Skip to main content

Modeling of Metal Electrodeposition at the Nanoscale

  • Reference work entry
  • First Online:
Handbook of Nanoelectrochemistry
  • 4532 Accesses

Abstract

In this chapter, we give an overview of selected experimental and computer simulation literature research on thermodynamic modeling applied to the understanding of metal electrodeposition on metallic nanostructures. A brief survey on underpotential deposition, galvanic replacement, and dendrimer-encapsulated nanoparticles is given first. Focus is made on applications related to size and shape control and the formation of hollow, core/shell, and reversed nanoparticles. Then, a nanothermodynamic model is proposed, providing understanding on the physics behind the electrodeposition problem. At the end of the chapter, we highlight the main conclusions drawn from the chapter and give some perspectives in advanced modeling of the present problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ratner M, Ratner D (2003) Nanotechnology, a gentle introduction to the next big idea. Prentice Hall, Professional Technical Reference, Upper Saddle River

    Google Scholar 

  2. Schmickler W (1996) Interfacial electrochemistry. Oxford University Press, New York

    Google Scholar 

  3. Shao M, Peles A, Shoemaker K (2011) Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett 11:3714

    Article  CAS  Google Scholar 

  4. Mariscal MM, Oviedo OA, Leiva EPM (2012) Metal clusters and nanoalloys: from modelling to applications. Springer, New York

    Google Scholar 

  5. Johnston RL, Wilcoxon J (2012) Metal nanoparticles and nanoalloys (Vol 3). Elsevier, Oxford.

    Google Scholar 

  6. Rieth M, Schommers W (2006) Handbook of theoretical and computational nanotechnology. American Scientific Publishers, Stevenson Ranch, CA, USA

    Google Scholar 

  7. Corain B, Schmid G, Toshima N (2008) Metal nanocluster in catalysis and materials science. Elsevier, The Netherlands

    Google Scholar 

  8. Mariscal MM, Dassie SA (2007) Recent advances in nanoscience. Research Signpost, Trivandrum

    Google Scholar 

  9. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845

    Article  CAS  Google Scholar 

  10. Boisseliera E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759

    Article  Google Scholar 

  11. Epron F, Especel C, Lafaye G, Marécot P (2008) Multimetallic nanoparticles prepared by redox processes applied in catalysis. In: Astruc D (ed) Nanoparticles and catalysis. Wiley VCH, Weinheim

    Google Scholar 

  12. Crooks RM, Chechik V, Lemon BI III, Sun L, Yeung LK, Zhao M (2002) Synthesis, characterization, and applications of dendrimer-encapsulated metal and semiconductor nanoparticles. In: Feldheim DL, Foss CA Jr (eds) Metal nanoparticles- synthesis, characterization, and applications. Marcel Dekker, New York

    Google Scholar 

  13. Feldheim DL, Foss CA Jr (2002) Metal nanoparticles- synthesis, characterization, and applications. Marcel Dekker, New York

    Google Scholar 

  14. Schmid G (1994) Clusters and colloids: from theory to applications. VCH- Verlagsgesellschaft, Weinheim

    Book  Google Scholar 

  15. Sugimoto T (2001) Monodispersed particles. Elsevier, Amsterdam

    Google Scholar 

  16. Zhang L, Fang X, Ye C (2007) Controlled growth of nanomaterials. World Scientific, Hackensack

    Book  Google Scholar 

  17. Reza MM (2007) Nanomaterials and nanosystems for biomedical applications. Springer, Dordrecht

    Google Scholar 

  18. Varadan VK, Chen L, Xie J (2008) Nanomedicine – design and applications of magnetic nanomaterials, nanosensors and nanosystems. Wiley, Chichester

    Google Scholar 

  19. Desai T, Bhatia S (2006) BioMEMS and biomedical nanotechnology: therapeutic micro/nanotechnology, vol III. Springer, New York

    Google Scholar 

  20. De Micheli G, Leblebici Y, Gijs M, Vörös J (2009) Nanosystems design and technology. Springer, New York

    Book  Google Scholar 

  21. Wieckowski A, Savinova ER, Vayenas CG (2003) Catalysis and electrocatalysis at nanoparticles surfaces. Marcel Dekker, New York

