Skip to main content

Synthesis, Modification, and Characterization of Nanocarbon Electrodes for Determination of Nucleic Acids

  • Reference work entry
  • First Online:
Handbook of Nanoelectrochemistry

Abstract

Unique mechanical, electronic, chemical, optical, and electrochemical properties of nanosized carbon materials predestine them for numerous potential applications including photocatalysis, electrochemistry, electronics, and optoelectronics. Carbon nanotubes and graphene are some of the most intensively explored carbon allotropes in materials science. The possibility to translate the individual properties of these monodimensional (carbon nanotubes SWCN, MWCN) and bidimensional (graphene) building units into two-dimensional free-standing thick and thin films has paved the way to use these allotropes in a number of the mentioned applications. Moreover, the possibility to conjugate carbon nanomaterials with biomolecules has received particular attention with respect to the design of chemical sensors and biosensors. In this paper, we reviewed types, structure, and especially different methods of synthesis (preparation) of carbon nanomaterials including arc discharge, laser ablation, and chemical vapor deposition. Moreover, we mentioned some rarely used ways of arc discharge deposition, which involves arc discharge in liquid solutions in contrary to standard used deposition in a gas atmosphere. Besides synthesis, modifications of carbon nanomaterials with biologically important molecules for biosensing of DNA and RNA are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roy N, Sengupta R, Bhowmick AK (2012) Modifications of carbon for polymer composites and nanocomposites. Prog Polym Sci 37(6):781–819. doi:10.1016/j.progpolymsci.2012.02.002

    Article  CAS  Google Scholar 

  2. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  CAS  Google Scholar 

  3. Cai XK, Cong HT, Liu C (2012) Synthesis of vertically-aligned carbon nanotubes without a catalyst by hydrogen arc discharge. Carbon 50(8):2726–2730. doi:10.1016/j.carbon.2012.02.031

    Article  CAS  Google Scholar 

  4. Vander Wal RL, Berger GM, Ticich TM (2003) Carbon nanotube synthesis in a flame using laser ablation for in situ catalyst generation. Appl Phys A Mater Sci Process 77(7):885–889. doi:10.1007/s00339-003-2196-3

    Article  CAS  Google Scholar 

  5. Meyyappan M, Delzeit L, Cassell A, Hash D (2003) Carbon nanotube growth by PECVD: a review. Plasma Sources Sci Technol 12(2):205–216. doi:10.1088/0963-0252/12/2/312

    Article  CAS  Google Scholar 

  6. Zhu YJ, Lin TJ, Liu QX, Chen YL, Zhang GF, Xiong HF, Zhang HY (2006) The effect of nickel content of composite catalysts synthesized by hydrothermal method on the preparation of carbon nanotubes. Mater Sci Eng B Solid State Mater Adv Technol 127(2–3):198–202. doi:10.1016/j.mseb.2005.10.030

    Article  CAS  Google Scholar 

  7. Byon HR, Lim H, Song HJ, Choi HC (2007) A synthesis of high purity single-walled carbon nanotubes from small diameters of cobalt nanoparticles by using oxygen-assisted chemical vapor deposition process. Bull Kor Chem Soc 28(11):2056–2060

    Article  CAS  Google Scholar 

  8. Patole SP, Alegaonkar PS, Lee HC, Yoo JB (2008) Optimization of water assisted chemical vapor deposition parameters for super growth of carbon nanotubes. Carbon 46(14):1987–1993. doi:10.1016/j.carbon.2008.08.009

    Article  CAS  Google Scholar 

  9. Smajda R, Andresen JC, Duchamp M, Meunier R, Casimirius S, Hernadi K, Forro L, Magrez A (2009) Synthesis and mechanical properties of carbon nanotubes produced by the water assisted CVD process. Phys Status Solidi B Basic Solid State Phys 246(11–12):2457–2460. doi:10.1002/pssb.200982269

    Article  CAS  Google Scholar 

  10. Steiner SA, Baumann TF, Bayer BC, Blume R, Worsley MA, MoberlyChan WJ, Shaw EL, Schlogl R, Hart AJ, Hofmann S, Wardle BL (2009) Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes. J Am Chem Soc 131(34):12144–12154. doi:10.1021/ja902913r

    Article  CAS  Google Scholar 

  11. Tempel H, Joshi R, Schneider JJ (2010) Ink jet printing of ferritin as method for selective catalyst patterning and growth of multiwalled carbon nanotubes. Mater Chem Phys 121(1–2):178–183. doi:10.1016/j.matchemphys.2010.01.029

    Article  CAS  Google Scholar 

  12. Kim HD, Lee JH, Choi WS (2011) Direct growth of carbon nanotubes with a catalyst of nickel nanoparticle-coated alumina powders. J Korean Phys Soc 58(1):112–115. doi:10.3938/jkps.58.112

    Article  CAS  Google Scholar 

  13. Brown B, Parker CB, Stoner BR, Glass JT (2011) Growth of vertically aligned bamboo-like carbon nanotubes from ammonia/methane precursors using a platinum catalyst. Carbon 49(1):266–274. doi:10.1016/j.carbon.2010.09.018

    Article  CAS  Google Scholar 

  14. Xu Y, Dervishi E, Biris AR, Biris AS (2011) Chirality-enriched semiconducting carbon nanotubes synthesized on high surface area MgO-supported catalyst. Mater Lett 65(12):1878–1881. doi:10.1016/j.matlet.2011.03.040

    Article  CAS  Google Scholar 

  15. Lee O, Jung J, Doo S, Kim SS, Noh TH, Kim KI, Lim YS (2010) Effects of temperature and catalysts on the synthesis of carbon nanotubes by chemical vapor deposition. Met Mater Int 16(4):663–667. doi:10.1007/s12540-010-0822-0

    Article  CAS  Google Scholar 

  16. Afolabi AS, Abdulkareem AS, Mhlanga SD, Iyuke SE (2011) Synthesis and purification of bimetallic catalysed carbon nanotubes in a horizontal CVD reactor. J Exp Nanosci 6(3):248–262. doi:10.1080/17458080.2010.497941

    Article  CAS  Google Scholar 

  17. Dumpala S, Jasinski JB, Sumanasekera GU, Sunkara MK (2011) Large area synthesis of conical carbon nanotube arrays on graphite and tungsten foil substrates. Carbon 49(8):2725–2734. doi:10.1016/j.carbon.2011.02.065

    Article  CAS  Google Scholar 

  18. Zhu J, Yudasaka M, Iijima S (2003) A catalytic chemical vapor deposition synthesis of double-walled carbon nanotubes over metal catalysts supported on a mesoporous material. Chem Phys Lett 380(5–6):496–502. doi:10.1016/j.cplett.2003.09.049

    Article  CAS  Google Scholar 

  19. Ramesh P, Okazaki T, Taniguchi R, Kimura J, Sugai T, Sato K, Ozeki Y, Shinohara H (2005) Selective chemical vapor deposition synthesis of double-wall carbon nanotubes on mesoporous silica. J Phys Chem B 109(3):1141–1147. doi:10.1021/jp0465736

    Article  CAS  Google Scholar 

  20. Hiraoka T, Kawakubo T, Kimura J, Taniguchi R, Okamoto A, Okazaki T, Sugai T, Ozeki Y, Yoshikawa M, Shinohara H (2003) Selective synthesis of double-wall carbon nanotubes by CCVD of acetylene using zeolite supports. Chem Phys Lett 382(5–6):679–685. doi:10.1016/j.cplett.2003.10.123

