Skip to main content

Electrodeposition of ZnO Nanostructures: Growth, Doping, and Physical Properties

  • Reference work entry
  • First Online:
Handbook of Nanoelectrochemistry

Abstract

ZnO is one of the most promising semiconductors for low-cost optoelectronics and can be obtained from a variety of deposition techniques. Among them, electrochemical growth in aqueous solution has become an important approach for ZnO deposition with abundant morphologies and doping capabilities. This chapter summarizes the current achievements in electrodeposition of ZnO and also discusses the challenges and extensive potential in this research area. The effects of electrochemical growth conditions, annealing, and doping on the structural, optical, and electrical properties of ZnO thin films and nanowires are presented in detail. Electrical characterization using electrochemical impedance spectroscopy and photoelectrochemical cell measurements are also included. n-Type and p-type semiconductor nanowires are achieved by electrochemical doping of ZnO with various elements such as Cl and Ag and are discussed as nanoscale building blocks in advanced optoelectronics. Electrochemical deposition of highly uniform ZnO thin films and oriented ZnO nanowire arrays with desired physical properties opens up possibilities for large-scale and economic fabrication of advanced optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reynolds DC, Look DC, Jogai B, Jones RL, Litton CW, Harsch W, Cantwell G (1999) Optical properties of ZnO crystals containing internal strains. J Lumin 82:173

    Article  CAS  Google Scholar 

  2. Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:103

    Article  Google Scholar 

  3. Look DC, Reynolds DC, Litton CW, Jones RL, Eason DB, Cantwell G (2002) Characterization of homepitaxial p-type ZnO grown by molecular beam epitaxy. Appl Phys Lett 81:1830

    Article  CAS  Google Scholar 

  4. Wu JJ, Liu SC (2002) Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv Mater 14:215

    Article  CAS  Google Scholar 

  5. Sun XW, Kwok HS (1999) Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition. J Appl Phys 86:408

    Article  CAS  Google Scholar 

  6. Kaidashev EM, Lorenz M, von Wenckstern H, Rahm A, Semmelhack HC, Han KH, Benndorf G, Bundesmann C, Hochmuth H, Grundmann M (2003) High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition. Appl Phys Lett 82:3901

    Article  CAS  Google Scholar 

  7. Pan ZW, Dai ZR, Wang ZL (2001) Nanobelts of semiconducting oxides. Science 291:1947

    Article  CAS  Google Scholar 

  8. Lin BX, Fu ZX, Jia YB (2001) Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl Phys Lett 79:943

    Article  CAS  Google Scholar 

  9. Ohshima E, Ogino H, Niikura I, Maeda K, Sato M, Ito M, Fukuda T (2004) J Cryst Growth 260:166

    Article  CAS  Google Scholar 

  10. Triboulet R, Munoz-Sanjose V, Tena-Zaera R, Martinez-Thomas MC, Hassani S (2005) In: Nickel NH, Terukov E (eds) Zinc oxide – a material for micro- and optoelectronic applications. NATO science series II, vol 194. Springer, Berlin, pp 3–14

    Google Scholar 

  11. Reynolds DC, Litton CW, Look DC, Hoelscher JE, Claflin B, Collins TC, Nause J, Nemeth B (2004) High-quality, melt-grown ZnO single crystals. J Appl Phys 95:4802

    Article  CAS  Google Scholar 

  12. Lincot D (2010) Solution growth of functional zinc oxide films and nanostructures. MRS Bull 35:778

    Article  CAS  Google Scholar 

  13. Schmidt-Mende L, MacManus-Driscoll JL (2007) ZnO – nanostructures, defects, and devices. Mater Today 10:40

    Article  CAS  Google Scholar 

  14. Peulon S, Lincot D (1996) Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films. Adv Mater 8:166

    Article  CAS  Google Scholar 

  15. Izaki M, Omi T (1996) Transparent zinc oxide films prepared by electrochemical reaction. Appl Phys Lett 68:2439

    Article  CAS  Google Scholar 

  16. Yoshida T, Komatsu D, Shimokawa N, Minoura H (2004) Mechanism of cathodic electrodeposition of zinc oxide thin films from aqueous zinc nitrate baths. Thin Solid Films 451:166