    Book  Google Scholar 

  22. Liu XY, De Yoreo JJ (2004) Nanoscale structure and assembly at solid–fluid interfaces: assembly in hybrid and biological system, vol. III. Kluwer Academis Publishers, New York

    Google Scholar 

  23. Budevski E, Staikov G, Lorenz WJ (1996) Electrochemical phase formation and growth – an introduction in the initial stages of metal deposition. VCH, Weinheim

    Google Scholar 

  24. Staikov G, Lorenz WJ, Budevski E (1999) In: Ross PN, Lipkowski J (eds) Imaging of surfaces and interfaces, vol 5, Frontiers of electrochemistry. Wiley-VCH, New York

    Google Scholar 

  25. Tolman RCJ (1949) The effect of droplet size on surface tension. Chem Phys 17:333

    CAS  Google Scholar 

  26. Plieth WJJ (1982) Electrochemical properties of small clusters of metal atoms and their role in the surface enhanced Raman scattering. Phys Chem 86:3166

    Article  CAS  Google Scholar 

  27. Hill TL (1994) Thermodynamics of small systems. Dover Publication, New York, Part I and II

    Google Scholar 

  28. Hill TL (2001) Nano Lett 1:273

    Article  CAS  Google Scholar 

  29. Sudha V, Sangaranarayanan MVJ (2005) Underpotential deposition of metals–progress and prospects in Modeling. Chem Sci 117:207

    Google Scholar 

  30. Zhang J, Mo Y, Vukmirovic MB, Klie R, Sasaki K, Adzic RRJ (2004) Platinum Monolayer Electrocatalysts for O2 Reduction: Pt Monolayer on Pd(111) and on Carbon-Supported Pd Nanoparticles. Phys Chem B 108:10955

    Article  CAS  Google Scholar 

  31. Campbell FW, Zhou Y, Compton RG (2010) Thallium underpotential deposition on silver nanoparticles: size-dependent adsorption behaviour. New J Chem 34:187

    Article  CAS  Google Scholar 

  32. Campbell FW, Compton RG (2010) Contrasting underpotential depositions of lead and cadmium on silver macroelectrodes and silver nanoparticle electrode arrays. Int J Electrochem Sci 5:407

    CAS  Google Scholar 

  33. Zhou Y, Rees NV, Compton RG (2011) Nanoparticle–electrode collision processes: the underpotential deposition of thallium on silver nanoparticles in aqueous solution. Chem Phys Chem 12:2085

    CAS  Google Scholar 

  34. Park S, Yang P, Corredor P, Weaver MJJ (2002) Transition metal-coated nanoparticle films: vibrational characterization with surface-enhanced Raman scattering. Am Chem Soc 124(11):2428

    Article  CAS  Google Scholar 

  35. Kolb DM, Przasnyski M, Gerischer HJ (1974) Underpotential deposition of metals and work function differences. Electroanal Chem 54:25

    Article  CAS  Google Scholar 

  36. Kolb DM (1978) In: Gerisher H, Tobias CW (eds) Advances in electrochemistry and electrochemical engineering, vol 11. Wiley, New York, p 125

    Google Scholar 

  37. Leiva EPM (1993) Current topics in electrochemistry. Curr Top Electrochem 2:269

    Google Scholar 

  38. Fonticelli MH, Corthey G, Benitez GA, Salvarezza RC, Giovanetti LJ, Requejo FG, Shon YS (2007) Preparation of ultrathin thiolate-covered bimetallic systems: from extended planar to nanoparticle surfaces. J Phys Chem C 26(111):9359

    Article  Google Scholar 

  39. Oviedo OA, Leiva EPM, Mariscal MM (2008) Thermodynamic considerations and computer simulations on the formation of core-shell nanoparticles under electrochemical conditions. Phys Chem Chem Phys 10:3561

    Article  CAS  Google Scholar 

  40. Mariscal MM, Oviedo OA, Leiva EPMJ (2012) On the selective decoration of facets in metallic nanoparticles. Mater Res 27:14