    Article  CAS  Google Scholar 

  21. Szabo A, Perri C, Csato A, Giordano G, Vuono D, Nagy JB (2010) Synthesis methods of carbon nanotubes and related materials. Materials 3:3092–3140

    Article  CAS  Google Scholar 

  22. Chakrabarti S, Kume H, Pan LJ, Nagasaka T, Nakayama Y (2007) Number of walls controlled synthesis of millimeter-long vertically aligned brushlike carbon nanotubes. J Phys Chem C 111(5):1929–1934. doi:10.1021/jp0666986

    Article  CAS  Google Scholar 

  23. Ritschel M, Leonhardt A, Elefant D, Oswald S, Buchner B (2007) Rhenium-catalyzed growth carbon nanotubes. J Phys Chem C 111(24):8414–8417. doi:10.1021/jp070467x

    Article  CAS  Google Scholar 

  24. Fisher C, Han ZJ, Levchenko I, Ostrikov K (2011) Control of dense carbon nanotube arrays via hierarchical multilayer catalyst. Appl Phys Lett 99(14):1–5. doi:10.1063/1.3645625. 143104

    Article  CAS  Google Scholar 

  25. Han ZJ, Levchenko I, Yick S, Ostrikov K (2011) 3-Orders-of-magnitude density control of single-walled carbon nanotube networks by maximizing catalyst activation and dosing carbon supply. Nanoscale 3(11):4848–4853. doi:10.1039/c1nr10765h

    Article  CAS  Google Scholar 

  26. Han ZJ, Yick S, Levchenko I, Tam E, Yajadda MMA, Kumar S, Martin PJ, Furman S, Ostrikov K (2011) Controlled synthesis of a large fraction of metallic single-walled carbon nanotube and semiconducting carbon nanowire networks. Nanoscale 3(8):3214–3220. doi:10.1039/c1nr10327j

    Article  CAS  Google Scholar 

  27. Palizdar M, Ahgababazadeh R, Mirhabibi A, Brydson R, Pilehvari S (2011) Investigation of Fe/MgO catalyst support precursors for the chemical vapour deposition growth of carbon nanotubes. J Nanosci Nanotechnol 11(6):5345–5351. doi:10.1166/jnn.2011.3787

    Article  CAS  Google Scholar 

  28. Tomie T, Inoue S, Kohno M, Matsumura Y (2010) Prospective growth region for chemical vapor deposition synthesis of carbon nanotube on C–H–O ternary diagram. Diamond Relat Mater 19(11):1401–1404. doi:10.1016/j.diamond.2010.08.005

    Article  CAS  Google Scholar 

  29. Narkiewicz U, Podsiadly M, Jedrzejewski R, Pelech I (2010) Catalytic decomposition of hydrocarbons on cobalt, nickel and iron catalysts to obtain carbon nanomaterials. Appl Catal A Gen 384(1–2):27–35. doi:10.1016/j.apcata.2010.05.050

    Article  CAS  Google Scholar 

  30. He DL, Li H, Li WL, Haghi-Ashtiani P, Lejay P, Bai JB (2011) Growth of carbon nanotubes in six orthogonal directions on spherical alumina microparticles. Carbon 49(7):2273–2286. doi:10.1016/j.carbon.2011.01.060

    Article  CAS  Google Scholar 

  31. Shirazi Y, Tofighy MA, Mohammadi T, Pak A (2011) Effects of different carbon precursors on synthesis of multiwall carbon nanotubes: purification and functionalization. Appl Surf Sci 257(16):7359–7367. doi:10.1016/j.apsusc.2011.03.146

    Article  CAS  Google Scholar 

  32. Atthipalli G, Epur R, Kumta PN, Yang MJ, Lee JK, Gray JL (2011) Nickel catalyst-assisted vertical growth of dense carbon nanotube forests on bulk copper. J Phys Chem C 115(9):3534–3538. doi:10.1021/jp108624n

    Article  CAS  Google Scholar 

  33. Li H, He DL, Li TH, Genestoux M, Bai JB (2010) Chemical kinetics of catalytic chemical vapor deposition of an acetylene/xylene mixture for improved carbon nanotube production. Carbon 48(15):4330–4342. doi:10.1016/j.carbon.2010.07.046

    Article  CAS  Google Scholar 

  34. Santangelo S, Messina G, Faggio G, Lanza M, Pistone A, Milone C (2010) Calibration of reaction parameters for the improvement of thermal stability and crystalline quality of multi-walled carbon nanotubes. J Mater Sci 45(3):783–792. doi:10.1007/s10853-009-4001-y

    Article  CAS  Google Scholar 

  35. Hou B, Xiang R, Inoue T, Einarsson E, Chiashi S, Shiomi J, Miyoshi A, Maruyama S (2011) Decomposition of ethanol and dimethyl ether during chemical vapor deposition synthesis of single-walled carbon nanotubes. Jpn J Appl Phys 50(6):1–4. doi:10.1143/jjap.50.065101

    Article  CAS  Google Scholar 

  36. Yong Z, Fang L, Zhi-hua Z (2011) Synthesis of heterostructured helical carbon nanotubes by iron-catalyzed ethanol decomposition. Micron 42(6):547–552. doi:10.1016/j.micron.2011.01.007

    Article  CAS  Google Scholar 

  37. Lyu SC, Liu BC, Lee CJ, Kang HK, Yang CW, Park CY (2003) High-quality double-walled carbon nanotubes produced by catalytic decomposition of benzene. Chem Mater 15(20):3951–3954. doi:10.1021/cm030309s

    Article  CAS  Google Scholar 

  38. Zhang DS, Shi LY, Fang JH, Li XK, Dai K (2005) Preparation and modification of carbon nanotubes. Mater Lett 59(29–30):4044–4047. doi:10.1016/j.matlet.2005.07.081

    Article  CAS  Google Scholar 

  39. Zhang DS, Shi LY, Fang JH, Dai K, Li XK (2006) Preparation and desalination performance of multiwall carbon nanotubes. Mater Chem Phys 97(2–3):415–419. doi:10.1016/j.matchemphys.2005.08.036

    Article  CAS  Google Scholar 

  40. Du GH, Zhou YS, Xu BS (2010) Preparation of carbon nanotubes by pyrolysis of dimethyl sulfide. Mater Charact 61(4):427–432. doi:10.1016/j.matchar.2010.01.009

    Article  CAS  Google Scholar 

  41. Sano N, Ishimaru S, Tamaon H (2010) Synthesis of carbon nanotubes in graphite microchannels in gas-flow and submerged-in-liquid reactors. Mater Chem Phys 122(2–3):474–479. doi:10.1016/j.matchemphys.2010.03.029

    Article  CAS  Google Scholar 

  42. Skukla B, Saito T, Ohmori S, Koshi M, Yumura M, Iijima S (2010) Interdependency of gas phase intermediates and chemical vapor deposition growth of single wall carbon nanotubes. Chem Mater 22(22):6035–6043. doi:10.1021/cm1005746

    Article  CAS  Google Scholar 

  43. Vinten P, Bond J, Marshall P, Lefebvre J, Finnie P (2011) Origin of periodic rippling during chemical vapor deposition growth of carbon nanotube forests. Carbon 49(15):4972–4981. doi:10.1016/j.carbon.2011.02.017

    Article  CAS  Google Scholar 

  44. Yamada T, Namai T, Hata K, Futaba DN, Mizuno K, Fan J, Yudasaka M, Yumura M, Iijima S (2006) Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nat Nanotechnol 1(2):131–136. doi:10.1038/nnano.2006.95

