Skip to main content

Electrodeposited Zn-Nanoparticles Composite Coatings for Corrosion Protection of Steel

  • Reference work entry
  • First Online:

Abstract

In the field of galvanic plating, one of the ways to obtain metallic coatings with improved mechanic and anti-corrosion properties consists in the electrolytic entrapment of inert nanoparticles (e.g., oxides, carbides, carbon nanotubes, polytetrafluoroethylene etc.) in the metallic matrix. The particles confer to the resulting composite layers improved corrosion and wear resistance, increased hardness, superior tribologic properties, better subsequent adhesion of paintings and increased lifetime. Due to the fact that the nanosized particles possess special properties which could be transferred to the composite layers, there is a lot of research directions to be investigated, beginning with the exceptional properties of deposited layers and finishing with the incompletely elucidated electrodeposition mechanism. In this context, recent advances in electrodeposition of metal-matrix composite coatings will be reviewed with emphasis on electrolytic co-deposition of Zn with nanoparticles of TiO2, CeO2, ZrO2 etc. The factors influencing the co-deposition and the properties of the resulting composite coatings are also briefly discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Musiani M (2000) Electrodeposition of composites: an expanding subject in electrochemical materials science. Electrochim Acta 45:3397–3402

    Article  CAS  Google Scholar 

  2. Rittner MN (2002) Market analysis of nanostructured materials. Am Ceram Soc Bull 81(3):33–36

    CAS  Google Scholar 

  3. Bund A, Thieming D (2007) Influence of bath composition and pH on the electrodeposition of alumina nanoparticles and copper. J Appl Electrochem 37:345–351

    Article  CAS  Google Scholar 

  4. Wu JY et al (2006) Tribological behavior of Ti2SnC particulate reinforced copper matrix composites. Mater Sci Eng A 422:266–271

    Article  Google Scholar 

  5. Maurin G, Lavanant A (1995) Electrodeposition of nickel/silicon carbide composite coatings on a rotating disc electrode. J Appl Electrochem 25:1113–1121

    Article  CAS  Google Scholar 

  6. Zhu J et al (2006) Microstructure and performance of electroformed Cu/nano-SiC composite. Mater Des 28:1958–1962

    Article  Google Scholar 

  7. Vereecken PM et al (2000) Particle codeposition in nanocomposite films. J Electrochem Soc 147(7):2572–2575

    Article  CAS  Google Scholar 

  8. Bin-shi X et al (2005) Electrodepositing nickel silica nano-composites coatings. Electrochem Commun 7:572–575

    Article  Google Scholar 

  9. Szczygiel B, Kolodziej M (2005) Composite Ni/Al2O3 coatings and their corrosion resistance. Electrochim Acta 50:4188–4195

    Article  CAS  Google Scholar 

  10. Chen L et al (2006) Effect of surfactant on the electrodeposition and wear resistance of Ni–Al2O3 composite coatings. Mater Sci Eng 434:319–325

    Article  Google Scholar 

  11. Chen L et al (2006) Influence of pulse frequency on the microstructure and wear resistance of electrodeposited Ni–Al2O3 composite coatings. Surf Coat Technol 201:599–605

    Article  CAS  Google Scholar 

  12. Nowak P et al (2000) Electrochemical investigation of the codeposition of SiC and SiO2 particles with nickel. J Appl Electrochem 30:429–437

    Article  CAS  Google Scholar 

  13. Tu W et al (2006) Electrocatalytic action of nano-SiO2 with electrodeposited nickel matrix. Mater Lett 60:1247–1250

    Article  CAS  Google Scholar 

  14. Ploof L (2008) Electroless nickel composite coatings. Adv Mater Process 166:36–38

    CAS  Google Scholar 

  15. Boskovic I et al (2006) Electrochemical behavior of an Ag/TiO2 composite surfaces. Electrochim Acta 51:2793–2799

    Article  CAS  Google Scholar 

  16. Banerjee S, Chakravorty D (1999) Electrical resistivity of silver–silica nanocomposites. J Appl Phys 85:3623–3625

    Article  CAS  Google Scholar 

  17. Armelao L et al (2006) Recent trends on nanocomposites based on Cu, Ag and Au clusters: a closer look. Coord Chem Rev 250:1294–1314

