Real-Time Full-Body Pose Synthesis and Editing

Reference work entry

Abstract

Posing character has always been playing an important role in character animation and interactive applications such as computer games. However, such a task is time-consuming and labor-intensive. In order to improve the efficiency in character posing, researchers in computer graphics have been working on a wide variety of semi- or fully automatic approaches in creating full-body poses, ranging from traditional approaches like inverse kinematics (IK), data-driven approaches which make use of captured motion data, as well as direct pose manipulation through intuitive interfaces. In this book chapter, we will introduce the aforementioned techniques and also discuss their applications in animation production.

Keywords

Pose synthesis Pose editing Inverse kinematics Motion retargeting Motion blending Jacobian-based IK Cyclic coordinate decent Collision avoidance Data-driven pose synthesis 

References

  1. Baraff D (1996) Linear-time dynamics using lagrange multipliers. In: SIGGRAPH ’96: Proceedings of the 23rd annual conference on computer graphics and interactive techniques. ACM, New York, pp 137–146.  https://doi.org/10.1145/237170.237226CrossRefGoogle Scholar
  2. Chai J, Hodgins JK (2005) Performance animation from low-dimensional control signals. In: SIGGRAPH ’05: ACM SIGGRAPH 2005 papers. ACM, New York, pp 686–696.  https://doi.org/10.1145/1186822.1073248CrossRefGoogle Scholar
  3. Choi MG, Yang K, Igarashi T, Mitani J, Lee J (2012) Retrieval and visualization of human motion data via stick figures. Comput Graph Forum 31(7pt1):2057–2065.  https://doi.org/10.1111/j.1467-8659.2012.03198.xCrossRefGoogle Scholar
  4. Davis J, Agrawala M, Chuang E, Popović Z, Salesin D (2003) A sketching interface for articulated figure animation. In: Proceedings of the 2003 ACM SIGGRAPH/eurographics symposium on computer animation, SCA ’03. Eurographics Association, Aire-la-Ville, pp 320–328 http://dl.acm.org/citation.cfm?id=846276.846322Google Scholar
  5. Esposito C, Paley WB, Ong J (1995) Of mice and monkeys: a specialized input device for virtual body animation. In: Proceedings of the 1995 symposium on interactive 3D graphics, I3D ’95. ACM, New York, p 109–ff.  https://doi.org/10.1145/199404.199424CrossRefGoogle Scholar
  6. Gleicher M (1998) Retargeting motion to new characters. In: SIGGRAPH ’98: Proceedings of the 25th annual conference on computer graphics and interactive techniques. ACM Press, New York, pp 33–42.  https://doi.org/10.1145/280814.280820CrossRefGoogle Scholar
  7. Grochow K, Martin SL, Hertzmann A, Popović Z (2004) Style-based inverse kinematics. ACM Trans Graph 23(3):522–531.  https://doi.org/10.1145/1015706.1015755CrossRefGoogle Scholar
  8. Guay M, Cani MP, Ronfard R (2013) The line of action: an intuitive interface for expressive character posing. ACM Trans Graph 32(6):205:1–205:8.  https://doi.org/10.1145/2508363.2508397CrossRefGoogle Scholar
  9. Hahn F, Mutzel F, Coros S, Thomaszewski B, Nitti M, Gross M, Sumner RW (2015) Sketch abstractions for character posing. In: Proceedings of the 14th ACM SIGGRAPH/eurographics symposium on computer animation, SCA ’15. ACM, New York, pp 185–191.  https://doi.org/10.1145/2786784.2786785CrossRefGoogle Scholar
  10. Hämäläinen P, Rajamäki J, Liu CK (2015) Online control of simulated humanoids using particle belief propagation. ACM Trans Graph 34(4):81:1–81:13.  https://doi.org/10.1145/2767002CrossRefMATHGoogle Scholar
  11. Harish P, Mahmudi M, Callennec BL, Boulic R (2016) Parallel inverse kinematics for multithreaded architectures. ACM Trans Graph 35(2):19:1–19:13.  https://doi.org/10.1145/2887740CrossRefGoogle Scholar
  12. Ho ESL, Komura T (2009) Character motion synthesis by topology coordinates. In: Dutr’e P, Stamminger M (eds) Computer graphics forum (Proceedings of Eurographics 2009), Munich, vol 28, pp 299–308Google Scholar
