The Influence of Prosthetic Knee Joints on Gait

Reference work entry

Abstract

Transfemoral prostheses are intended to restore function and cosmesis in persons with limb loss. Lower-limb prostheses are generally intended to restore ambulation, a periodic activity in which the primary concern for the device is for the provision of natural, efficient movement. Of all the elements affecting locomotion, those most amenable to change relate to the device; thus, in the description of walking patterns, emphasis should be placed on prosthetic design, alignment, and fit. The designs of commercially available prosthetic knee units are generally biomimetic in nature, and their functions are fundamentally similar—the prosthetic knee must provide stability during stance phase to ensure that the user is safely supported on their prosthesis, and it must flex during swing phase to shorten the prosthesis and allow the user to advance the limb. However, different prosthetic knee designs offer different features above and beyond these minimum requirements, and selection of a particular knee joint depends upon an individual’s functional needs and abilities.

Keywords

Prosthesis Prosthetics Amputation Lower limb Knee joint 

References

  1. Bellmann M, Schmalz T, Blumentritt S (2010) Comparative biomechanical analysis of current microprocessor-controlled prosthetic knee joints. Arch Phys Med Rehabil 91(4):644–652.  https://doi.org/10.1016/j.apmr.2009.12.014CrossRefGoogle Scholar
  2. Blumentritt S, Scherer HW, Wellershaus U, Michael JW (1997) Design principles, biomechanical data and clinical experience with a polycentric knee offering controlled stance phase knee flexion: a preliminary report. J Prosthet Orthot 9(1):18–24CrossRefGoogle Scholar
  3. Boonstra AM, Schrama JM, Eisma WH, Hof AL, Fidler V (1996) Gait analysis of transfemoral amputee patients using prostheses with two different knee joints. Arch Phys Med Rehabil 77(5):515–520CrossRefGoogle Scholar
  4. Buckley JG, Spence WD, Solomonidis SE (1997) Energy cost of walking: comparison of "intelligent prosthesis" with conventional mechanism. Arch Phys Med Rehabil 78(3):330–333CrossRefGoogle Scholar
  5. Cappozzo A, Figura F, Leo T, Marchetti M (1976) Biomechanical evaluation of above-knee prosthetics. In: Komi PV (ed) Biomechanics V-A. University Park Press, Baltimore, pp 366–372Google Scholar
  6. Chin T, Machida K, Sawamura S, Shiba R, Oyabu H, Nagakura Y et al (2006) Comparison of different microprocessor controlled knee joints on the energy consumption during walking in trans-femoral amputees: intelligent knee prosthesis (IP) versus C-leg. Prosthet Orthot Int 30(1):73–80CrossRefGoogle Scholar
  7. Chin T, Sawamura S, Fujita H, Nakajima S, Ojima I, Oyabu H et al (1999) The efficacy of physiological cost index (PCI) measurement of a subject walking with an Intelligent Prosthesis. Prosthet Orthot Int 23(1):45–49Google Scholar
  8. Datta D, Heller B, Howitt J (2005) A comparative evaluation of oxygen consumption and gait pattern in amputees using Intelligent Prostheses and conventionally damped knee swing-phase control. Clin Rehabil 19:398–403CrossRefGoogle Scholar
  9. Edelstein JE (1990) Prosthetic and orthotic gait. In: Smidt GL (ed) Gait in Rehabilitation. Churchill Livingston Inc., New York, pp 281–300Google Scholar
  10. Gard SA, Childress DS (1999) The influence of stance-phase knee flexion on the vertical displacement of the trunk during normal walking. Arch Phys Med Rehabil 80(1):26–32CrossRefGoogle Scholar
  11. Gard SA, Childress DS, Uellendahl JE (1996) The influence of four-bar linkage knees on prosthetic swing-phase foot clearance. J Prosthet Orthot 8(2):34–40CrossRefGoogle Scholar
  12. Godfrey CM, Jousse AT, Brett R, Butler JF (1975) A comparison of some gait characteristics with six knee joints. Orthot Prosthet 29(3):33–38Google Scholar
  13. Greene MP (1983) Four bar linkage knee analysis. Orthot Prosthet 37(1):15–24Google Scholar
  14. Hafner BJ, Willingham LL, Buell NC, Allyn KJ, Smith DG (2007) Evaluation of function, performance, and preference as transfemoral amputees transition from mechanical to microprocessor control of the prosthetic knee. Arch Phys Med Rehabil 88(2):207–217CrossRefGoogle Scholar
  15. Heller BW, Datta D, Howitt J (2000) A pilot study comparing the cognitive demand of walking for transfemoral amputees using the Intelligent Prosthesis with that using conventionally damped knees. Clin Rehabil 14(5):518–522CrossRefGoogle Scholar
