Advertisement

Functional Capacity Evaluation and Quantitative Gait Analysis: Lower Limb Disorders

  • Isabella T. Klöpfer-Krämer
  • Peter Augat
Reference work entry

Abstract

Functional capacity evaluation as a discrete notion describes a standardized set of tests, mostly used by physicians and physiotherapists in order to assess a patient’s working capacity after trauma. But in a broadened manner, other methods such as instrumented gait analysis can be used for the evaluation of functional capacity post injury. This quantitative analysis of physical function shows repeatable and typical deviations in gait after different types of injury. The data derived by instrumented gait analysis are an objective measure of functional performance during active movement and thus complement static conventional imaging techniques as well as subjective assessments by physicians and physiotherapists. The results of gait analysis have to be interpreted carefully and critically, because the reasons for deviations in gait can be manifold: experimental errors, genuine deviations caused by the patient’s individual pathology or even malingering by the patient. In order to draw proper conclusions for the evaluation of the functional performance, it is important to include the multiple disciplines involved in the assessment and treatment of an injured patient.

Keywords

Amputation Assessment Calcaneal fracture Foot Functional capacity evaluation Instrumented gait analysis Interdisciplinary Knee-osteoarthritis Malingering Motion analysis Objective rating Return-to work Shank Subjective rating Tibial fracture 

