Advertisement

Biomechanical Forensics in Pediatric Head Trauma

  • Brittany Coats
  • Susan Margulies
Reference work entry

Abstract

Biomechanics is an essential partner with forensic medicine in the estimation of head trauma etiology. Biomechanics is used in forensic investigations typically to estimate the forces applied to the body and the resulting deformations of hard and soft tissues. By integrating animal, tissue, and cellular responses with tissue stiffness measurements, tolerable load limits can be established, and computational biomechanical models are used to simulate real-world events and estimate how and why injuries might occur. Concepts of biomechanics are reviewed, and summaries of current knowledge regarding the biomechanical injury mechanism of pediatric brain, skull, cerebral vasculature, and retina are presented. Strengths and weaknesses of animal experiments and computational models are discussed, and key recommendations for future studies articulated.

Keywords

Accidental fall Brain injury Inflicted trauma Retinal hemorrhage Shaking Skull fracture 

References

  1. Bonnier C, Mesples B, Carpentier S, Henin D, Gressens P (2002) Delayed white matter injury in a murine model of shaken baby syndrome. Brain Pathol 12:320–328CrossRefGoogle Scholar
  2. Bylski DI, Kriewall TJ, Akkas N, Melvin JW (1986) Mechanical behavior of fetal dura mater under large deformation biaxial tension. J Biomech 19(1):19–26CrossRefGoogle Scholar
  3. Coats B and Margulies S (2003) Characterization of pediatric porcine skull properties during impact. Proceedings of the International Research Council of Biomechanics of Injury. Lisbon, Portugal, 57–66Google Scholar
  4. Coats B, Margulies S (2006a) Material properties of human infant skull and suture at high rates. J Neurotrauma 23(8):1222–1232CrossRefGoogle Scholar
  5. Coats B, Margulies S (2006b) Material properties of porcine parietal cortex. J Biomech 39(13):2521–2525CrossRefGoogle Scholar
  6. Coats B, Margulies S (2008) Potential for head injuries in infants from low-height falls. J Neurosurg Pediatr 2(5):321–330CrossRefGoogle Scholar
  7. Coats B, Ji S, Margulies SS (2007) Parametric study of head impact in the infant. Stapp Car Crash J 51:1–15Google Scholar
  8. Coats B, Binenbaum G, Peiffer R, Forbes B, Margulies S (2010) Ocular hemorrhages in neonatal porcine eyes from single, rapid rotational events. Invest Ophthalmol Vis Sci 51(9):4792–4797CrossRefGoogle Scholar
  9. Coats B, Smith C, Binenbaum G, Pfeiffer R, Christian C, Duhaime A, Margulies S (2016) Cyclic head rotations produce modest brain injury in infant piglets. J Neurotrauma 34(1):235–247CrossRefGoogle Scholar
  10. Colter J, Williams A, Moran P, Coats B (2015) Age-related changes in dynamic moduli of ovine vitreous. J Mech Behav Biomed Mater 41:315–324CrossRefGoogle Scholar
  11. Cory C, Jones M (2003) Can shaking alone cause fatal brain injury? A biomechanical assessment of the Duhaime shaken baby syndrome model. Med Sci Law 43(4):317–333CrossRefGoogle Scholar
  12. Duhaime A, Alario A, Lewander W, Schut L, Seidl LST, Nudelman S, Budenz D, Hertle R, Loporchio S (1992) Head injury in very young children: mechanisms, injury types, and ophthalmologic findings in 100 hospitalized patients under two years of age. Pediatrics 90(2):179–185Google Scholar
  13. Eucker S (2009) Effect of head rotation direction on closed head injury in neonatal piglets. University of Pennsylvania, PhiladelphiaGoogle Scholar
  14. Eucker S, Smith C, Ralston J, Friess S, Margulies S (2011) Physiological and histopathological responses following closed rotational head injury depend on direction of head motion. Exp Neurol 227(1):79–88CrossRefGoogle Scholar
  15. Finnie J, Manavis J, Blumbergs P (2010) Diffuse neuronal perikaryal amyloid precursor protein immunoreactivity in an ovine model of non-accidental head injury (the shaken baby syndrome). J Clin Neurosci 17:237–240CrossRefGoogle Scholar
  16. Finnie JW, Blumbergs PC, Manavis J, Turner RJ, Helps S, Vink R, Byard RW, Chidlow G, Sandoz B, Dutschke J, Anderson RW (2012) Neuropathological changes in a lamb model of non-accidental head injury (the shaken baby syndrome). J Clin Neurosci 19(8):1159–1164CrossRefGoogle Scholar
  17. Friess S, Ichord R, Ralston J, Ryall K, Halfaer M, Smith C, Margulies S (2009) Repeated traumatic brain injury affects composit cognitive function in piglets. J Neurotrauma 26(7):1111–1121CrossRefGoogle Scholar