    Article  CAS  Google Scholar 

  18. Shi L et al (2006) Synthesis of bamboo-leaf-shaped ZnO nanostructures by oxidation of Zn/SiO2 composite films deposited with radio frequency magnetron co-sputtering. Appl Surf Sci 252:2853–2857

    Article  CAS  Google Scholar 

  19. Tuaweri TJ, Wilcox GD (2006) Behaviour of Zn–SiO2 electrodeposition in the presence of N, N-dimethyldodecylamine. Surf Coat Technol 200:5921–5930

    Article  CAS  Google Scholar 

  20. Sharma SC et al (1996) Drillability of zinc/graphite metal matrix composites. NML Tech J 38:127–131

    Google Scholar 

  21. Drasnar P et al (2011) The properties of electrolytically deposited composite Zn–PTFE coatings. MM Sci J 7:248–249

    Article  Google Scholar 

  22. Vlasa A et al (2010) Electrodeposited Zn–TiO2 nanocomposite coatings and their corrosion behavior. J Appl Electrochem 40(8):1519–1527

    Article  CAS  Google Scholar 

  23. Hamlaoui Y et al (2010) Electrodeposition of ceria-based layers on zinc electroplated steel. Corros Sci 52:1020–1025

    Article  CAS  Google Scholar 

  24. Bindiya S et al (2011) Electrodeposition and corrosion properties of Zn–V2O5 composite coatings. J Mater Eng Perform. doi:10.1007/s11665-011-0099-6

    Google Scholar 

  25. Balaji R et al (2006) Electrodeposition of bronze–PTFE composite coatings and study on their tribological characteristics. Surf Coat Technol 201:3205–3211

    Article  CAS  Google Scholar 

  26. Rohatgi PK et al (1992) Tribological properties of metal matrix-graphite particle composites. Int Mater Rev 37:129–152

    Article  CAS  Google Scholar 

  27. Tanaka M et al (1993) Ceramic metal-composite coated piston ring and cylinder liner of marine low speed diesel engine. Bull MESJ 21(2):77–85

    Google Scholar 

  28. Rittner MN (2000) Metal matrix composites in the 21st century: markets and opportunities. BCC, Inc., Norwalk, CT

    Google Scholar 

  29. Hovestad R, Janssen LJJ (1995) Electrochemical codeposition of inert particles in a metallic matrix. J Appl Electrochem 25:519–527

    Article  CAS  Google Scholar 

  30. Keddam M et al (1994) Composite electrode for studying powdered electroactive materials – preparation and performance. J Appl Electrochem 24:1037–1043

    Article  CAS  Google Scholar 

  31. Deguchi T et al (2000) Photocatalitically highly active nanocomposite films consisting of TiO2 particles and ZnO whiskers formed on steel plates. J Electrochem Soc 147(6):2263–2267

    Google Scholar 

  32. Kang H-K (2005) Microstructure and electrical conductivity of high volume Al2O3-reinforced copper matrix composites produced by plasma spray. Surf Coat Technol 190:448–452

    Article  CAS  Google Scholar 

  33. Tian B et al (2006) Microstructure and properties at elevated temperature of a nano-Al2O3 particles dispersion-strengthened copper base composite. Mater Sci Eng A 435–436:705–710

    Article  Google Scholar 

  34. Shi Z, Yan M (1998) The preparation of Al2O3–Cu composite by internal oxidation. Appl Surf Sci 134:103–106

    Article  CAS  Google Scholar 

  35. Guobin L et al (2005) Fabrication of the nanometer Al2O3/Cu composite by internal oxidation. J Mater Process Technol 170:336–340