    Article  CAS  Google Scholar 

  45. Kim D, Lim SH, Guilley AJ, Cojocaru CS, Bouree JE, Vila L, Ryu JH, Park KC, Jang J (2008) Growth of vertically aligned arrays of carbon nanotubes for high field emission. Thin Solid Films 516(5):706–709. doi:10.1016/j.tsf.2007.06.089

    Article  CAS  Google Scholar 

  46. Liu H, Zhang Y, Li RY, Sun XL, Wang FP, Ding ZF, Merel P, Desilets S (2010) Aligned synthesis of multi-walled carbon nanotubes with high purity by aerosol assisted chemical vapor deposition: effect of water vapor. Appl Surf Sci 256(14):4692–4696. doi:10.1016/j.apsusc.2010.02.074

    Article  CAS  Google Scholar 

  47. Kim B, Chung H, Chu KS, Yoon HG, Lee CJ, Kim W (2010) Synthesis of vertically-aligned carbon nanotubes on stainless steel by water-assisted chemical vapor deposition and characterization of their electrochemical properties. Synth Met 160(7–8):584–587. doi:10.1016/j.synthmet.2009.12.008

    Article  CAS  Google Scholar 

  48. Dorfler S, Meier A, Thieme S, Nemeth P, Althues H, Kaskel S (2011) Wet-chemical catalyst deposition for scalable synthesis of vertical aligned carbon nanotubes on metal substrates. Chem Phys Lett 511(4–6):288–293. doi:10.1016/j.cplett.2011.06.027

    Article  CAS  Google Scholar 

  49. Raney JR, Misra A, Daraio C (2011) Tailoring the microstructure and mechanical properties of arrays of aligned multiwall carbon nanotubes by utilizing different hydrogen concentrations during synthesis. Carbon 49(11):3631–3638. doi:10.1016/j.carbon.2011.04.066

    Article  CAS  Google Scholar 

  50. Seah CM, Chai SP, Mohamed AR (2011) Synthesis of aligned carbon nanotubes. Carbon 49(14):4613–4635. doi:10.1016/j.carbon.2011.06.090

    Article  CAS  Google Scholar 

  51. Kumar S, Levchenko I, Ostrikov K, McLaughlin JA (2012) Plasma-enabled, catalyst-free growth of carbon nanotubes on mechanically-written Si features with arbitrary shape. Carbon 50(1):325–329. doi:10.1016/j.carbon.2011.07.060

    Article  CAS  Google Scholar 

  52. Nessim GD, Al-Obeidi A, Grisaru H, Polsen ES, Oliver CR, Zimrin T, Hart AJ, Aurbach D, Thompson CV (2012) Synthesis of tall carpets of vertically aligned carbon nanotubes by in situ generation of water vapor through preheating of added oxygen. Carbon 50(11):4002–4009. doi:10.1016/j.carbon.2012.04.043

    Article  CAS  Google Scholar 

  53. Neupane S, Lastres M, Chiarella M, Li WZ, Su QM, Du GH (2012) Synthesis and field emission properties of vertically aligned carbon nanotube arrays on copper. Carbon 50(7):2641–2650. doi:10.1016/j.carbon.2012.02.024

    Article  CAS  Google Scholar 

  54. Zhou WW, Ding L, Yang S, Liu J (2011) Synthesis of high-density, large-diameter, and aligned single-walled carbon nanotubes by multiple-cycle growth methods. ACS Nano 5(5):3849–3857. doi:10.1021/nn200198b

    Article  CAS  Google Scholar 

  55. Merkoci A (2006) Carbon nanotubes in analytical sciences. Microchim Acta 152(3–4):157–174. doi:10.1007/s00604-005-0439-z

    Article  CAS  Google Scholar 

  56. Kim SN, Rusling JF, Papadimitrakopoulos F (2007) Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv Mater 19(20):3214–3228. doi:10.1002/adma.200700665

    Article  CAS  Google Scholar 

  57. Valcarcel M, Cardenas S, Simonet BM (2007) Role of carbon nanotubes in analytical science. Anal Chem 79(13):4788–4797. doi:10.1021/ac070196m

    Article  CAS  Google Scholar 

  58. Komatsu N, Wang F (2010) A comprehensive review on separation methods and techniques for single-walled carbon nanotubes. Materials 3(7):3818–3844. doi:10.3390/ma3073818

    Article  CAS  Google Scholar 

  59. Perez-Lopez B, Merkoci A (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179(1–2):1–16. doi:10.1007/s00604-012-0871-9

    Article  CAS  Google Scholar 

  60. May JW (1969) A mechanism for surface reconstruction at room temperature. Surf Sci 18(2):431–436. doi:10.1016/0039-6028(69)90184-8

    Article  CAS  Google Scholar 

  61. Shelton JC, Patil HR, Blakely JM (1974) Equilibrium segregation of carbon to a nickel (111) surface – surface phase-transition. Surf Sci 43(2):493–520. doi:10.1016/0039-6028(74)90272-6

    Article  CAS  Google Scholar 

  62. Eizenberg M, Blakely JM (1979) Carbon interaction with nickel surfaces – monolayer formation and structural stability. J Chem Phys 71(8):3467–3477. doi:10.1063/1.438736

    Article  CAS  Google Scholar 

  63. Eizenberg M, Blakely JM (1979) Carbon monolayer phase condensation on ni(111). Surf Sci 82(1):228–236. doi:10.1016/0039-6028(79)90330-3

    Article  CAS  Google Scholar 

  64. Berger C, Song ZM, Li TB, Li XB, Ogbazghi AY, Feng R, Dai ZT, Marchenkov AN, Conrad EH, First PN, de Heer WA (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108(52):19912–19916. doi:10.1021/jp040650f

    Article  CAS  Google Scholar 

  65. Berger C, Song ZM, Li XB, Wu XS, Brown N, Naud C, Mayou D, Li TB, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777):1191–1196. doi:10.1126/science.1125925

    Article  CAS  Google Scholar 

  66. Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Rohrl J, Rotenberg E, Schmid AK, Waldmann D, Weber HB, Seyller T (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8(3):203–207. doi:10.1038/nmat2382

    Article  CAS  Google Scholar 

  67. Huang H, Chen W, Chen S, Wee ATS (2008) Bottom-up growth of epitaxial graphene on 6H-SiC(0001). ACS Nano 2(12):2513–2518. doi:10.1021/nn800711v

    Article  CAS  Google Scholar 

  68. Li XS, Cai WW, An JH, Kim S, Nah J, Yang DX, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314. doi:10.1126/science.1171245

    Article  CAS  Google Scholar 

  69. Li XS, Cai WW, Colombo L, Ruoff RS (2009) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 9(12):4268–4272. doi:10.1021/nl902515k

    Article  CAS  Google Scholar 

  70. Li XS, Zhu YW, Cai WW, Borysiak M, Han BY, Chen D, Piner RD, Colombo L, Ruoff RS (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9(12):4359–4363. doi:10.1021/nl902623y

    Article  CAS  Google Scholar 

  71. Lu XK, Yu MF, Huang H, Ruoff RS (1999) Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10(3):269–272. doi:10.1088/0957-4484/10/3/308

    Article  CAS  Google Scholar 

  72. Yu MF, Dyer MJ, Skidmore GD, Rohrs HW, Lu XK, Ausman KD, Von Ehr JR, Ruoff RS (1999) Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope. Nanotechnology 10(3):244–252. doi:10.1088/0957-4484/10/3/304