    Article  Google Scholar 

  17. Ashfold MNR, Doherty RP, Ndifor-Angwafor NG, Riley DJ, Sun Y (2007) The kinetics of the hydrothermal growth of ZnO nanostructures. Thin Solid Films 515:8679

    Article  CAS  Google Scholar 

  18. McPeak KM, Becker MA, Britton NG, Majidi H, Bunker BA, Baxter JB (2010) In situ X-ray absorption near-edge structure spectroscopy of ZnO nanowire growth during chemical bath deposition. Chem Mater 22:6162

    Article  CAS  Google Scholar 

  19. Pauporte T, Lincot D (2001) Hydrogen peroxide oxygen precursor for zinc oxide electrodeposition I. Deposition in perchlorate medium. J Electrochem Soc 148:C310

    Article  CAS  Google Scholar 

  20. Pauporte T, Lincot D (2001) Hydrogen peroxide oxygen precursor for zinc oxide electrodeposition II – Mechanistic aspects. J Electroanal Chem 517:54

    Article  CAS  Google Scholar 

  21. Vayssieres L (2003) Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv Mater 15:464

    Article  CAS  Google Scholar 

  22. Vayssieres L, Keis K, Hagfeldt A, Lindquist SE (2001) Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem Mater 13:4395

    Article  CAS  Google Scholar 

  23. Vayssieres L, Keis K, Lindquist SE, Hagfeldt A (2001) Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. J Phys Chem B 105:3350

    Article  CAS  Google Scholar 

  24. Greene LE, Law M, Goldberger J, Kim F, Johnson JC, Zhang YF, Saykally RJ, Yang PD (2003) Low-temperature wafer-scale production of ZnO nanowire arrays. Angew Chem Int Ed 42:3031

    Article  CAS  Google Scholar 

  25. Cui JB, Gibson UJ (2005) Enhanced nucleation, growth rate, and dopant incorporation in ZnO nanowires. J Phys Chem B 109:22074

    Article  CAS  Google Scholar 

  26. Tena-Zaera R, Elias J, Levy-Clement C, Bekeny C, Voss T, Mora-Sero I, Bisquert J (2008) Influence of the potassium chloride concentration on the physical properties of electrodeposited ZnO nanowire arrays. J Phys Chem C 112:16318

    Article  CAS  Google Scholar 

  27. Rousset J, Saucedo E, Lincot D (2009) Extrinsic doping of electrodeposited zinc oxide films by chlorine for transparent conductive oxide applications. Chem Mater 21:534

    Article  CAS  Google Scholar 

  28. Elias J, Tena-Zaera R, Levy-Clement C (2008) Electrochemical deposition of ZnO nanowire arrays with tailored dimensions. J Electroanal Chem 621:171

    Article  CAS  Google Scholar 

  29. Elias J, Tena-Zaera R, Levy-Clement C (2008) Effect of the chemical nature of the anions on the electrodeposition of ZnO nanowire arrays. J Phys Chem C 112:5736

    Article  CAS  Google Scholar 

  30. Xu F, Lu YN, Xia LL, Xie Y, Dai M, Liu YF (2009) Seed layer-free electrodeposition of well-aligned ZnO submicron rod arrays via a simple aqueous electrolyte. MRS Bull 44:1700

    Article  CAS  Google Scholar 

  31. Cao BQ, Li Y, Duan GT, Cai WP (2006) Growth of ZnO nanoneedle arrays with strong ultraviolet emissions by an electrochemical deposition method. Cryst Growth Des 6:1091

    Article  CAS  Google Scholar 

  32. Ashida A, Fujita A, Shim YG, Wakita K, Nakahira A (2008) ZnO thin films epitaxially grown by electrochemical deposition method with constant current. Thin Solid Films 517:1461

    Article  CAS  Google Scholar 

  33. Cox JA, Brajter A (1979) Mechanisms of ZR(IV) and LA(III) catalysis of the reduction of nitrate at mercury. Electrochim Acta 24:517