  13. Ho ESL, Komura T (2011) A finite state machine based on topology coordinates for wrestling games. Comput Animat Virtual Worlds 22(5):435–443.  https://doi.org/10.1002/cav.376CrossRefGoogle Scholar
  14. Ho ESL, Shum HPH (2013) Motion adaptation for humanoid robots in constrained environments. In: Robotics and automation (ICRA), 2013 I.E. international conference on, pp 3813–3818.  https://doi.org/10.1109/ICRA.2013.6631113
  15. Ho ESL, Komura T, Ramamoorthy S, Vijayakumar S (2010a) Controlling humanoid robots in topology coordinates. In: Intelligent robots and systems (IROS), 2010 IEEE/RSJ international conference on, pp 178–182.  https://doi.org/10.1109/IROS.2010.5652787
  16. Ho ESL, Komura T, Tai CL (2010b) Spatial relationship preserving character motion adaptation. ACM Trans Graph 29(4):1–8.  https://doi.org/10.1145/1778765.1778770CrossRefGoogle Scholar
  17. Ho ESL, Chan JCP, Komura T, Leung H (2013a) Interactive partner control in close interactions for real-time applications. ACM Trans Multimed Comput Commun Appl 9(3):21:1–21:19.  https://doi.org/10.1145/2487268.2487274CrossRefGoogle Scholar
  18. Ho ESL, Shum HPH, Ym C, PC Y (2013b) Topology aware data-driven inverse kinematics. Comput Graph Forum 32(7):61–70.  https://doi.org/10.1111/cgf.12212CrossRefGoogle Scholar
  19. Igarashi T, Matsuoka S, Tanaka H (1999) Teddy: a sketching interface for 3d freeform design. In: Proceedings of the 26th annual conference on computer graphics and interactive techniques, SIGGRAPH ’99. ACM Press/Addison-Wesley, New York, pp 409–416.  https://doi.org/10.1145/311535.311602CrossRefGoogle Scholar
  20. Isrozaidi N, Ismail N, Oshita M (2010) Data glove-based interface for real-time character motion control. In: ACM SIGGRAPH ASIA 2010 Posters, SA ’10. ACM, New York, p 5:1.  https://doi.org/10.1145/1900354.1900360Google Scholar
  21. Jacobson A, Panozzo D, Glauser O, Pradalier C, Hilliges O, Sorkine-Hornung O (2014) Tangible and modular input device for character articulation. ACM Trans Graph 33(4):82:1–82:12.  https://doi.org/10.1145/2601097.2601112CrossRefGoogle Scholar
  22. Kallmann M (2008) Analytical inverse kinematics with body posture control. Comput Animat Virtual Worlds 19(2):79–91CrossRefGoogle Scholar
  23. Komura T, Lam WC (2006) Real-time locomotion control by sensing gloves. Comput Animat Virtual Worlds 17(5):513–525.  https://doi.org/10.1002/cav.114CrossRefGoogle Scholar
  24. Komura T, Ho ESL, Lau RW (2005) Animating reactive motion using momentum-based inverse kinematics: motion capture and retrieval. J Vis Comput Animat 16(3–4):213–223.  https://doi.org/10.1002/cav.v16:3/4Google Scholar
  25. Kovar L, Schreiner J, Gleicher M (2002) Footskate cleanup for motion capture editing. In: SCA ’02: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp 97–104.  https://doi.org/10.1145/545261.545277
  26. Kulpa R, Multon F, Arnaldi B (2005) Morphology-independent representation of motions for interactive human-like animation. Computer Graphics Forum 24(3):343–351.  https://doi.org/10.1111/j.1467-8659.2005.00859.xCrossRefGoogle Scholar
  27. Kyto M, Dhinakaran K, Martikainen A, Hamalainen P (2015) Improving 3d character posing with a gestural interface. IEEE Comput Graph Appl.  https://doi.org/10.1109/MCG.2015.117Google Scholar
  28. Lawrence ND (2004) Gaussian process latent variable models for visualisation of high dimensional data. In: Advances in neural information processing systems (Proceedings of NIPS 2003). MIT Press, Cambridge, MA, pp 329–336Google Scholar
  29. Lee J, Shin SY (1999) A hierarchical approach to interactive motion editing for human-like figures. In: Proceedings of the 26th annual conference on computer graphics and interactive techniques, SIGGRAPH ’99. ACM Press/Addison-Wesley Publishing, New York, pp 39–48.  https://doi.org/10.1145/311535.311539CrossRefGoogle Scholar
  30. Lin J, Igarashi T, Mitani J, Liao M, He Y (2012) A sketching interface for sitting pose design in the virtual environment. IEEE Trans Vis Comput Graph 18(11):1979–1991.  https://doi.org/10.1109/TVCG.2012.61CrossRefGoogle Scholar