    Article  CAS  Google Scholar 

  73. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun ZY, De S, McGovern IT, Holland B, Byrne M, Gun’ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3(9):563–568. doi:10.1038/nnano.2008.215

    Article  CAS  Google Scholar 

  74. Dato A, Radmilovic V, Lee Z, Phillips J, Frenklach M (2008) Substrate-free gas-phase synthesis of graphene sheets. Nano Lett 8(7):2012–2016. doi:10.1021/nl8011566

    Article  CAS  Google Scholar 

  75. Li N, Wang ZY, Zhao KK, Shi ZJ, Gu ZN, Xu SK (2010) Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 48(1):255–259. doi:10.1016/j.carbon.2009.09.013

    Article  CAS  Google Scholar 

  76. Subrahmanyam KS, Panchakarla LS, Govindaraj A, Rao CNR (2009) Simple method of preparing graphene flakes by an arc-discharge method. J Phys Chem C 113(11):4257–4259. doi:10.1021/jp900791y

    Article  CAS  Google Scholar 

  77. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565. doi:10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  78. Wang GX, Yang J, Park J, Gou XL, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112(22):8192–8195. doi:10.1021/jp710931h

    Article  CAS  Google Scholar 

  79. Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8(6):1679–1682. doi:10.1021/nl080604h

    Article  CAS  Google Scholar 

  80. Dua V, Surwade SP, Ammu S, Agnihotra SR, Jain S, Roberts KE, Park S, Ruoff RS, Manohar SK (2010) All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew Chem Int Ed 49(12):2154–2157. doi:10.1002/anie.200905089

    Article  CAS  Google Scholar 

  81. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19(18):4396–4404. doi:10.1021/cm0630800

    Article  CAS  Google Scholar 

  82. Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110(17):8535–8539. doi:10.1021/jp060936f

    Article  CAS  Google Scholar 

  83. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240. doi:10.1039/b917103g

    Article  CAS  Google Scholar 

  84. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224. doi:10.1038/nnano.2009.58

    Article  CAS  Google Scholar 

  85. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339. doi:10.1021/ja01539a017

    Article  CAS  Google Scholar 

  86. Boehm HP, Eckel M, Scholz W (1967) Untersuchungen am graphitoxid. 5. Uber den bildungsmechanismus des graphitoxids. Z Anorg Allg Chem 353(5–6):236–242. doi:10.1002/zaac.19673530503

    Article  CAS  Google Scholar 

  87. Liu KP, Zhang JJ, Cheng FF, Zheng TT, Wang CM, Zhu JJ (2011) Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J Mater Chem 21(32):12034–12040. doi:10.1039/c1jm10749f

    Article  CAS  Google Scholar 

  88. Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35(1):52–71. doi:10.1080/10408430903505036

    Article  CAS  Google Scholar 

  89. Jiang HJ (2011) Chemical preparation of graphene-based nanomaterials and their applications in chemical and biological sensors. Small 7(17):2413–2427. doi:10.1002/smll.201002352

    Article  CAS  Google Scholar 

  90. Kroto HW, Heath JR, Obrien SC, Curl RF, Smalley RE (1985) C-60 – Buckminsterfullerene. Nature 318(6042):162–163. doi:10.1038/318162a0

    Article  CAS  Google Scholar 

  91. Kikuchi K, Nakahara N, Wakabayashi T, Suzuki S, Shiromaru H, Miyake Y, Saito K, Ikemoto I, Kainosho M, Achiba Y (1992) NMR characterization of isomers of C-78, C-82 and C-84 fullerenes. Nature 357(6374):142–145. doi:10.1038/357142a0

    Article  CAS  Google Scholar 

  92. Kratschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C-60 – a new form of carbon. Nature 347(6291):354–358. doi:10.1038/347354a0

    Article  Google Scholar 

  93. Bhyrappa P, Penicaud A, Kawamoto M, Reed CA (1992) Improved chromatographic-separation and purification of C-60 and C-70 fullerenes. J Chem Soc Chem Commun 1992(13):936–938. doi:10.1039/c39920000936

    Article  Google Scholar 

  94. Cabrera K, Wieland G, Schafer M (1993) High-performance liquid-chromatographic separation of fullerenes (C-60 and C-70) using chemically bonded gamma-cyclodextrin as stationary-phase. J Chromatogr 644(2):396–399. doi:10.1016/0021-9673(93)80725-n

    Article  CAS  Google Scholar 

  95. Saito Y, Ohta H, Jinno K (2004) Chromatographic separation of fullerenes. Anal Chem 76(15):266A–272A. doi:10.1021/ac041599e

    Article  CAS  Google Scholar 

  96. Yang JZ, Alemany LB, Driver J, Hartgerink JD, Barron AR (2007) Fullerene-derivatized amino acids: synthesis, characterization, antioxidant properties, and solid-phase peptide synthesis. Chem Eur J 13(9):2530–2545. doi:10.1002/chem.200601186

    Article  CAS  Google Scholar 

  97. Palecek E, Bartosik M (2012) Electrochemistry of nucleic acids. Chem Rev 112(6):3427–3481. doi:10.1021/cr200303p

    Article  CAS  Google Scholar 

  98. Brabec V (1981) Nucleic-acid analysis by voltammetry at carbon electrodes. Bioelectrochem Bioenerg 8(4):437–449. doi:10.1016/0302-4598(81)80005-0

    Article  CAS  Google Scholar 

  99. Palecek E (1996) From polarography of DNA to microanalysis with nucleic acid-modified electrodes. Electroanalysis 8(1):7–14

    Article  CAS  Google Scholar 

  100. Palecek E (2002) Past, present and future of nucleic acids electrochemistry. Talanta 56(5):809–819

    Article  CAS  Google Scholar 

  101. Palecek E (2009) Fifty years of nucleic acid electrochemistry. Electroanalysis 21(3–5):239–251. doi:10.1002/elan.200804416

    Article  CAS  Google Scholar 

  102. Wang J (2002) Electrochemical nucleic acid biosensors. Anal Chim Acta 469(1):63–71

    Article  CAS  Google Scholar 

  103. Tanaka H, Aramata A (1997) Aminopyridyl cation radical method for bridging between metal complex and glassy carbon: cobalt(II) tetraphenylporphyrin bonded on glassy carbon for enhancement of CO2 electroreduction. J Electroanal Chem 437(1–2):29–35. doi:10.1016/s0022-0728(97)00080-6

    Article  CAS  Google Scholar 

  104. Millan KM, Saraullo A, Mikkelsen SR (1994) Voltammetric DNA biosensor for cystic-fibrosis based on a modified carbon-paste electrode. Anal Chem 66(18):2943–2948. doi:10.1021/ac00090a023

    Article  CAS  Google Scholar 

  105. Meller A, Nivon L, Branton D (2001) Voltage-driven DNA translocations through a nanopore. Phys Rev Lett 86(15):3435–3438. doi:10.1103/PhysRevLett.86.3435

    Article  CAS  Google Scholar 

  106. Storm AJ, Storm C, Chen JH, Zandbergen H, Joanny JF, Dekker C (2005) Fast DNA translocation through a solid-state nanopore. Nano Lett 5(7):1193–1197. doi:10.1021/nl048030d

    Article  CAS  Google Scholar 

  107. Dequaire M, Degrand C, Limoges B (1999) Biotinylation of screen-printed carbon electrodes through the electrochemical reduction of the diazonium salt of p-aminobenzoyl biocytin. J Am Chem Soc 121(29):6946–6947. doi:10.1021/ja990920l