    Article  CAS  Google Scholar 

  34. Ogawa N, Ikeda S (1991) On the electrochemical reduction of nitrate ion in the presence of various metal ions. Anal Sci 7(Suppl):1681

    Article  CAS  Google Scholar 

  35. Khajavi MR, Blackwood DJ, Cabanero G, Tena-Zaera R (2012) New insight into growth mechanism of ZnO nanowires electrodeposited from nitrate-based solutions. Electrochim Acta 69:181

    Article  CAS  Google Scholar 

  36. Thomas MA, Cui JB (2013) Highly Uniform 2D Growth, Substrate Transfer, and Electrical Characterization of Electrodeposited ZnO Thin Films. J Electrochem Soc 160:D218

    Article  CAS  Google Scholar 

  37. Musselman KP, Gershon T, Schmidt-Mende L, MacManus-Driscoll JL (2011) Macroscopically uniform electrodeposited ZnO films on conducting glass by surface tension modification and consequent demonstration of significantly improved p-n heterojunctions. Electrochim Acta 56:3758

    Article  CAS  Google Scholar 

  38. Chatman S, Emberley L, Poduska KM (2009) Significant carrier concentration changes in native electrodeposited ZnO. ACS Appl Mater Interfaces 1:2348

    Article  CAS  Google Scholar 

  39. Izaki M (1999) Preparation of transparent and conductive zinc oxide films by optimization of the two-step electrolysis technique. J Electrochem Soc 146:4517

    Article  CAS  Google Scholar 

  40. Zhang LS, Chen ZG, Tang YW, Jia ZJ (2005) Low temperature cathodic electrodeposition of nanocrystalline zinc oxide thin films. Thin Solid Films 492:24

    Article  CAS  Google Scholar 

  41. Wu KY, Sun ZQ, Cui JB (2012) Unique approach toward ZnO growth with tunable properties: influence of methanol in an electrochemical process. Cryst Growth Des 12:2864

    Article  CAS  Google Scholar 

  42. McPeak KM, Le TP, Britton NG, Nicholov ZS, Elabd YA, Baxter JB (2011) Chemical bath deposition of ZnO nanowires at near-neutral pH conditions without hexamethylenetetramine (HMTA): understanding the role of HMTA in ZnO nanowire growth. Langmuir 27:3672

    Article  CAS  Google Scholar 

  43. Andeen D, Kim JH, Lange FF, Goh GKL, Tripathy S (2006) Lateral epitaxial overgrowth of ZnO in water at 90 degrees C. Adv Funct Mater 16:799

    Article  CAS  Google Scholar 

  44. Pauporte T, Jouanno E, Pelle F, Viana B, Aschehoug P (2009) Key growth parameters for the electrodeposition of ZnO films with an intense UV-light emission at room temperature. J Phys Chem C 113:10422

    Article  CAS  Google Scholar 

  45. Cui JB (2008) Defect control and its influence on the exciton emission of electrodeposited ZnO nanorods. J Phys Chem C 112:10385

    Article  CAS  Google Scholar 

  46. Cui JB, Soo YC, Chen TP, Gibson UJ (2008) Low-temperature growth and characterization of Cl-doped ZnO nanowire arrays. J Phys Chem C 112:4475

    Article  CAS  Google Scholar 

  47. Ren T, Baker HR, Poduska KM (2007) Optical absorption edge shifts in electrodeposited ZnO thin films. Thin Solid Films 515:7976

    Article  CAS  Google Scholar 

  48. von Windheim JA, Wynands H, Cocivera M (1991) Removal and preparation of electrodeposited semiconductors for high impedance hall-effect measurements. J Electrochem Soc 138:3435

    Article  Google Scholar 

  49. Guillemoles JF, Cowache P, Lusson A, Fezzaa K, Boisivon F, Videl J, Lincot D (1996) One step electrodeposition of CuInSe2: improved structural, electronic, and photovoltaic properties by annealing under high selenium pressure. J Appl Phys 79:7293