    Article  Google Scholar 

  36. Shibli SMA et al (2006) Incorporation of TiO2 in hot dip zinc coating for efficient resistance to biogrowth. Surf Coat Technol 200:4791–4796

    Article  CAS  Google Scholar 

  37. Battaglin G et al (2004) RF magnetron co-sputtering deposition of Cu-based nanocomposite silica films for optical applications. Appl Surf Sci 226:52–56

    Article  CAS  Google Scholar 

  38. Low CTJ et al (2006) Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surf Coat Technol 201:371–383

    Article  CAS  Google Scholar 

  39. Fontenay F et al (2001) Electroplating and characterization of zinc composite coatings. Galvanotechnik 92:928–939

    CAS  Google Scholar 

  40. Chandrasekar MS, Pushpavanam M (2008) Pulse and pulse reverse plating- Conceptual, advantages and applications. Electrochim Acta 53:3313–3322

    Article  CAS  Google Scholar 

  41. Wang W et al (2005) Fabrication and characterization of Ni–ZrO2 composite nano-coatings by pulse electrodeposition. Scr Mater 53:613–618

    Article  CAS  Google Scholar 

  42. Fransaer JP et al (2002) Aluminium composite coatings containing micrometre and nanometre-sized particles electroplated from a non-aqueous electrolyte. J Appl Electrochem 32:123–128

    Article  CAS  Google Scholar 

  43. Wang SC, Wei WC-J (2003) Kinetics of electroplating process of nano-sized ceramic particle/Ni composite. Mater Chem Phys 78:574–580

    Article  CAS  Google Scholar 

  44. Fransaer J et al (1992) Analysis of the electrolytic codeposition of non-brownian particles with metals. J Electrochem Soc 139:413–425

    Article  CAS  Google Scholar 

  45. Khan TR et al (2011) Electrodeposition of zinc silica composite coatings: challenges in incorporation of functionalized silica particles within the zinc metal matrix. Sci Technol Adv Mater 12:055005

    Article  Google Scholar 

  46. Celis JP et al (1987) A mathematical model for the electrolytic codeposition of particles with a metallic matrix. J Electrochem Soc 134(6):1402–1408

    Article  CAS  Google Scholar 

  47. Shao I et al (2002) Kinetics of particle codeposition of nanocomposites. J Electrochem Soc 149:C610–C614

    Article  CAS  Google Scholar 

  48. Guglielmi N (1972) Kinetics of the deposition inert particles from electrolytic baths. J Electrochem Soc 119:1009–1012

    Article  CAS  Google Scholar 

  49. Bercot P et al (2002) Electrolyte composite Ni-PTFE coatings: an adaptation of Guglielmi’s model of the phenomena of incorporation. Surf Coat Technol 157:282–289

    Article  CAS  Google Scholar 

  50. Roos JR et al (1990) The development of composite plating for advanced materials. J Met 42:60–63

    CAS  Google Scholar 

  51. Popov KI et al (2002) Fundamental aspects of electrometallurgy. Kluwer Academic Publishers, New York

    Google Scholar 

  52. Lee CC, Wan CC (1988) A study of the composite electrodeposition of copper with alumina powder. J Electrochem Soc 135:1930–1933

    Article  CAS  Google Scholar 

  53. Stojak JL et al (2001) Review of electrocodeposition. In (Alkire RC and Kolb DM (eds). Adv Electrochem Sci Eng 7:193–222

    CAS  Google Scholar 

  54. Hovestad A, Janssen LJJ (2005) Electroplating of metal matrix composites by codeposition of suspended particles. In: Conway BE (ed) Modern aspects of electrochemistry, vol 38. Kluwer Academic/Plenum Publishers, New York

    Chapter  Google Scholar 

  55. Fransaer J, Celis JP (2001) New insights into the mechanism of composite plating. Galvanotechnik 92:1544–1550

    CAS  Google Scholar 

  56. Mureşan LM, Varvara SC (2005) Leveling and brightening mechanisms in metal electrodeposition. In: Nunez M (ed) Metal electrodeposition. Novascience Publishers, New York. ISBN 1-59454-330-5