    Article  CAS  Google Scholar 

  108. Guo B, Anzai J, Osa T (1996) Modification of a glassy carbon electrode with diols for the suppression of electrode fouling in biological fluids. Chem Pharm Bull 44(4):860–862

    Article  CAS  Google Scholar 

  109. Dong HF, Zhu Z, Ju HX, Yan F (2012) Triplex signal amplification for electrochemical DNA biosensing by coupling probe-gold nanoparticles-graphene modified electrode with enzyme functionalized carbon sphere as tracer. Biosens Bioelectron 33(1):228–232. doi:10.1016/j.bios.2012.01.006

    Article  CAS  Google Scholar 

  110. Brabec V, Dryhurst G (1978) Electrochemical behavior of natural and biosynthetic polynucleotides at pyrolytic-graphite electrode a new probe for studies of polynucleotide structure and reactions. J Electroanal Chem 89(1):161–173. doi:10.1016/s0022-0728(78)80041-2

    Article  CAS  Google Scholar 

  111. Wang J, Kawde AN, Sahlin E (2000) Renewable pencil electrodes for highly sensitive stripping potentiometric measurements of DNA and RNA. Analyst 125(1):5–7. doi:10.1039/a907364g

    Article  CAS  Google Scholar 

  112. Cai XH, Rivas G, Farias PAM, Shiraishi H, Wang J, Palecek E (1996) Evaluation of different carbon electrodes for adsorptive stripping analysis of nucleic acids. Electroanalysis 8(8–9):753–758. doi:10.1002/elan.1140080809

    Article  CAS  Google Scholar 

  113. Kato D, Niwa O (2013) Carbon-based electrode materials for DNA electroanalysis. Anal Sci 29(4):385–392

    Article  CAS  Google Scholar 

  114. Stempkowska I, Liga M, Jasnowska J, Langer J, Filipiak M (2007) Electrochemical response of oligonucleotides on carbon paste electrode. Bioelectrochemistry 70(2):488–494. doi:10.1016/j.bioelechem.2006.07.012

    Article  CAS  Google Scholar 

  115. Dryhurst G, Elving PJ (1968) Electrochemical oxidation of adenine – reaction products and mechanisms. J Electrochem Soc 115(10):1014–1020. doi:10.1149/1.2410847

    Article  CAS  Google Scholar 

  116. Dryhurst G, Pace GF (1970) Electrochemical oxidation of guanine at pyrolytic graphite electrode. J Electrochem Soc 117(10):1259–1264. doi:10.1149/1.2407283

    Article  CAS  Google Scholar 

  117. Brett AMO, Matysik FM (1997) Voltammetric and sonovoltammetric studies on the oxidation of thymine and cytosine at a glassy carbon electrode. J Electroanal Chem 429(1–2):95–99

    Article  Google Scholar 

  118. Oliveira-Brett AM, Piedade JAP, Silva LA, Diculescu VC (2004) Voltammetric determination of all DNA nucleotides. Anal Biochem 332(2):321–329. doi:10.1016/j.ab.2004.06.021

    Article  CAS  Google Scholar 

  119. Heath JC (1946) Polarographic behaviour of adenine. Nature 158(4001):23–23. doi:10.1038/158023a0

    Article  CAS  Google Scholar 

  120. Wang J, Cai XH, Wang JY, Jonsson C, Palecek E (1995) Trace measurements of RNA by potentiometric stripping analysis at carbon-paste electrodes. Anal Chem 67(22):4065–4070. doi:10.1021/ac00118a006

    Article  CAS  Google Scholar 

  121. Oliveira-Brett AM, Diculescu VC (2004) Electrochemical study of quercetin-DNA interactions – part II. In situ sensing with DNA biosensors. Bioelectrochemistry 64(2):143–150. doi:10.1016/j.bioelechem.2004.05.002

    Article  CAS  Google Scholar 

  122. Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nat Biotechnol 21(10):1192–1199. doi:10.1038/nbt873

    Article  CAS  Google Scholar 

  123. Wang J, Lin YH (2008) Functionalized carbon nanotubes and nanofibers for biosensing applications. TrAc Trends Anal Chem 27(7):619–626. doi:10.1016/j.trac.2008.05.009

    Article  CAS  Google Scholar 

  124. Wang J, Kawde AN, Jan MR (2004) Carbon-nanotube-modified electrodes for amplified enzyme-based electrical detection of DNA hybridization. Biosens Bioelectron 20(5):995–1000. doi:10.1016/j.bios.2004.06.016

    Article  CAS  Google Scholar 

  125. Wang J, Liu GD, Jan MR (2004) Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J Am Chem Soc 126(10):3010–3011. doi:10.1021/ja031723w

    Article  CAS  Google Scholar 

  126. Zhou M, Zhai YM, Dong SJ (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81(14):5603–5613. doi:10.1021/ac900136z

    Article  CAS  Google Scholar 

  127. Svancara I, Kachler K, Walcarius A, Vytras K (2012) Electroanalysis with carbon paste electrodes. Analytical chemistry series, CRC Press, Taylor&Francis Group, Boca Raton, FL, USA

    Google Scholar 

  128. Alkire RC, Kolb DM, Lipkowski J, Ross PN (2011) Advances in electrochemical science and engineering, vol 11, Chemically modified electrodes. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  129. Murray RW (1984) Chemically modified electrodes. Electroanal Chem 13:191–368

    CAS  Google Scholar 

  130. Murray RW, Ewing AG, Durst RA (1987) Chemically modified electrodes – molecular design for electroanalysis. Anal Chem 59(5):A379. doi:10.1021/ac00132a001

    Google Scholar 

  131. Wang J (1990) Voltammetry following nonelectrolytic preconcentration. Electroanal Chem 16:1–88

    CAS  Google Scholar 

  132. Barek J, Peckova K, Vyskocil V (2008) Adsorptive stripping voltammetry of environmental carcinogens. Curr Anal Chem 4(3):242–249. doi:10.2174/157341108784911325

    Article  CAS  Google Scholar 

  133. Xu GY, Jiao K, Fan JS, Zhang B (2007) Immobilizing DNA on cetyltrimethyl ammonium bromide cationic membrane for the detection of specific gene related to NPT II. Asian J Chem 19(6):4161–4172

    CAS  Google Scholar 

  134. Arrieta A, Rodriguez-Mendez ML, de Saja JA (2003) Langmuir-Blodgett film and carbon paste electrodes based on phthalocyanines as sensing units for taste. Sens Actuators B Chem 95(1–3):357–365. doi:10.1016/s0925-4005(03)00438-6

    Article  CAS  Google Scholar 

  135. Bobacka J, Ivaska A, Lewenstam A (2003) Potentiometric ion sensors based on conducting polymers. Electroanalysis 15(5–6):366–374. doi:10.1002/elan.200390042

    Article  CAS  Google Scholar 

  136. Mullor SG, SanchezCabezudo M, Ordieres AJM, Ruiz BL (1996) Alcohol biosensor based on alcohol dehydrogenase and Meldola blue immobilized into a carbon paste electrode. Talanta 43(5):779–784

    Article  CAS  Google Scholar 

  137. Ravichandran K, Baldwin RP (1981) Chemically modified carbon paste electrodes. J Electroanal Chem 126(1–3):293–300. doi:10.1016/0368-1874(81)87209-7

