Skip to main content

Electrochemical Fabrication of Multi-Nanolayers

  • Reference work entry
  • First Online:
Handbook of Nanoelectrochemistry

Abstract

The fabrication of multi-nanolayer structures can in some cases be achieved electrochemically if, for example, the plating current density has a significant effect on the deposit composition or if reverse plating changes the composition. Moreover, the realization of a multi-nanolayer structure can also crucially affect the properties of the material. This chapter will look at one material system in which both of the above apply, namely, amorphous Co-P.

When produced using conventional DC plating, amorphous Co-P tends to exhibit perpendicular magnetic anisotropy and hence very low permeability and somewhat high coercivity. This limits the usefulness of the material as a magnetic core for power conversion applications which require low coercivity, high saturation magnetization, high permeability, high anisotropy field, and high resistivity. Riveiro et al. used pulse reverse plating to fabricate multilayers of alternate magnetic and nonmagnetic materials. With the thickness of the magnetic layers at around 30 nm, they were able to achieve in-plane anisotropy and low coercivity 8 A m−1.

This chapter will describe the early work and a selection of subsequent research on multi-nanolayers of amorphous Co-P, e.g., Perez et al., who used pulse plating, and McCloskey et al., who improved the saturation magnetization and thermal stability of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karkare M (2008) Nanotechnology: fundamentals and applications. I. K International, New Delhi

    Google Scholar 

  2. Hanrahan JP, Copley MP, Ziegler KJ, Spalding TR, Morris MA, Steytler DC, Heenan RK, Schweins R, Holmes JD (2005) Pore size engineering in mesoporous silicas using supercritical CO2. Langmuir 21:4163

    Article  CAS  Google Scholar 

  3. Mansoori G (2005) Principles of nanotechnology. World Scientific, Hackensack

    Book  Google Scholar 

  4. Wilson M, Kannangara K, Smith G, Simmons M, Raguse B (2002) Nanotechnology: basic science and emerging technologies. CRC Press LLC, Boca Raton, Florida

    Google Scholar 

  5. Lacaze PC (2013) Nanotechnologies: concepts, processing and applications. Wiley, Hoboken

    Google Scholar 

  6. Moore GE (1965) Cramming more components onto integrated circuits. Electronics 114–117

    Google Scholar 

  7. Roco MC, Gargini P (2011) Nanoelectronics: an international perspective. Proc IEEE 99:751

    Article  Google Scholar 

  8. Information Storage Industry Consortium (2011) International magnetic tape storage roadmap, © Information Storage Industry Consortium, http://www.insic.org/news/A%26S%20Roadmap.pdf

  9. Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnár S, Roukes ML, Chtchelkanova AY, Treger DM (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488–1495

    Article  CAS  Google Scholar 

  10. Bird KD, Schlesinger M (1995) Giant magnetoresistance in electrodeposited Ni/Cu and Co/Cu multilayers. J Electrochem Soc 142:L65–L66

    Article  CAS  Google Scholar 

  11. Simunovich D, Schlesinger M, Snyder D (1994) Electrochemically layered copper-nickel nanocomposites with enhanced hardness electrochemical society letters. J Electrochem Soc 141(1): L10–L11, doi:10.1149/1.2054717

    Google Scholar 

  12. Riveiro JM, Riveiro G (1981) Multilayered magnetic amorphous Co-P films. IEEE Trans Magn MAG 17(6):3082

    Google Scholar 

  13. Pérez L, de Abril O, Sánchez MC, Aroca C, López E, Sánchez P (2000) Electrodeposited amorphous CoP multilayers with high permeability. J Magn Magn Mater 215–216:337–339

    Google Scholar 

  14. Paunovic M, Schlesinger M, Snyder DD, Paunovic M (2010) Chapter 1, “Fundamental considerations”. In: Schlesinger M, Paunovic M (eds) Modern electroplating, 5th edn. Wiley

    Google Scholar 

  15. Alper M, Aplin PS, Attenborough K, Dingley DJ, Hart R, Lane SJ, Lashmore DS, Schwarzacher W (1993) Growth and characterization of electrodeposited Cu/Cu-Ni-Co alloy superlattices. J Magn Magn Mater 126(1–3):8–11

    Article  CAS  Google Scholar 

  16. Yahalom A, Tessier DF, Timsit RM, Rosenfeld AM, Mitchel DF, Robinson PT (1989) J Mater Res 4/4:755

    Article  Google Scholar 

  17. Attenborough K, Hart R, Lane SJ, Alper M, Schwarzacher W (1995) Magnetoresistance in electrodeposited Ni-Fe-Cu/Cu multilayers. J Magn Magn Mater 148:335–336

    Article  CAS  Google Scholar 

  18. Landolt D (1994) Electrochemical and materials science aspects of alooy deposition. Electrocimica Acta 39(8/9):1075–1090