    Article  CAS  Google Scholar 

  50. Mizuno K, Izaki M, Murase K, Shinagawa T, Chigane M, Inaba M, Tasaka A, Awakura Y (2005) Structural and electrical characterizations of electrodeposited p-type semiconductor Cu2O films. J Electrochem Soc 152:C179

    Article  CAS  Google Scholar 

  51. Yoon S, Huh I, Lim JH, Yoo B (2012) Annealing effects on electrical and optical properties of ZnO thin films synthesized by the electrochemical method. Curr Appl Phys 12:784

    Article  Google Scholar 

  52. Shinagawa T, Chigane M, Murase K, Izaki M (2012) Drastic change in electrical properties of electrodeposited ZnO: systematic study by hall effect measurements. J Phys Chem C 116:15925

    Article  CAS  Google Scholar 

  53. Mora-Sero I, Fabregat-Santiago F, Denier B, Bisquert J, Tena-Zaera R, Elias J, Levy-Clement C (2006) Determination of carrier density of ZnO nanowires by electrochemical techniques. Appl Phys Lett 89:203117

    Article  Google Scholar 

  54. Voss T, Bekeny C, Gutowski J, Tena-Zaera R, Elias J, Levy-Clement C, Mora-Sero I, Bisquert J (2009) Localized versus delocalized states: photoluminescence from electrochemically synthesized ZnO nanowires. J Appl Phys 106:054304

    Article  Google Scholar 

  55. Samantilleke AP, Boyle MH, Young J, Dharmadasa IM (1998) Electrodeposition of n-type and p-type ZnSe thin films for applications in large area optoelectronic devices. J Mater Sci Mater Electron 9:289

    Article  CAS  Google Scholar 

  56. Samantilleke AP, Boyle MH, Young J, Dharmadasa IM (1998) Growth of n-type and p-type ZnSe thin films using an electrochemical technique for applications in large area optoelectronic devices. J Mater Sci Mater Electron 9:231

    Article  CAS  Google Scholar 

  57. Thomas MA, Cui JB (2010) Electrochemical route to p-type doping of ZnO nanowires. J Phys Chem Lett 1:1090

    Article  CAS  Google Scholar 

  58. Wellings JS, Chaure NB, Heavens SN, Dharmadasa IM (2008) Growth and characterisation of electrodeposited ZnO thin films. Thin Solid Films 516:3893

    Article  CAS  Google Scholar 

  59. Ahn KS, Deutsch T, Yan YF, Jiang CS, Perkins CL, Turner J, Al-Jassim MM (2007) Synthesis of band-gap-reduced p-type ZnO films by Cu incorporation. J Appl Phys 02:023517

    Article  Google Scholar 

  60. Fan JD, Shavel A, Zamani R, Fabrega C, Rousset J, Haller S, Guell F, Carrete A, Andreu T, Arbiol J, Morante JR, Cabot A (2011) Control of the doping concentration, morphology and optoelectronic properties of vertically aligned chlorine-doped ZnO nanowires. Acta Mater 59:6790

    Article  CAS  Google Scholar 

  61. Han XF, Han K, Tao M (2010) Electrodeposition of group-IIIA doped ZnO as a transparent conductive oxide. ECS Trans 15:93

    Article  CAS  Google Scholar 

  62. Kemell M, Dartigues F, Ritala M, Leskela M (2003) Electrochemical preparation of In and Al doped ZnO thin films for CuInSe2 solar cells. Thin Solid Films 434:20

    Article  CAS  Google Scholar 

  63. Machado G, Guerra DN, Leinen D, Ramos-Barrado JR, Marotti RE, Dalchiele EA (2005) Indium doped zinc oxide thin films obtained by electrodeposition. Thin Solid Films 490:124

    Article  CAS  Google Scholar 

  64. Ishizaki H, Imaizumi M, Matsuda S, Izaki M, Ito T (2002) Incorporation of boron in ZnO film from an aqueous solution containing zinc nitrate and dimethylamine-borane by electrochemical reaction. Thin Solid Films 411:65