    Article  CAS  Google Scholar 

  138. Kalcher K (1986) Voltammetric behavior of gold at a dithizone-modified carbon-paste electrode. Fres Zeitschrift Anal Chem 325(2):181–185. doi:10.1007/bf00468886

    Article  CAS  Google Scholar 

  139. Wang HS, Ju HX, Chen HY (2002) Adsorptive stripping voltammetric detection of single-stranded DNA at electrochemically modified glassy carbon electrode. Electroanalysis 14(23):1615–1620. doi:10.1002/elan.200290001

    Article  CAS  Google Scholar 

  140. Gautier C, Ghodbane O, Wayner DDM, Belanger D (2009) Modification of glassy carbon electrodes by 4-chloromethylphenyl units and d-glucosaminic acid. Electrochim Acta 54(26):6327–6334. doi:10.1016/j.electacta.2009.05.072

    Article  CAS  Google Scholar 

  141. Shahrokhian S, Ghalkhani M, Adeli M, Amini MK (2009) Multi-walled carbon nanotubes with immobilised cobalt nanoparticle for modification of glassy carbon electrode: application to sensitive voltammetric determination of thioridazine. Biosens Bioelectron 24(11):3235–3241. doi:10.1016/j.bios.2009.04.004

    Article  CAS  Google Scholar 

  142. Sondaghuethorst JAM, Vanhelleputte HRJ, Fokkink LGJ (1994) Generation of electrochemically deposited metal patterns by means of electron-beam (nano)lithography of self-assembled monolayer resists. Appl Phys Lett 64(3):285–287. doi:10.1063/1.111182

    Article  CAS  Google Scholar 

  143. Shalaev VM (2007) Optical negative-index metamaterials. Nat Photonics 1(1):41–48. doi:10.1038/nphoton.2006.49

    Article  CAS  Google Scholar 

  144. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830. doi:10.1038/nature01937

    Article  CAS  Google Scholar 

  145. Li Q, Batchelor-McAuley C, Compton RG (2010) Electrochemical oxidation of guanine: electrode reaction mechanism and tailoring carbon electrode surfaces to switch between adsorptive and diffusional responses. J Phys Chem B 114(21):7423–7428. doi:10.1021/jp1021196

    Article  CAS  Google Scholar 

  146. Erdem A, Karadeniz H, Caliskan A (2009) Single-walled carbon nanotubes modified graphite electrodes for electrochemical monitoring of nucleic acids and biomolecular interactions. Electroanalysis 21(3–5):464–471. doi:10.1002/elan.200804422

    Article  CAS  Google Scholar 

  147. Wildgoose GG, Banks CE, Leventis HC, Compton RG (2006) Chemically modified carbon nanotubes for use in electroanalysis. Microchim Acta 152(3–4):187–214. doi:10.1007/s00604-005-0449-x

    Article  CAS  Google Scholar 

  148. Sherigara BS, Kutner W, D’Souza F (2003) Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes. Electroanalysis 15(9):753–772. doi:10.1002/elan.200390094

    Article  CAS  Google Scholar 

  149. Marcoux PR, Hapiot P, Batail P, Pinson J (2004) Electrochemical functionalization of nanotube films: growth of aryl chains on single-walled carbon nanotubes. New J Chem 28(2):302–307. doi:10.1039/b309509f

    Article  CAS  Google Scholar 

  150. Burghard M, Kooi S, Schlecht U, Balasubramanian K, Kern K (2002) Electrochemical functionalization of individual single-wall carbon nanotubes. In: Kuzmany H, Fink J, Mehring M, Roth S (eds) Structural and electronic properties of molecular nanostructures, vol 633, AIP conference proceedings. Amer Inst Physics, Melville, pp 77–81

    Google Scholar 

  151. Knez M, Sumser M, Bittner AM, Wege C, Jeske H, Kooi S, Burghard M, Kern K (2002) Electrochemical modification of individual nano-objects. J Electroanal Chem 522(1):70–74. doi:10.1016/s0022-0728(01)00728-8

    Article  CAS  Google Scholar 

  152. Kooi SE, Schlecht U, Burghard M, Kern K (2002) Electrochemical modification of single carbon nanotubes. Angew Chem Int Ed 41(8):1353–1355. doi:10.1002/1521-3773(20020415)41:8<1353::aid-anie1353>3.0.co;2-i

    Article  CAS  Google Scholar 

  153. Yang WR, Thordarson P, Gooding JJ, Ringer SP, Braet F (2007) Carbon nanotubes for biological and biomedical applications. Nanotechnology 18(41):1–6. doi:10.1088/0957-4484/18/41/412001

    Article  CAS  Google Scholar 

  154. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17(1):7–14. doi:10.1002/elan.200403113

    Article  CAS  Google Scholar 

  155. Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1(2):180–192. doi:10.1002/smll.200400118

    Article  CAS  Google Scholar 

  156. Agui L, Yanez-Sedeno P, Pingarron JM (2008) Role of carbon nanotubes in electroanalytical chemistry – a review. Anal Chim Acta 622(1–2):11–47. doi:10.1016/j.aca.2008.05,070

    Article  CAS  Google Scholar 

  157. Wang J, Liu GD, Jan MR, Zhu QY (2003) Electrochemical detection of DNA hybridization based on carbon-nanotubes loaded with CdS tags. Electrochem Commun 5(12):1000–1004. doi:10.1016/j.elecom.2003.09.010

    Article  CAS  Google Scholar 

  158. Wildgoose GG, Wilkins SJ, Williams GR, France RR, Carnahan DL, Jiang L, Jones TGJ, Compton RG (2005) Graphite powder and multiwalled carbon nanotubes chemically modified with 4-nitrobenzylamine. ChemPhysChem 6(2):352–362. doi:10.1002/cphc.200400403

    Article  CAS  Google Scholar 

  159. Shan CS, Yang HF, Song JF, Han DX, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81(6):2378–2382. doi:10.1021/ac802193c

    Article  CAS  Google Scholar 

  160. Lim CX, Hoh HY, Ang PK, Loh KP (2010) Direct voltammetric detection of DNA and pH sensing on epitaxial graphene: an insight into the role of oxygenated defects. Anal Chem 82(17):7387–7393. doi:10.1021/ac101519v

    Article  CAS  Google Scholar 

  161. Zhou YL, Zhi JF (2009) The application of boron-doped diamond electrodes in amperometric biosensors. Talanta 79(5):1189–1196. doi:10.1016/j.talanta.2009.05.026

    Article  CAS  Google Scholar 

  162. Chailapakul O, Siangproh W, Tryk DA (2006) Boron-doped diamond-based sensors: a review. Sens Lett 4(2):99–119. doi:10.1166/sl.2006.008

    Article  CAS  Google Scholar 

  163. Granger MC, Witek M, Xu JS, Wang J, Hupert M, Hanks A, Koppang MD, Butler JE, Lucazeau G, Mermoux M, Strojek JW, Swain GM (2000) Standard electrochemical behavior of high-quality, boron-doped polycrystalline diamond thin-film electrodes. Anal Chem 72(16):3793–3804. doi:10.1021/ac0000675

    Article  CAS  Google Scholar 

  164. Ivandini TA, Honda K, Rao TN, Fujishima A, Einaga Y (2007) Simultaneous detection of purine and pyrimidine at highly boron-doped diamond electrodes by using liquid chromatography. Talanta 71(2):648–655. doi:10.1016/j.talanta.2006.05.009