  31. Liu H, Wei X, Chai J, Ha I, Rhee T (2011) Realtime human motion control with a small number of inertial sensors. In: Symposium on interactive 3D graphics and games, I3D ’11. ACM, New York, pp 133–140.  https://doi.org/10.1145/1944745.1944768CrossRefGoogle Scholar
  32. Lu J, Liu X (2014) Foot plant detection for motion capture data by curve saliency. In: Computing, Communication and Networking Technologies (ICCCNT), 2014 international conference on, pp 1–6.  https://doi.org/10.1109/ICCCNT.2014.6963001
  33. Lyard E, Magnenat-Thalmann N (2008) Motion adaptation based on character shape. Comput Animat Virtual Worlds 19(3–4):189–198.  https://doi.org/10.1002/cav.v19:3/4CrossRefGoogle Scholar
  34. Leap Motion (2016, n.d.) https://www.leapmotion.com/
  35. Nakamura Y, Hanafusa H (1986) Inverse kinematics solutions with singularity robustness for robot manipulator control. J Dyn Syst Meas Control 108:163–171CrossRefMATHGoogle Scholar
  36. Numaguchi N, Nakazawa A, Shiratori T, Hodgins JK (2011) A puppet interface for retrieval of motion capture data. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics symposium on computer animation, SCA ’11. ACM, New York, pp 157–166.  https://doi.org/10.1145/2019406.2019427CrossRefGoogle Scholar
  37. Oshita M, Senju Y, Morishige S (2013) Character motion control interface with hand manipulation inspired by puppet mechanism. In: Proceedings of the 12th ACM SIGGRAPH international conference on virtual-reality continuum and its applications in industry, VRCAI ’13. ACM, New York, pp 131–138.  https://doi.org/10.1145/2534329.2534360Google Scholar
  38. Rhodin H, Tompkin J, Kim KI, Kiran V, Seidel HP, Theobalt C (2014) Interactive motion mapping for real-time character control. Comput Graph Forum (Proc Eurograph) 33(2):273–282.  https://doi.org/10.1111/cgf.12325CrossRefGoogle Scholar
  39. Rose C, Cohen MF, Bodenheimer B (1998) Verbs and adverbs: multidimensional motion interpolation. IEEE Comput Graph Appl 18:32–40.  https://doi.org/10.1109/38.708559CrossRefGoogle Scholar
  40. Shin HJ, Lee J, Shin SY, Gleicher M (2001) Computer puppetry: an importance-based approach. ACM Trans Graph 20(2):67–94.  https://doi.org/10.1145/502122.502123CrossRefGoogle Scholar
  41. Shum HPH, Komura T, Yamazaki S (2007) Simulating competitive interactions using singly captured motions. In: Proceedings of ACM virtual reality software technology 2007, pp 65–72Google Scholar
  42. Shum HPH, Komura T, Yamazaki S (2008) Simulating interactions of avatars in high dimensional state space. In: ACM SIGGRAPH symposium on interactive 3D graphics (i3D) 2008, pp 131–138Google Scholar
  43. Wang LCT, Chen CC (1991) A combined optimization method for solving the inverse kinematics problems of mechanical manipulators. IEEE Trans Robot Autom 7(4):489–499.  https://doi.org/10.1109/70.86079CrossRefGoogle Scholar
  44. Wei XK, Chai J (2011) Intuitive interactive human-character posing with millions of example poses. IEEE Comput Graph Appl 31:78–88.  https://doi.org/10.1109/MCG.2009.132CrossRefGoogle Scholar
  45. Welman C (1993) Inverse kinematics and geometric constraints for articulated figure manipulation. Master’s thesis, Simon Frasor UniversityGoogle Scholar
  46. Whitney D (1969) Resolved motion rate control of manipulators and human prostheses. Man-Machine Syst IEEE Trans 10(2):47–53.  https://doi.org/10.1109/TMMS.1969.299896MathSciNetCrossRefGoogle Scholar
  47. Wu X, Tournier M, Reveret L (2011) Natural character posing from a large motion database. IEEE Comput Graph Appl 31(3):69–77.  https://doi.org/10.1109/MCG.2009.111CrossRefGoogle Scholar
  48. Yamane K, Nakamura Y (2003) Natural motion animation through constraining and deconstraining at will. IEEE Trans Vis Comput Graph 9(3):352–360.  https://doi.org/10.1109/TVCG.2003.1207443CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer and Information SciencesNorthumbria UniversityNewcastle upon TyneUK
  2. 2.Department of Computer ScienceHong Kong Baptist UniversityKowloon TongHong Kong

Personalised recommendations