    Article  CAS  Google Scholar 

  65. Rousset J, Donsanti F, Genevee P, Renou G, Lincot D (2011) High efficiency cadmium free Cu(In,Ga)Se2 thin film solar cells terminated by an electrodeposited front contact. Sol Energy Mater Sol Cells 95:1544

    Article  CAS  Google Scholar 

  66. Han XF, Han K, Tao M (2010) Low resistivity yttrium-doped zinc oxide by electrochemical deposition. J Electrochem Soc 157:H593

    Article  CAS  Google Scholar 

  67. Li GR, Zhao WX, Bu Q, Tong YX (2009) A novel electrochemical deposition route for the preparation of Zn1-xCdxO nanorods with controllable optical properties. Electrochem Commun 11:282

    Article  CAS  Google Scholar 

  68. Lupan O, Pauporte T, Bahers TL, Ciofini I, Viana B (2011) High aspect ratio ternary Zn1-xCdxO nanowires by electrodeposition for light-emitting diode applications. J Phys Chem C 115:14548

    Article  CAS  Google Scholar 

  69. Ishizaki H, Yamada N (2006) Preparation of Zn1-xMgxO film by electrochemical reaction. Electrochem Solid State Lett 9:C178

    Article  CAS  Google Scholar 

  70. Li GR, Dawa CR, Lu XH, Yu XL, Tong YX (2009) Use of additives in the electrodeposition of nanostructured Eu3+/ZnO films for photoluminescent devices. Langmuir 25:2378

    Article  CAS  Google Scholar 

  71. Cui JB, Gibson UJ (2005) Electrodeposition and room temperature ferromagnetic anisotropy of Co and Ni-doped ZnO nanowire arrays. Appl Phys Lett 87

    Google Scholar 

  72. Cui JB, Zeng Q, Gibson UJ (2006) Synthesis and magnetic properties of Co-doped ZnO nanowires. J Appl Phys 99

    Google Scholar 

  73. Lipinski BB, Mosca DH, Mattoso N, Schreiner WH, de Oliveira AJA (2004) Electrodeposition of ZnO-Fe granular films. Electrochem Solid State Lett 7:C115

    Article  CAS  Google Scholar 

  74. Li GR, Qu DL, Zhao WX, Tong YX (2007) Electrochemical deposition of (Mn, Co)-codoped ZnO nanorod arrays without any template. Electrochem Commun 9:1661

    Article  CAS  Google Scholar 

  75. Thomas MA, Cui JB (2009) Investigations of acceptor related photoluminescence from electrodeposited Ag-doped ZnO. J Appl Phys 105:093533

    Article  Google Scholar 

  76. Thomas MA, Sun WW, Cui JB (2012) Mechanism of Ag doping in ZnO nanowires by electrodeposition: experimental and theoretical insights. J Phys Chem C 116:6383

    Article  CAS  Google Scholar 

  77. Briscoe J, Gallardo DE, Dunn S (2009) In situ antimony doping of solution-grown ZnO nanorods. Chem Commun 10:1273

    Article  Google Scholar 

  78. Lupan O, Chow L, Ono LK, Cuenya BR, Chai GY, Khallaf H, Park SH, Schulte A (2010) Synthesis and characterization of Ag- or Sb-doped ZnO nanorods by a facile hydrothermal route. J Phys Chem C 114:12401

    Article  CAS  Google Scholar 

  79. Tay CB, Chua SJ, Loh KP (2010) Stable p-type doping of ZnO film in aqueous solution at low temperatures. J Phys Chem C 114:9981

    Article  CAS  Google Scholar 

  80. Fang X, Li JH, Zhao DX, Shen DZ, Li BH, Wang XH (2009) Phosphorus-doped p-type ZnO nanorods and ZnO nanorod p-n homojunction LED fabricated by hydrothermal method. J Phys Chem C 113:21208

    Article  CAS  Google Scholar 

  81. Lee J, Cha S, Kim J, Nam H, Lee S, Ko W, Wang KL, Park J, Hong J (2011) p-type conduction characteristics of lithium-doped ZnO nanowires. Adv Mater 23:4183