    Article  CAS  Google Scholar 

  165. Ivandini TA, Sarada BV, Terashima C, Rao TN, Tryk DA, Ishiguro H, Kubota Y, Fujishima A (2002) Electrochemical detection of tricyclic antidepressant drugs by HPLC using highly boron-doped diamond electrodes. J Electroanal Chem 521(1–2):117–126. doi:10.1016/s0022-0728(02)00666-6

    Article  CAS  Google Scholar 

  166. Wenmackers S, Vermeeren V, van de Ven M, Ameloot M, Bijnens N, Haenen K, Michiels L, Wagner P (2009) Diamond-based DNA sensors: surface functionalization and read-out strategies. Phys Status Solidi A Appl Mater 206(3):391–408. doi:10.1002/pssa.200880486

    Article  CAS  Google Scholar 

  167. Compton RG, Spackman RA, Wellington RG, Green MLH, Turner J (1992) A C-60 modified electrode – electrochemical formation of tetrabutylammonium salts of C-60 anions. J Electroanal Chem 327(1–2):337–341. doi:10.1016/0022-0728(92)80159-2

    Article  CAS  Google Scholar 

  168. Jehoulet C, Obeng YS, Kim YT, Zhou FM, Bard AJ (1992) Electrochemistry and langmuir trough studies of C-60 and C-70 films. J Am Chem Soc 114(11):4237–4247. doi:10.1021/ja00037a030

    Article  CAS  Google Scholar 

  169. Compton RG, Spackman RA, Riley DJ, Wellington RG, Eklund JC, Fisher AC, Green MLH, Douthwaite RE, Stephens AHH, Turner J (1993) Voltammetry at C-60-modified electrodes. J Electroanal Chem 344(1–2):235–247. doi:10.1016/0022-0728(93)80058-p

    Article  CAS  Google Scholar 

  170. Miranda-Hernandez A, Gonzdlez I (2005) Characterization of carbon-fullerene-silicone oil composite paste electrodes. Carbon 43(9):1961–1967. doi:10.1016/j.carbon.2005.03.004

    Article  CAS  Google Scholar 

  171. Gradzka E, Winkler K, Borowska M, Plonska-Brzezinska ME, Echegoyen L (2013) Comparison of the electrochemical properties of thin films of MWCNTs/C-60-Pd, SWCNTs/C-60-Pd and ox-CNOs/C-60-Pd. Electrochim Acta 96:274–284. doi:10.1016/j.electacta.2013.02.035

    Article  CAS  Google Scholar 

  172. Cai XH, Ogorevc B, Kalcher K (1995) Synergistic electrochemical and chemical modification of carbon paste electrodes for open-circuit preconcentration and voltammetric determination of trace adenine. Electroanalysis 7(12):1126–1131. doi:10.1002/elan.1140071206

    Article  CAS  Google Scholar 

  173. Huang W, Zhang S, Wu Y (2006) Electrochemical behavior and detection of guanine using a sodium montmorillonite-modified carbon paste electrode. Russ J Electrochem 42(2):153–156. doi:10.1134/s1023193506020078

    Article  CAS  Google Scholar 

  174. Zen JM, Kumar AS, Chen HW (2000) Electrochemical formation of Prussian blue in natural iron-intercalated clay and cinder matrixes. Electroanalysis 12(7):542–545. doi:10.1002/(sici)1521-4109(200005)12:7<542::aid-elan542>3.0.co;2-5

    Article  CAS  Google Scholar 

  175. Abbaspour A, Mehrgardi MA (2004) Electrocatalytic oxidation of guanine and DNA on a carbon paste electrode modified by cobalt hexacyanoferrate films. Anal Chem 76(19):5690–5696. doi:10.1021/ac049421f

    Article  CAS  Google Scholar 

  176. Sun W, Duan YY, Li YZ, Gao HW, Jiao K (2009) Electrochemical behaviors of guanosine on carbon ionic liquid electrode and its determination. Talanta 78(3):695–699. doi:10.1016/j.talanta.2008.12.034

    Article  CAS  Google Scholar 

  177. Xu GY, Fan JS, Jiao K (2008) Immobilizing DNA on clay mineral modified carbon paste electrodes. Appl Clay Sci 40(1–4):119–123. doi:10.1016/j.clay.2007.11.002

    Article  CAS  Google Scholar 

  178. El-Maali NA, Wang J (2001) Tris(2,2′-bipyridyl)dichloro-ruthenium(II) modified carbon paste electrodes for electrocatalytic detection of DNA. Sens Actuators B 76(1–3):211–214. doi:10.1016/s0925-4005(01)00643-8

    Article  CAS  Google Scholar 

  179. Mazloum-Ardakani M, Taleat Z, Beitollahi H, Salavati-Niasari M, Mirjalili BBF, Taghavinia N (2008) Electrocatalytic oxidation and nanomolar determination of guanine at the surface of a molybdenum (VI) complex-TiO2 nanoparticle modified carbon paste electrode. J Electroanal Chem 624(1–2):73–78. doi:10.1016/j.jelechem.2008.07.027

    Article  CAS  Google Scholar 

  180. Arvand M, Mazhabi RM, Niazi A (2013) Simultaneous determination of guanine, adenine and thymine using a modified carbon paste electrode by TiO2 nanoparticles-magnesium(II) doped natrolite zeolite. Electrochim Acta 89:669–679. doi:10.1016/j.electacta.2012.11.014

    Article  CAS  Google Scholar 

  181. Abdullin TI, Nikitina II, Ishmukhametova DG, Budnikov GK, Konovalova OA, Salakhov MK (2007) Carbon nanotube-modified electrodes for electrochemical DNA-sensors. J Anal Chem 62(6):599–603. doi:10.1134/s1061934807060184

    Article  CAS  Google Scholar 

  182. Thangaraj R, Kumar AS (2013) Simultaneous detection of guanine and adenine in DNA and meat samples using graphitized mesoporous carbon modified electrode. J Solid State Electrochem 17(3):583–590. doi:10.1007/s10008-012-1895-0

    Article  CAS  Google Scholar 

  183. Jalit Y, Moreno M, Gutierrez FA, Arribas AS, Chicharro M, Bermejo E, Zapardiel A, Parrado C, Rivas GA, Rodriguez MC (2013) Adsorption and electrooxidation of nucleic acids at glassy carbon electrodes modified with multiwalled carbon nanotubes dispersed in polylysine. Electroanalysis 25(5):1116–1121. doi:10.1002/elan.201200622

    Article  CAS  Google Scholar 

  184. Wang P, Chen HB, Tian JY, Dai Z, Zou XY (2013) Electrochemical evaluation of DNA methylation level based on the stoichiometric relationship between purine and pyrimidine bases. Biosens Bioelectron 45:34–39. doi:10.1016/j.bios.2013.01.057

    Article  CAS  Google Scholar 

  185. Tang C, Yogeswaran U, Chen SM (2009) Simultaneous determination of adenine guanine and thymine at multi-walled carbon nanotubes incorporated with poly(new fuchsin) composite film. Anal Chim Acta 636(1):19–27. doi:10.1016/j.aca.2009.01.055

    Article  CAS  Google Scholar 

  186. Wang QX, Zheng MX, Shi JL, Gao F (2011) Electrochemical oxidation of native double-stranded DNA on a graphene-modified glassy carbon electrode. Electroanalysis 23(4):915–920. doi:10.1002/elan.201000713

    Article  CAS  Google Scholar 

  187. Huang KJ, Niu DJ, Sun JY, Han CH, Wu ZW, Li YL, Xiong XQ (2011) Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloid Surf B Biointerfaces 82(2):543–549. doi:10.1016/j.colsurfb.2010.10.014