    Google Scholar 

  57. Gerr M-D (2004) Electrochemical deposition of nickel/SiC composites in the presence of surfactants. Mater Chem Phys 87:67–74

    Article  Google Scholar 

  58. Tomaszewski TW et al (1969) Codeposition of finely dispersed particles with metal. Plating 56:1234–1239

    CAS  Google Scholar 

  59. Sautter FK (1963) Electrodeposition of dispersion hardened nickel Al2O3 alloys. J Electrochem Soc 110:557–560

    Article  CAS  Google Scholar 

  60. Gomes A et al (2005) Zn–TiO2 composite films prepared by pulsed electrodeposition. J Solid State Electrochem 9:190–196

    Article  CAS  Google Scholar 

  61. Raeissi K et al (2003) Effect of nucleation mode on the morphology and texture of electrodeposited zinc. J Appl Electrochem 33:635–642

    Article  CAS  Google Scholar 

  62. Celis JP, Roos JR (1977) Kinetics of the deposition of alumina particles from copper sulfate plating baths. J Electrochem Soc 124:1508–1511

    Article  CAS  Google Scholar 

  63. Narayan R, Narayana BH (1981) Electrodeposited composite metal coatings. J Electrochem Soc 128:1704–1708

    Article  CAS  Google Scholar 

  64. Narayan R, Chattopadhyay S (1982) Electrodeposited Cr-Al2O3 composite coatings. Surf Technol 16:227–234

    Article  CAS  Google Scholar 

  65. Ramesh Bapu GNK, Mohammed Yusuf M (1993) Electrodeposition of nickel-vanadium pentoxide composite and its corrosion behaviour. Mater Chem Phys 36:134–138

    Article  Google Scholar 

  66. Nemeş PI et al (2013) Initial corrosion behavior of composite coatings obtained by co-electrodeposition of zinc with nanoparticles of Ti and Ce oxides. J Solid State Electrochem 17:511–518

    Article  Google Scholar 

  67. Praveen BM, Venkatesha TV (2008) Electrodeposition and properties of Zn-nanosized TiO2 composite coatings. Appl Surf Sci 254:2418–2424

    Article  CAS  Google Scholar 

  68. Montemor et al (2008) The synergistic combination of bis-silane and CeO2 .ZrO2 nanoparticles on the electrochemical behaviour of galvanised steel in NaCl solutions. Electrochim Acta 53:5913–5922

    Google Scholar 

  69. Vathsala K, Venkatesha TV (2011) Zn–ZrO2 nanocomposite coatings: electrodeposition and evaluation of corrosion resistance. Appl Surf Sci 257:8929–8936

    Article  CAS  Google Scholar 

  70. Xia X et al (2009) Electrodeposition of zinc and composite zinc-yttria stabilized zirconia coatings. J Mater Process Technol 209:2632–2640

    Article  CAS  Google Scholar 

  71. Stankovic VD, Gojo M (1996) Electrodeposited composite coatings of copper with inert, semiconductive and conductive particles. Surf Coat Technol 81:225–232

    Article  CAS  Google Scholar 

  72. Rabinowicz E (1995) Friction and wear of materials. Wiley, New York

    Google Scholar 

  73. Garcia I et al (2001) Electrodeposition and sliding wear resistance of nickel composite coatings containing micron and submicron SiC particles. Surf Coat Technol 148:171–178

    Article  CAS  Google Scholar 

  74. Deguchi T et al (2001) Rapid electroplating of photocatalytically highly active TiO2-Zn nanocomposite films on steel. J Mater Sci 36:4723–4729

    Article  CAS  Google Scholar 

  75. Muresan L et al (2007) Corrosion behavior of electrochemically deposited Zn–TiO2 nanocomposite coatings. Studia Universitatis Babes-Bolyai Chemia LII:97–104