References

  1. Antonova E, Le TK, Burge R, Mershon J (2013) Tibia shaft fractures: costly burden of nonunions. BMC Musculoskelet Disord 14:42.  https://doi.org/10.1186/1471-2474-14-42CrossRefGoogle Scholar
  2. Baker R (2013) Measuring walking a handbook of clinical gait analysis. Mac Keith Press, LondonGoogle Scholar
  3. Bieniek S, Bethge M (2014) The reliability of WorkWell systems functional capacity evaluation: a systematic review. BMC Musculoskelet Disord 15:106.  https://doi.org/10.1186/1471-2474-15-106CrossRefGoogle Scholar
  4. Brand A, Klöpfer-Krämer I, Lackner J, et al (2015) Ganganalyse nach Fersenbeinfraktur: Hat der Umfang der Rehabilitationsmaßnahmen einen Einfluss? In: Abstractband, 9. Jahrestagung der Deutschen Gesellschaft für Biomechanik (DGfB), Bonn, 2015Google Scholar
  5. Cappozzo A, Catani F, Della Croce U, Leardini A (1995) Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech 10:171–178.  https://doi.org/10.1016/0268-0033(95)91394-TCrossRefGoogle Scholar
  6. Carson MC, Harrington ME, Thompson N et al (2001) Kinematic analysis of a multi-segment foot model for research and clinical applications: a repeatability analysis. J Biomech 34:1299–1307.  https://doi.org/10.1016/S0021-9290(01)00101-4CrossRefGoogle Scholar
  7. Chaler J, Müller B, Maiques A, Pujol E (2010) Suspected feigned knee extensor weakness: usefulness of 3D gait analysis. Case report. Gait Posture 32:354–357.  https://doi.org/10.1016/j.gaitpost.2010.06.007CrossRefGoogle Scholar
  8. Chen JJ (2007) Functional capacity evaluation & disability. Iowa Orthop J 27:121–127Google Scholar
  9. Cieza A, Stucki G (2008) The international classification of functioning disability and health: its development process and content validity. Eur J Phys Rehabil Med 44:303–313Google Scholar
  10. Clare MP, Sanders RW (2007) Calcaneal fractures. Fuß Sprunggelenk 5:58–73.  https://doi.org/10.1007/s10302-007-0279-8CrossRefGoogle Scholar
  11. Cross M, Smith E, Hoy D et al (2014) The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis 73:1323–1330.  https://doi.org/10.1136/annrheumdis-2013-204763CrossRefGoogle Scholar
  12. Davis RB, Ounpuu S, Tyburski D, Gage JR (1991) A gait analysis data collection and reduction technique. Hum Mov Sci 10:575–587.  https://doi.org/10.1016/0167-9457(91)90046-ZCrossRefGoogle Scholar
  13. DeLuca PA, Davis RB, Ounpuu S, et al (1997) Alterations in surgical decision making in patients with cerebral palsy based on three-dimensional gait analysis. J Pediatr Orthop 17:608–614.  https://doi.org/10.1097/01241398-199709000-00007
  14. Fong K, Truong V, Foote CJ et al (2013) Predictors of nonunion and reoperation in patients with fractures of the tibia: an observational study. BMC Musculoskelet Disord 14:103.  https://doi.org/10.1186/1471-2474-14-103CrossRefGoogle Scholar
  15. Gage JR (1993) Gait analysis. An essential tool in the treatment of cerebral palsy. Clin Orthop Relat Res 288:126–134Google Scholar
  16. Gouttebarge V, Wind H, Kuijer PPFM, Frings-Dresen MHW (2004) Reliability and validity of functional capacity evaluation methods: a systematic review with reference to Blankenship system, Ergos work simulator Ergo-Kit and Isernhagen work system. Int Arch Occup Environ Health 77:527–537CrossRefGoogle Scholar
  17. Kadaba MP, Ramakrishnan HK, Wooten ME et al (1989) Repeatability of kinematic, kinetic, and EMG data in normal adult gait.Pdf. J Orthop Res 7:849–860.  https://doi.org/10.1002/jor.1100070611CrossRefGoogle Scholar
  18. Kadaba MP, Ramakrishnan HK, Wootten ME (1990) Measurement of lower-extremity kinematics during level walking. J Orthop Res 8:383–392.  https://doi.org/10.1002/jor.1100080310CrossRefGoogle Scholar
  19. Kay RM, Dennis S, Rethlefsen S et al (2000) The effect of preoperative gait analysis on orthopaedic decision making. Clin Orthop Relat Res:217–222.  https://doi.org/10.1097/00003086-200003000-00023
  20. King SL, Barton GJ, Ranganath LR (2017) Interpreting sources of variation in clinical gait analysis: a case study. Gait Posture 52:1–4.  https://doi.org/10.1016/j.gaitpost.2016.10.022CrossRefGoogle Scholar
  21. Lackner J, Pätzold R, Kröger I et al (2016) P01 functional analyses after tibial shaft fracture. Injury 47:S25.  https://doi.org/10.1016/S0020-1383(16)30552-6CrossRefGoogle Scholar
  22. Leardini A, Sawacha Z, Paolini G et al (2007) A new anatomically based protocol for gait analysis in children. Gait Posture 26:560–571.  https://doi.org/10.1016/j.gaitpost.2006.12.018CrossRefGoogle Scholar
  23. Lofterød B, Terjesen T, Skaaret I et al (2007) Preoperative gait analysis has a substantial effect on orthopedic decision making in children with cerebral palsy: comparison between clinical evaluation and gait analysis in 60 patients. Acta Orthop 78:74–80.  https://doi.org/10.1080/17453670610013448CrossRefGoogle Scholar
  24. McLaughlin H (1963) Treatment of late complications after OS Calcis fractures. Clin Orthop Relat Res 30:111–115CrossRefGoogle Scholar
  25. Mitternacht J, Lampe R (2006) Calculation of functional kinetic parameters from the plantar pressure distribution measurement. Z Orthop Ihre Grenzgeb 144:410–418.  https://doi.org/10.1055/s-2006-933494CrossRefGoogle Scholar
  26. Mündermann A, Dyrby CO, Andriacchi TP (2005) Secondary gait changes in patients with medial compartment knee osteoarthritis: increased load at the ankle, knee, and hip during walking. Arthritis Rheum 52:2835–2844.  https://doi.org/10.1002/art.21262CrossRefGoogle Scholar
  27. Ounpuu S, Gage JR, Davis RB (1991) Three-dimensional lower extremity joint kinetics in normal pediatric gait. J Pediatr Orthop 11:341–349CrossRefGoogle Scholar
  28. Ounpuu S, Davis RB, DeLuca PA (1996) Joint kinetics: methods, interpretation and treatment decision-making in children with cerebral palsy and myelomeningocele. Gait Posture 4:62–78CrossRefGoogle Scholar
  29. Pollo FE, Jackson RW (2006) Knee bracing for unicompartmental osteoarthritis. J Am Acad Orthop Surg 14:5–11CrossRefGoogle Scholar
  30. Russell Esposito E, Aldridge Whitehead JM, Wilken JM (2015) Sound limb loading in individuals with unilateral transfemoral amputation across a range of walking velocities. Clin Biomech 30:1049–1055.  https://doi.org/10.1016/j.clinbiomech.2015.09.008CrossRefGoogle Scholar
  31. Scammell BE (2014) Calcaneal fractures. BMJ 349:g4779.  https://doi.org/10.1136/bmj.g4779CrossRefGoogle Scholar
  32. Schipplein OD, Andriacchi TP (1991) Interaction between active and passive knee stabilizers during level walking. J Orthop Res 9:113–119.  https://doi.org/10.1002/jor.1100090114CrossRefGoogle Scholar
  33. Self BP, Greenwald RM, Pflaster DS (2000) A biomechanical analysis of a medial unloading brace for osteoarthritis in the knee. Arthritis Care Res 13:191–197CrossRefGoogle Scholar
  34. Sharma L, Song J, Felson D (2001) The role of knee alignment in disease progression and functional decline in knee osteoarthritis. JAMA 286:188–195CrossRefGoogle Scholar
  35. Statistisches Bundesamt (2013) Statistik schwerbehinderter MenschenGoogle Scholar
  36. Stebbins J, Harrington M, Thompson N et al (2006) Repeatability of a model for measuring multi-segment foot kinematics in children. Gait Posture 23:401–410.  https://doi.org/10.1016/j.gaitpost.2005.03.002CrossRefGoogle Scholar
  37. Stucki G, Kostanjsek N, Üstün B, Cieza A (2008) ICF-based classification and measurement of functioning. Eur J Phys Rehabil Med 44:314–328. R33Y2008N03A0315 [pii]Google Scholar
  38. Swiontkowski MF, Engelberg R, Martin DP, Agel J (1999) Short Musculoskeletal Function Assessment Questionnaire. J Bone Jt Surgery; Am Vol 81:1245–1260CrossRefGoogle Scholar
  39. Whelan DB, Bhandari M, Stephen D et al (2010) Development of the radiographic union score for tibial fractures for the assessment of tibial fracture healing after intramedullary fixation. J Trauma 68:629–632.  https://doi.org/10.1097/TA.0b013e3181a7c16dCrossRefGoogle Scholar
  40. Wren TAL, Kalisvaart MM, Ghatan CE et al (2009) Effects of preoperative gait analysis on costs and amount of surgery. J Pediatr Orthop 29:558–563.  https://doi.org/10.1097/BPO.0b013e3181b2f8c2CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Berufsgenossenschaftliche Unfallklinik Murnau und Paracelsus Medizinische Privatuniversität SalzburgInstitut für BiomechanikMurnau am StaffelseeGermany

Section editors and affiliations

  • Andrew McIntosh
    • 1
  1. 1.CremorneAustralia

Personalised recommendations