    Article  CAS  Google Scholar 

  188. Yin HS, Zhou YL, Ma QA, Ai SY, Ju P, Zhu LS, Lu LN (2010) Electrochemical oxidation behavior of guanine and adenine on graphene-Nafion composite film modified glassy carbon electrode and the simultaneous determination. Process Biochem 45(10):1707–1712. doi:10.1016/j.prochio.2010.07.004

    Article  CAS  Google Scholar 

  189. Ba X, Luo LQ, Ding YP, Zhang Z, Chu YL, Wang BJ, Ouyang XQ (2012) Poly(alizarin red)/graphene modified glassy carbon electrode for simultaneous determination of purine and pyrimidine. Anal Chim Acta 752:94–100. doi:10.1016/j.aca.2012.09.031

    Article  CAS  Google Scholar 

  190. Ghavami R, Salimi A, Navaee A (2011) SiC nanoparticles-modified glassy carbon electrodes for simultaneous determination of purine and pyrimidine DNA bases. Biosens Bioelectron 26(9):3864–3869. doi:10.1016/j.bios.2011.02.048

    Article  CAS  Google Scholar 

  191. Serpi C, Voulgaropoulos A, Girousi S (2013) Electrochemical study of dsDNA on carbon nanotubes paste electrodes applying cyclic and differential pulse voltammetry. Cent Eur J Chem 11(3):413–423. doi:10.2478/s11532-012-0180-5

    Article  CAS  Google Scholar 

  192. Zhang RY, Wang XM (2010) Selective enhanced electrochemical response of DNA bases on carbon nanotube-gold nanocomposites modified gold electrode. Phys Status Solidi A Appl Mater 207(10):2263–2268. doi:10.1002/pssa.201026094

    Article  CAS  Google Scholar 

  193. Fang B, Zhang W, Wang GF, Liu HY, Wei SP (2008) Microwave-assisted preparation of a carbon nanotube/La(OH)(3) nanocomposite, and its application to electrochemical determination of adenine and guanine. Microchim Acta 162(1–2):175–180. doi:10.1007/s00604-007-0901-1

    Article  CAS  Google Scholar 

  194. Ensafi AA, Jafari-Asl M, Rezaei B, Allafchian AR (2013) Simultaneous determination of guanine and adenine in DNA based on NiFe2O4 magnetic nanoparticles decorated MWCNTs as a novel electrochemical sensor using adsorptive stripping voltammetry. Sens Actuators B 177:634–642. doi:10.1016/j.snb.2012.11.028

    Article  CAS  Google Scholar 

  195. Wei Y, Huang QA, Li MG, Huang XJ, Fang B, Wang L (2011) CeO2 nanoparticles decorated multi-walled carbon nanotubes for electrochemical determination of guanine and adenine. Electrochim Acta 56(24):8571–8575. doi:10.1016/j.electacta.2011.07.048

    Article  CAS  Google Scholar 

  196. Randviir EP, Banks CE (2012) Electrochemical measurement of the DNA bases adenine and guanine at surfactant-free graphene modified electrodes. RSC Adv 2(13):5800–5805. doi:10.1039/c2ra20173a

    Article  CAS  Google Scholar 

  197. Ambrosi A, Pumera M (2010) Stacked graphene nanofibers for electrochemical oxidation of DNA bases. Phys Chem Chem Phys 12(31):8944–8948. doi:10.1039/c0cp00213e

    Article  CAS  Google Scholar 

  198. Niu XL, Yang W, Ren J, Guo H, Long SJ, Chen JJ, Gao JZ (2012) Electrochemical behaviors and simultaneous determination of guanine and adenine based on graphene-ionic liquid-chitosan composite film modified glassy carbon electrode. Electrochim Acta 80:346–353. doi:10.1016/j.electacta.2012.07.041

    Article  CAS  Google Scholar 

  199. Sun W, Liu J, Ju XM, Zhang L, Qi XW, Hui N (2013) Highly sensitive electrochemical detection of adenine on a graphene-modified carbon ionic liquid electrode. Ionics 19(4):657–663. doi:10.1007/s11581-012-0789-6

    Article  CAS  Google Scholar 

  200. Biris AR, Pruneanu S, Pogacean F, Lazar MD, Borodi G, Ardelean S, Dervishi E, Watanabe F, Biris AS (2013) Few-layer graphene sheets with embedded gold nanoparticles for electrochemical analysis of adenine. Int J Nanomedicine 8:1429–1438. doi:10.2147/ijn.s42613

    Article  CAS  Google Scholar 

  201. Hayashi K, Yamanaka S, Watanabe H, Sekiguchi T, Okushi H, Kajimura K (1997) Investigation of the effect of hydrogen on electrical and optical properties in chemical vapor deposited on homoepitaxial diamond films. J Appl Phys 81(2):744–753. doi:10.1063/1.364299

    Article  CAS  Google Scholar 

  202. Oliveira SCB, Oliveira-Brett AM (2010) Boron doped diamond electrode pre-treatments effect on the electrochemical oxidation of dsDNA, DNA bases, nucleotides, homopolynucleotides and biomarker 8-oxoguanine. J Electroanal Chem 648(1):60–66. doi:10.1016/j.jelechem.2010.06.020

    Article  CAS  Google Scholar 

  203. Fortin E, Chane-Tune J, Mailley P, Szunerits S, Marcus B, Petit JP, Mermoux M, Vieil E (2004) Nucleosides and ODN electrochemical detection onto boron doped diamond electrodes. Bioelectrochemistry 63(1–2):303–306. doi:10.1016/j.bioelechem.2003.10.027

    Article  CAS  Google Scholar 

  204. Ivandini TA, Sarada BV, Rao TN, Fujishima A (2003) Electrochemical oxidation of underivatized-nucleic acids at highly boron-doped diamond electrodes. Analyst 128(7):924–929. doi:10.1039/b301483e

    Article  CAS  Google Scholar 

  205. Apilux A, Tabata M, Chailapakul O (2007) Electrochemical behaviors of native and thermally denatured fish DNA in the presence of cytosine derivatives and porphyrin by cyclic voltammetry using boron-doped diamond electrode. Bioelectrochemistry 70(2):435–439. doi:10.1016/j.bioelechem.2006.07.001

    Article  CAS  Google Scholar 

  206. Shiraishi H, Itoh T, Hayashi H, Takagi K, Sakane M, Mori T, Wang J (2007) Electrochemical detection of E. coli 16S rDNA sequence using air-plasma-activated fullerene-impregnated screen printed electrodes. Bioelectrochemistry 70(2):481–487. doi:10.1016/j.bioelechem.2006.07.011

    Article  CAS  Google Scholar 

  207. Zhang XZ, Qu YT, Piao GZ, Zhao JA, Jiao K (2010) Reduced working electrode based on fullerene C60 nanotubes@DNA: characterization and application. Mater Sci Eng B Adv Funct Solid State Mater 175(2):159–163. doi:10.1016/j.mseb.2010.07.020

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support from CEITEC CZ.1.05/1.1.00/02.0068 is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vojtech Adam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Hynek, D. et al. (2016). Synthesis, Modification, and Characterization of Nanocarbon Electrodes for Determination of Nucleic Acids. In: Aliofkhazraei, M., Makhlouf, A. (eds) Handbook of Nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15266-0_15

Download citation

Publish with us

Policies and ethics