  18. Gandorfer A, Putz E, Welge-Lussen U, Gruterich M, Ulbig M, Kampik A (2001) Ultrastructure of the vitreoretinal interface following plasmin assisted vitrectomy. Br J Ophthalmol 85:6–10CrossRefGoogle Scholar
  19. Garo A, Hrapko M, van Dommelen J, Peters G (2007) Towards a reliable characterisation of the mechanical behaviour of brain tissue: the effects of post-mortem time and sample preparation. Biorheology 44(1):51–58Google Scholar
  20. Gefen A, Margulies S (2004) Are in vivo and in situ brain tissues mechanically similar? J Biomech 37(9):1339–1352CrossRefGoogle Scholar
  21. Gefen A, Gefen N, Zhu Q, Raghupathi R, Margulies S (2003) Age-dependent changes in material properties of the brain and braincase of the rat. J Neurotrauma 20(11):1163–1177CrossRefGoogle Scholar
  22. Graham R, Rivara F, Ford M, Spicer C (2014) Sports-related concussion in youth: improving the science, changing the culture. National Research Council, Washington, DCGoogle Scholar
  23. Gurdjian E, Webster J, Lissner H (1950) The mechanism of skull fracture. J Neurosurg 2:106–114CrossRefGoogle Scholar
  24. Hans SA, Bawab SY, Woodhouse ML (2009) A finite element infant eye model to investigate retinal forces in shaken baby syndrome. Graefes Arch Clin Exp Ophthalmol 247(4):561–571CrossRefGoogle Scholar
  25. Ibrahim N (2009) Head injury biomechanics in toddlers: integrated clinical, anthropomorphic dummy, animal and finite element model studies – implications for age-dependence. University of Pennsylvania, PhiladelphiaGoogle Scholar
  26. Ibrahim N, Margulies S (2010) Biomechanics of the toddler head during low-height falls: an anthropomorphic dummy analysis. J Neurosurg Pediatr 6(1):57–68CrossRefGoogle Scholar
  27. Ibrahim N, Ralston J, Smith C, Margulies S (2010) Physiological and pathological responses to head rotations in toddler piglets. J Neurotrauma 27(6):1021–1035CrossRefGoogle Scholar
  28. Ibrahim N, Wood J, Margulies S, Christian C (2012) Influence of age and fall type on head injuries in infants and toddlers. Int J Dev Neurosci 30(3):201–206CrossRefGoogle Scholar
  29. Keaveny T, Hayes W (1993) Mechanical properties of cortical and trabecular bone. In: Hall B (ed) Bone, Bone growth: B, vol 7. CRC Press, Boca Raton, pp 285–344Google Scholar
  30. Kriewall T, McPherson F, Tsai A (1981) Bending properties and ash content of fetal cranial bone. J Biomech 14:73–79CrossRefGoogle Scholar
  31. Kroman A, Kress T, Porta D (2011) Fracture propagation in the human cranium: a re-testing of popular theories. Clin Anat 24:309–318CrossRefGoogle Scholar
  32. Linde F, Sorensen H (1993) The effect of different storage methods on the mechanical properties of trabecular bone. J Biomech 26(10):1249–1252CrossRefGoogle Scholar
  33. Loder R (1996) Skull thickness and halo-pin placement in children: the effects of race, gender, and laterality. J Pediatr Orthop 16(3):340–343CrossRefGoogle Scholar
  34. Luck J, Nightingale R, Loyd A, Prange M, Dibb A, Song Y, Fronheiser L, Myers B (2008) Tensile mechanical properties of the perinatal and pediatric PMHS osteoligamentous cervical spine. Stapp Car Crash J 52:107–134Google Scholar
  35. Margulies S, Coats B (2013) Experimental injury biomechanics of the pediatric head and brain. In: Crandall J, Myers B, Meaney D, Schmidtke S (eds) Pediatric Injury Biomechanics: Archive and Textbook. Springer, New York, pp 157–189CrossRefGoogle Scholar
  36. McPherson G, Kriewall T (1980a) The elastic modulus of fetal cranial bone: a first step toward understanding of the biomechanics of fetal head molding. J Biomech 13:9–16CrossRefGoogle Scholar
  37. McPherson GK, Kriewall TJ (1980b) Fetal head molding: an investigation utilizing a finite element model of the fetal parietal bone. J Biomech 13:17–26CrossRefGoogle Scholar
  38. McPherson GK, Kriewall TJ (1981) Bending properties and ash content of fetal cranial bone. J Biomech 14:73–39CrossRefGoogle Scholar
  39. Missios S, Harris B, Dodge C, Simoni M, Costine B, Lee Y, e. al. (2009) Scaled cortical impact in immature swine: effect of age and gender on lesion volume. J Neurotrauma 26(11):1943–1951CrossRefGoogle Scholar
  40. Nazarian A, Hermannson B, Muller J, Zurakowski D, Snyder B (2009) Effects of tissue preservation on murine bone mechanical properties. J Biomech 42(1):82–86CrossRefGoogle Scholar
  41. Ohtsuki F (1977) Developmental changes of the cranial bone thickness in the human fetal period. Am J Phys Anthropol 46(1):141–153CrossRefGoogle Scholar