    CAS  Google Scholar 

  82. Jin YX, Cui QL, Wang K, Hao JA, Wang QS, Zhang JA (2011) Investigation of photoluminescence in undoped and Ag-doped ZnO flowerlike nanocrystals. J Appl Phys 109:053521

    Article  Google Scholar 

  83. Wang GP, Chu S, Zhan N, Zhou HM, Liu JL (2011) Synthesis and characterization of Ag-doped p-type ZnO nanowires. Appl Phys A Mater Sci Process 103:951

    Article  CAS  Google Scholar 

  84. Fang F, Zhao DX, Fang X, Li JH, Wei ZP, Wang SZ, Wu JL, Wang XH (2011) Optical and electrical properties of individual p-type ZnO microbelts with Ag dopant. J Mater Chem 21:14979

    Article  CAS  Google Scholar 

  85. Kang HS, Ahn BD, Kim JH, Kim GH, Lim SH, Chang HW, Lee SY (2006) Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant. Appl Phys Lett 88:202108

    Article  Google Scholar 

  86. Chai J, Mendelsberg RJ, Reeves RJ, Kennedy J, von Wenckstern H, Schmidt M, Grundmann M, Doyle K, Myers TH, Durbin SM (2010) Identification of a deep acceptor level in ZnO due to silver doping. J Electron Mater 39:577

    Article  CAS  Google Scholar 

  87. Thomas MA, Cui JB (2009) Electrochemical growth and characterization of Ag-doped ZnO nanostructures. J Vac Sci Technol B 27:1673

    Article  CAS  Google Scholar 

  88. Kohan AF, Ceder G, Morgan D, Van de Walle CG (2000) First-principles study of native point defects in ZnO. Phys Rev B 61:15019

    Article  CAS  Google Scholar 

  89. Zhang SB, Wei SH, Zunger A (2001) Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys Rev B 63:075205

    Article  Google Scholar 

  90. Yan YF, Al-Jassim MM, Wei SH (2006) Doping of ZnO by group-IB elements. Appl Phys Lett 89:181912

    Article  Google Scholar 

  91. Volnianska O, Boguslawski P, Kaczkowski J, Jakubas P, Jezierski A, Kaminska E (2009) Theory of doping properties of Ag acceptors in ZnO. Phys Rev B 80:245212

    Article  Google Scholar 

  92. Li YL, Zhao XA, Fan WL (2011) Structural, electronic, and optical properties of Ag-doped ZnO nanowires: first principles study. J Phys Chem C 115:3552

    Article  CAS  Google Scholar 

  93. O’Regan B, Schwartz DT, Zakeeruddin SM, Gratzel M (2000) Electrodeposited nanocomposite n-p heterojunctions for solid-state dye-sensitized photovoltaics. Adv Mater 12:1263

    Article  Google Scholar 

  94. Levy-Clement C, Tena-Zaera R, Ryan MA, Katty A, Hodes G (2005) CdSe-sensitized p- CuSCN/nanowire n-ZnO heterojunctions. Adv Mater 17:1512

    Article  CAS  Google Scholar 

  95. Karuppuchamu S, Nonomura K, Yoshida T, Sugiura T, Minoura H (2002) Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells. Solid State Ion 151:19

    Article  Google Scholar 

  96. Lupan O, Pauporte T, Viana B (2010) Low-voltage UV-electroluminescence from ZnO-nanowire array/p-GaN light-emitting diodes. Adv Mater 22:3298

    Article  CAS  Google Scholar 

  97. Cui JB, Gibson UJ (2007) Low-temperature fabrication of single-crystal ZnO nanopillar photonic bandgap structures. Nanotechnology 18:155302

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Allan Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Thomas, M.A., Cui, J. (2016). Electrodeposition of ZnO Nanostructures: Growth, Doping, and Physical Properties. In: Aliofkhazraei, M., Makhlouf, A. (eds) Handbook of Nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15266-0_22

Download citation

Publish with us

Policies and ethics