    Article  CAS  Google Scholar 

  19. Djokic SS (1999) Electrodeposition of Amorphous Alloys Based on the Iron Group of Metals 146(5):1824–1828

    Google Scholar 

  20. Brenner A, Couch DE, Williams EK (1950) Electrodeposition of alloys of phosphorous with nickel or cobalt. J Res Natl Bur Stand 44:109

    Article  Google Scholar 

  21. Dekker AJ (1957) Solid state physics. Prentice-Hall, Englewood

    Google Scholar 

  22. Cullity BD (1972) Magnetic materials. CRC Press LLC, Boca Raton, Florida

    Google Scholar 

  23. Weiss P (1906) La variation du ferromagnetisme du temperature. Compte Rendu 143:1136–1139

    CAS  Google Scholar 

  24. Cuillity BD, Graham CD (2009) Introduction to magnetic materials, 2nd edn. Wiley, IEEE Press

    Google Scholar 

  25. Roozeboom F, Bloemen PJH, Klaassens W, Van De Riet’ EGJ, Donkers JJTM (1998) Soft-magnetic fluxguide materials. Philips J Res 51:59–91

    Article  CAS  Google Scholar 

  26. Riveiro JM, Sanchez-Trjillo MC (1980) Magnetic anisotropy of electrodeposited Co-P amorphous alloys. IEEE Trans Magn MAG-16(6):1426–1428

    Article  CAS  Google Scholar 

  27. Néel L (1949) Théorie du traınage magnetique desferromagnetiques engrains fins avec applications aux terres cuites 5:99

    Google Scholar 

  28. Papaefthymiou GC (2009) Nanoparticle Magnetism. Nano Today 4:438

    Article  CAS  Google Scholar 

  29. Jones RE Jr (1990) IBM Disk Storage Tech 3:6

    Google Scholar 

  30. Tsang C, Chon M-M, Yogi T, Ju K (1990) Gigabit density recording using dual-element MR/inductive heads on thin-film disks. IEEE Trans Magn MAG-26:1689

    Article  Google Scholar 

  31. Robertson N, Hu HL, Tsang C (1997) High performance write head using NiFe 45/55. IEEE Trans Magn 33:2818

    Article  CAS  Google Scholar 

  32. Harada K, Takahashi F (1997) Nikkei Electron 691:91

    Google Scholar 

  33. Osaka T, Takai M, Tachibana H (2000) US Patent 6,063,512

    Google Scholar 

  34. Riveiro JM, Sanchez MC, Riveiro G (1981) Electrodeposited Co-P alloys with variable magnetic anisotropy. IEEE Trans Magn MAG 17(3):1282–1285

    Google Scholar 

  35. Gardner DS et al (2006) IEEE International Electron Device Meeting (IEDM), San Francisco, pp 11–13

    Google Scholar 

  36. Chi GC, Cargill GS III (1975) Structural anisotropy of amorphous cobalt-phosphorus alloys. AIP Conf Proc 29:147

    Article  Google Scholar 

  37. Ruythooren W, De Boeck J, Celis JP (2004) Microstructural investigation of Co-P by TEM. J Electrochem Soc 151(5):C315–C317

    Article  CAS  Google Scholar 

  38. Perez L, Aroca C, Sánchez P, López E, Sánchez MC (2004) Planar fluxgate sensor with an electrodeposited amorphous core. Sens Actuators A 109:208–211

    Article  CAS  Google Scholar 

  39. Brenner A (1963) Electrodeposition of alloys. Academic, London

    Google Scholar 

  40. Riveiro JM, Guijarro MS, Rivero G, Sánchez MC (1982) Magnetic domains in multilayered amorphous Co-P alloys. Phys Rev D 15:145

    CAS  Google Scholar 

  41. McCloskey P, Jamieson B, O’Donnell T, Gardner D, Morris MA, Roy S (2008) High-frequency nanostructured magnetic materials for integrated inductors. J Magn Magn Mater 320(20):2509–2512

    Article  CAS  Google Scholar 

  42. Wang H, Yi X, Chen S, He S, Xiaochao F, Ma H (2006) Planarization of CMOS ROIC dies for uncooled detectors. Infrared Phys Technol 47:251–256

    Article  CAS  Google Scholar 

  43. Oda M, Ohashi H, Kamadu K (1995) US Patent 5,435,903

    Google Scholar 

  44. McCloskey P, Jamieson B, O’Donnell T, Gardner D, Morris MA, Roy S (2010) Electrodeposited amorphous Co-P based alloy with improved thermal stability. J Magn Magn Mater 322(9–12):1536–1539

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul McCloskey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

McCloskey, P., O’Donnell, T., Jamieson, B., Gardner, D., Morris, M.A., Roy, S. (2016). Electrochemical Fabrication of Multi-Nanolayers. In: Aliofkhazraei, M., Makhlouf, A. (eds) Handbook of Nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15266-0_1

Download citation

Publish with us

Policies and ethics