    Article  Google Scholar 

  41. Oviedo OA, Reinaudi L, Leiva EPM (2012) The limits of underpotential deposition in the nanoscale. Electrochem Comm 21:14

    Article  CAS  Google Scholar 

  42. Mariscal MM, Oviedo OA, Leiva EPM (2012) On the selective decoration of facets in metallic nanoparticles. J Mater Res 27:14

    Article  Google Scholar 

  43. Oviedo OA, Negre CFA, Mariscal MM, Sánchez CG, Leiva EPM (2012) Underpotential deposition on free nanoparticles: Its meaning and measurement. Electrochem Comm 16:1

    Article  CAS  Google Scholar 

  44. Oviedo OA, Reinaudi L, Mariscal MM, Leiva EPM (2012) Thermodynamic stability of electrochemically decorated Au-Pd core@shell nanoparticles. Electrochem Acta 76:424

    Article  CAS  Google Scholar 

  45. Carino EV, Crooks RM (2011) Characterization of Pt@Cu core@shell dendrimer-encapsulated nanoparticles synthesized by Cu underpotential deposition. Langmuir 27:4227

    Article  CAS  Google Scholar 

  46. Personick ML, Langille MR, Zhang J, Mirkin CA (2011) Shape control of gold nanoparticles by silver underpotential deposition. Nano Lett 11:3394

    Article  CAS  Google Scholar 

  47. Langille MR, Personick ML, Zhang J, Mirkin CA (2012) Defining rules for the shape evolution of gold nanoparticles. J Am Chem Soc 134:14542

    Article  CAS  Google Scholar 

  48. Brankovic SR, Wang JX, Adzic RR (2001) Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf Sci 474:L173

    Article  CAS  Google Scholar 

  49. Yin Y, Erdonmez C, Aloni S, Alivisatos A (2006) Faceting of nanocrystals during chemical transformation: from solid silver spheres to hollow gold octahedra. J Am Chem Soc 128:12671

    Article  CAS  Google Scholar 

  50. Seo D, Song H (2009) Asymmetric hollow nanorod formation through a partial galvanic replacement reaction. J Am Chem Soc 131:18210

    Article  CAS  Google Scholar 

  51. Sun Y, Wiley B, Li ZY, Xia Y (2004) Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys. J Am Chem Soc 126:9399

    Article  CAS  Google Scholar 

  52. Chen J, Wiley B, McLellan J, Xiong Y, Li ZY, Xia Y (2005) Optical properties of Pd–Ag and Pt–Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett 5:2058

    Article  CAS  Google Scholar 

  53. Lu X, Au L, McLellan J, Li ZY, Marquez M, Xia Y (2007) Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag Alloy nanoboxes with an aqueous etchant based on Fe(NO3)3 or NH4OH. Nano Lett 7:1764

    Article  CAS  Google Scholar 

  54. Hong X, Wang D, Cai S, Rong H, Li Y (2012) Single-crystalline octahedral Au–Ag nanoframes. J Am Chem Soc 134:18165

    Article  CAS  Google Scholar 

  55. Wang Y, Wan D, Xie S, Xia X, Huang CZ, Xia Y (2013) Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth. ACS Nano 7:4586

    Article  CAS  Google Scholar 

  56. Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304:711

    Article  CAS  Google Scholar 

  57. Li W, Hsiao GS, Harris D, Nyffenegger RM, Virtanen JA, Penner RM (1996) Mechanistic study of silver nanoparticle deposition directed with the tip of a scanning tunneling microscope in an electrolytic environment. J Phys Chem 100:20103

    Article  CAS  Google Scholar 

  58. Xia XH, Schuster R, Kirchner V, Ertl GJ (1999) The growth of size-determined Cu clusters in nanometer holes on Au(111) due to a balance between surface and electrochemical energy. Electroanal Chem 461:102

    Article  CAS  Google Scholar 

  59. Solomun T, Kautek W (2001) Electrodeposition of bismuth and silver phases in nanometer-sized zero-dimensional STM-formed cavities on gold (111). Electrochim Acta 47:679

