microscopy of genomic DNA microarrays study of adsorption and subsequent interactions. Analyst 134:1302–1308

    Article  CAS  Google Scholar 

  37. Liu B, Bard A, Li C-Z, Kraatz H-B (2005) Scanning electrochemical microscopy. 51. Studies of self-assembled monolayers of DNA in the absence and presence of metal ions. J Phys Chem B 109:5193–5198

    Article  CAS  Google Scholar 

  38. Li X, Lee JS, Kraatz H-B (2006) Electrochemical detection of single-nucleotide mismatches using an electrode microarray. Anal Chem 78:6096–6101

    Article  CAS  Google Scholar 

  39. Diakowski P, Kraatz H-B (2009) Detection of single-nucleotide mismatches using scanning electrochemical microscopy. Chem Commun 45:1189–1191

    Article  Google Scholar 

  40. Shamsi MH, Kraatz H-B (2010) Probing nucleobase mismatch variations by electrochemical techniques: exploring the effects of position and nature of the single-nucleotide mismatch. Analyst 135:2280–2285

    Article  CAS  Google Scholar 

  41. Alam MN, Shamsi MH, Kraatz H-B (2012) Scanning positional variations in single-nucleotide polymorphism of DNA: an electrochemical study. Analyst 137:4220–4225

    Article  CAS  Google Scholar 

  42. Shamsi MH, Kraatz H-B (2013) Electrochemical signature of mismatch in overhang DNA films: a scanning electrochemical microscopic study. Analyst 138:3538–3543

    Article  CAS  Google Scholar 

  43. Shamsi MH, Kraatz H-B (2011) Electrochemical identification of artificial oligonucleotides related to bovine species. Potential for identification of species based on mismatches in the mitochondrial cytochrome C1 oxidase gene. Analyst 136:4724–4731

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz-Bernhard Kraatz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Shamsi, M.H., Kraatz, HB. (2016). Scanning Electrochemical Microscopy: A Multiplexing Tool for Electrochemical DNA Biosensing. In: Aliofkhazraei, M., Makhlouf, A. (eds) Handbook of Nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15266-0_35

Download citation

Publish with us

Policies and ethics