    Google Scholar 

  76. Kondo K et al (2000) Electrodeposition of zinc-SiO2 composite. J Electrochem Soc 147:2611–2613

    Article  CAS  Google Scholar 

  77. Praveen BM, Venkatesha TV (2009) Generation and corrosion behavior of Zn-nano sized carbon black composite coating. Int J Electrochem Sci 4:258–266

    CAS  Google Scholar 

  78. Praveen BM et al (2007) Corrosion studies of carbon nanotubes-Zn composite coating. K Surf Coat Technol 201:5836–5842

    Article  CAS  Google Scholar 

  79. Ranganatha S et al (2012) Electrochemical studies on Zn/nano-CeO2 electrodeposited composite coatings. Surf Coat Technol 208:64–72

    Article  CAS  Google Scholar 

  80. Fustes J et al (2008) Electrodeposition of Zn–TiO2 nanocomposite films-effect of bath composition. J Solid State Electrochem 12:1435–1443

    Article  CAS  Google Scholar 

  81. Azizi M et al (2005) Electrolytic co-deposition of silicate and mica particles with zinc. J Solid State Electrochem 9:429–437

    Article  CAS  Google Scholar 

  82. Hovestad A et al (1999) Electrochemical deposition of zinc-polystyrene composites in the presence of surfactants. J Appl Electrochem 29:331–338

    Article  CAS  Google Scholar 

  83. Praveen BM et al (2007) Corrosion behavior of Zn–TiO2 composite coating. Synth React in Inorg Metal-Organic and Nano-Metal Chem 37:461–465

    Article  CAS  Google Scholar 

  84. Abdel Hamid Z (2001) Thermodynamic parameters of electrodeposition of Zn–Co–TiO2 composite coatings. Anti-Corros Methods Mater 48:235–241

    Article  CAS  Google Scholar 

  85. Stempniewicz M, Rohwerder M, Marlow F (2007) Release from silica SBA-3-like mesoporous fibers: cross-wall transport and external diffusion barrier. Chem Phys Chem 8:188

    CAS  Google Scholar 

  86. Terzieva V et al (2000) Codeposition of hydrophilic and hydrophobic silica with copper from acid copper sulfate baths. J Electrochem Soc 147:198–202

    Article  CAS  Google Scholar 

  87. Pazderova M et al (2010) Qualitative. Analysis of composite Zn–PTFE coatings. MM Sci J 11:208–209

    Google Scholar 

  88. Drasnar P et al (2010) Composition analysis of composite electrolytic coatings containing PTFE. Proceedings of international conference on innovative technologies, Prague, 14–16 Sept 619–623

    Google Scholar 

  89. Yen SK et al (2001) Characterization of electrolytic ZrO2 coating on Co–Cr–Mo implant alloys of hip prosthesis. Biomaterials 22:125–133

    Article  CAS  Google Scholar 

  90. Ivanov VK et al (2009) Antioxidant activity of nanocrystalline ceria to anthocyanins. Russian J Inorg Chem 54:1522–1527

    Article  Google Scholar 

  91. Cao XQ, Vassen Stoever RD (2004) Ceramic materials for thermal barrier coatings. J Eur Ceram Soc 24:1–10

    Article  CAS  Google Scholar 

  92. Shibli SMA, Chacko F (2008) Development of nano-CeO2-incorporated high performance hot-dip zinc coating. Surf Coat Technol 202:4971–4975

    Article  CAS  Google Scholar 

  93. Satoshi O et al (2002) Electrodeposition of Zn–Al2O3 composite from non-suspended solution containing quaternary ammonium salt. J Surf Finish Soc Japan 53:920–925

    Article  Google Scholar 

  94. Vlasa A (2010) Revêtements composites obtenus par voie électrochimique. Ph.D. thesis, Babes-Bolyai University Cluj-Napoca

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liana Maria Muresan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Muresan, L.M. (2016). Electrodeposited Zn-Nanoparticles Composite Coatings for Corrosion Protection of Steel. In: Aliofkhazraei, M., Makhlouf, A. (eds) Handbook of Nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15266-0_34

Download citation

Publish with us

Policies and ethics