    Article  CAS  Google Scholar 

  60. Luque NB, Reinaudi L, Serra P, Leiva EPM (2009) Electrochemical deposition on surface nanometric defects: Thermodynamics and grand canonical Monte Carlo simulations. Electrochim Acta 54:3011

    Article  CAS  Google Scholar 

  61. Zhang J, Lima FHB, Shao MH, Sasaki K, Wang JX, Hanson J, Adzic RR (2005) Platinum monolayer on nonnoble Metal–Noble metal Core–Shell nanoparticle electrocatalysts for O2 reduction. J Phys Chem B 109:22701

    Article  CAS  Google Scholar 

  62. Crooks RM, Zhao M, Sun L, Chechik V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34:3

    Article  Google Scholar 

  63. Scott RWJ, Wilson OM, Crooks RM (2005) Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J Phys Chem B109:692

    Article  Google Scholar 

  64. Yancey DF, Zhang L, Crooks RM, Henkelman G (2012) Au@Pt dendrimer encapsulated nanoparticles as model electrocatalysts for comparison of experiment and theory. Chem Sci 3:1033

    Article  CAS  Google Scholar 

  65. Oviedo OA, Leiva EPM, Rojas M (2006) Energetic and entropic contributions to the underpotential/overpotential deposition shifts on single crystal surfaces from lattice dynamics. I Electrochim Acta 51:3526

    Article  CAS  Google Scholar 

  66. Oviedo OA, Mariscal MM, Leiva EPM (2010) On the occurrence of stable and supersaturated metastable states in metallic core-shell nanoparticles. Phys Chem Chem Phys 12:4580

    Article  CAS  Google Scholar 

  67. Oviedo OA, Mariscal MM, Leiva EPM (2010) Theoretical studies of preparation of core–shell nanoparticles by electrochemical metal deposition. Electrochim Acta 55:8244

    Article  CAS  Google Scholar 

  68. Michalitsch R, Laibinis PE (2001) Adsorption-mediated electrochemical sensing of halides. Angew Chem Int Ed 40:941

    Article  CAS  Google Scholar 

  69. Michalitsch R, Palmer BJ, Laibinis PE (2000) Formation of a more noble underpotentially deposited silver layer on gold by the adsorption of chloride. Langmuir 16:6533

    Article  CAS  Google Scholar 

  70. Iski EV, El-Koued M, Calderon C, Wang F, Bellisario DO, Ye T, Sykes ECH (2011) The extraordinary stability imparted to silver monolayers by chloride. Electrochim Acta 56:1652

    Article  CAS  Google Scholar 

  71. Schmidt U, Vinzelberg S, Staikov G (1996) Pb UPD on Ag(100) and Au(100) – 2D phase formation studied by in situ STM. Surf Sci 348:261

    Article  CAS  Google Scholar 

  72. Oviedo OA, Vélez P, Macagno VA, Leiva EPM (2015) Underpotential deposition: from planar surfaces to nanoparticles. Surf Sci 631:23

    Google Scholar 

  73. Pinto OA, López de Mishima BA, Leiva EPM, Oviedo OA (2012) Computer simulation of adsorption on nanoparticles: the case of attractive interactions. Phys Rev E 86:061602

    Article  CAS  Google Scholar 

  74. Wales D (2003) Energy landscapes: applications to clusters, biomolecules and glasses. Cambridge University Press, New York

    Google Scholar 

  75. Rusanov AI (1996) Thermodynamics of solid surfaces. Surf Sci Report 23:173

    Article  CAS  Google Scholar 

  76. Rusanov AI (2006) On the material equilibrium of nanoparticles. Nanotechnology 17:575

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge CONICET PIP: 112-200801-00983 and 112-201101-00992, SECyT 381 (Universidad Nacional de Córdoba), Program BID (PICT 382 2006 Nr 946, PICT 2010 Nr 123 and PICT 2012 Nr 2324), and PME: 2006–01581 383 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. A. Oviedo or E. P. M. Leiva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Oviedo, O.A., Leiva, E.P.M. (2016). Modeling of Metal Electrodeposition at the Nanoscale. In: Aliofkhazraei, M., Makhlouf, A. (eds) Handbook of Nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15266-0_13

Download citation

Publish with us

Policies and ethics