  42. Prange M (2002) Biomechanics of traumatic brain injury in the infant. University of Pennsylvania, PhiladelphiaGoogle Scholar
  43. Prange M, Margulies S (2002) Regional, directional, and age-dependent properties of brain undergoing large deformation. J Biomech Eng 124:244–252CrossRefGoogle Scholar
  44. Prange M, Coats B, Duhaime A, Margulies S (2003) Anthropomorphic simulations of falls, shakes, and inflicted impacts in infants. J Neurosurg 99(1):143–150CrossRefGoogle Scholar
  45. Prange M, Luck J, Dibb A, Van Ee C, Nightingale R, Myers B (2004) Mechanical properties and anthropometry of the human infant head. Stapp Car Crash J 48:279–299Google Scholar
  46. Prevost T, Jin G, de Moya M, Alam H, Suresh S, Socrate S (2011) Dynamic mechanical response of brain tissue in indentation in vivo, in situ and in vivo. Acta Biomater 7(12):4090–4101CrossRefGoogle Scholar
  47. Raghupathi R, Mehr M, Helfaer M, Margulies S (2004) Traumatic axonal injury is exacerbated following repetitive close head injury in the neonatal pig. J Neurotrauma 21(3):307–316CrossRefGoogle Scholar
  48. Rangarajan N, Kamalakkannan S, Hasija V, Shams T, Jenny C, Serbanescu I, Ho J, Rusinek M, Levin A (2009) Finite element model of ocular injury in abusive head trauma. J AAPOS 13:364–369CrossRefGoogle Scholar
  49. Raul JS, Roth S, Ludes B, Willinger R (2008) Influence of the benign enlargement of the subarachnoid space on the bridging veins strain during a shaking event: a finite element study. Int J Legal Med 122:337–340CrossRefGoogle Scholar
  50. Reece R, Sege R (2000) Childhood head injuries: accidental or inflicted? Arch Pediatr Adolesc Med 154(1):11–15Google Scholar
  51. Roche A (1953) Increase in cranial thickness during growth. Hum Biol 25(2):81–92Google Scholar
  52. Roth S, Raul JS, Willinger R (2008) Biofidelic child head FE model to simulate real world trauma. Comput Methods Prog Biomed 90:262–274CrossRefGoogle Scholar
  53. Sebag J (1991) Age-related differences in the human vitreoretinal interface. Arch Ophthalmol 109(7):966–971CrossRefGoogle Scholar
  54. Sedlin ED, Hirsch C (1966) Factors affecting the determination of the physical properties of femoral cortical bone. Acta Orthop Scand 37:29–48CrossRefGoogle Scholar
  55. Smith S, Andrus P, Gleason D, Hall E (1998) Infant rat model of the shaken baby syndrome: preliminary characterization and evidence for the role of free radicals in cortical hemorrhaging and progressive neuronal degeneration. J Neurotrauma 15(9):693–705CrossRefGoogle Scholar
  56. Sullivan S, Coats B, Margulies S (2015a) Biofidelic neck influences head kinematics of parietal and occipital impacts following short falls in infants. Accid Anal Prev 82:143–153CrossRefGoogle Scholar
  57. Sullivan S, Eucker S, Gabrieli D, Bradfield C, Coats B, Maltese M, Lee J, Smith C, Margulies S (2015b) White matter tract oriented deformation predicts traumatic axonal brain injury and reveals rotational direction-specific vulnerabilities. Biomech Model Mechanobiol 14(4):877–896CrossRefGoogle Scholar
  58. Thibault K, Margulies S (1998) Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria. J Biomech 31:1119–1126CrossRefGoogle Scholar
  59. Thompson A, Bertocci G, Pierce M (2009) Assessment of head injury risk associated iwth feet-first free falls in 12-month-old children using an anthropomorphic test device. J Trauma 66(4):1019–1029CrossRefGoogle Scholar
  60. Thompson A, Bertocci G, Rice W, Pierce M (2011) Pediatric short-distance household falls: biomechanics and associated injury severity. Accid Anal Prev 43(1):143–150CrossRefGoogle Scholar
  61. Vappou J, Breton E, Choquet P, Willinger R, Constantinesco A (2008) Assessment of in vivo and post-mortem mechanical behavior of brain tissue using magnetic resonance elastography. J Biomech 41:2954–2959CrossRefGoogle Scholar
  62. Weber W (1984) Experimental studies of skull fractures in infants. Z Rechtsmed 92(2):87–94CrossRefGoogle Scholar
  63. Weber W (1985) Biomechanical fragility of the infant skull. Z Rechtsmed 94(2):93–101CrossRefGoogle Scholar
  64. Wood JL (1971) Dynamic response of human cranial bane. J Biomech 4:1–12CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mechanical EngineeringUniversity of UtahSalt Lake CityUSA
  2. 2.BioengineeringUniversity of PennsylvaniaPhiladelphiaUSA

Section editors and affiliations

  • Andrew McIntosh
    • 1
  1. 1.CremorneAustralia

Personalised recommendations