  16. Herr H, Wilkenfeld A (2003) User-adaptive control of a magnetorheological prosthetic knee. Ind Robot 30(1):42–55CrossRefGoogle Scholar
  17. Isakov E, Susak Z, Becker E (1985) Energy expenditure and cardiac response in above-knee amputees while using prostheses with open and locked knee mechanisms. Scand J Rehabil Med Suppl 12:108–111Google Scholar
  18. Jacobs NA (1988) Chap 16: Biomechanics of above-knee prostheses. In: Murdoch G, Donovan RG (eds) Amputation surgery & lower limb prosthetics. Blackwell Scientific Publications, Oxford, pp 130–139Google Scholar
  19. Jaegers SM, Arendzen JH, de Jongh HJ (1995) Prosthetic gait of unilateral transfemoral amputees: a kinematic study. Arch Phys Med Rehabil 76(8):736–743CrossRefGoogle Scholar
  20. Jaegers SM, Vos LD, Rispens P, Hof AL (1993) The relationship between comfortable and most metabolically efficient walking speed in persons with unilateral above-knee amputation. Arch Phys Med Rehabil 74(5):521–525CrossRefGoogle Scholar
  21. James U (1973) Oxygen uptake and heart rate during prosthetic walking in healthy male unilateral above-knee amputees. Scand J Rehabil Med 5(2):71–80Google Scholar
  22. James U, Oberg K (1973) Prosthetic gait pattern in unilateral above-knee amputees. Scand J Rehabil Med 5:35–50Google Scholar
  23. Jepson F, Datta D, Harris I, Heller B, Howitt J, McLean J (2008) A comparative evaluation of the Adaptive knee and Catech knee joints: a preliminary study. Prosthet Orthot Int 32(1):84–92CrossRefGoogle Scholar
  24. Johansson JL, Sherrill DM, Riley PO, Bonato P, Herr H (2005) A clinical comparison of variable-damping and mechanically passive prosthetic knee devices. Am J Phys Med Rehabil 84(8):563–575CrossRefGoogle Scholar
  25. Kahle JT, Highsmith MJ, Hubbard SL (2008) Comparison of nonmicroprocessor knee mechanism versus C-Leg on Prosthesis Evaluation Questionnaire, stumbles, falls, walking tests, stair descent, and knee preference. J Rehabil Res Dev 45(1):1–14CrossRefGoogle Scholar
  26. Kaufman KR, Levine JA, Brey RH, Iverson BK, McCrady SK, Padgett DJ, Joyner MJ (2007) Gait and balance of transfemoral amputees using passive mechanical and microprocessor-controlled prosthetic knees. Gait Posture 26(4):489–493CrossRefGoogle Scholar
  27. Kaufman KR, Levine JA, Brey RH, McCrady SK, Padgett DJ, Joyner MJ (2008) Energy expenditure and activity of transfemoral amputees using mechanical and microprocessor-controlled prosthetic knees. Arch Phys Med Rehabil 89(7):1380–1385CrossRefGoogle Scholar
  28. Kaufman KR, Sutherland DH (2006) Chapter 3. Kinematics of Normal Human Walking. In: Gamble JRJ (ed) Human walking, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 33–51Google Scholar
  29. Kirker S, Keymer S, Talbot J, Lachmann S (1996) An assessment of the Intelligent Knee prosthesis. Clin Rehabil 10:267–273CrossRefGoogle Scholar
  30. Klute GK, Berge JS, Orendurff MS, Williams RM, Czerniecki JM (2006) Prosthetic intervention effects on activity of lower-extremity amputees. Arch Phys Med Rehabil 87(5):717–722CrossRefGoogle Scholar
  31. Koehler-McNicholas SR, Lipschutz RD, Gard SA (2016) The biomechanical response of persons with transfemoral amputation to variations in prosthetic knee alignment during level walking. J Rehabil Res Dev, (In press).Google Scholar
  32. Koehler SR, Gard SA, Meier MR, Cassar M, Lipschutz R (2004) Stance-phase knee flexion in persons with unilateral transfemoral amputations walking on an Otto Bock 3R60 EBS Knee: a preliminary report. Paper presented at the 9th Annual Meeting of the Gait and Clinical Movement Analysis Society (GCMAS), Lexington, KY.Google Scholar
  33. Meier MR, Hansen AH, Gard SA, McFadyen AK (2012) Obstacle course: users’ maneuverability and movement efficiency when using Otto Bock C-Leg, Otto Bock 3R60, and CaTech SNS prosthetic knee joints. J Rehabil Res Dev 49(4):583–596CrossRefGoogle Scholar
  34. Michael JW (1994) Prosthetic knee mechanisms. Phys Med Rehabil State Art Rev 8(1):147–164Google Scholar
  35. Michael JW (1999) Modern prosthetic knee mechanisms. Clin Orthop Relat Res 361:39–47CrossRefGoogle Scholar
  36. Michael JW (2004) Chap 33: Prosthetic Suspensions and Components. In: Michael JW, Bowker JH, Smith DG (eds) Atlas of amputations and limb deficiencies: surgical, prosthetic, and rehabilitation principles, 3rd edn. American Academy of Orthopaedic Surgeons, Rosemont, pp 409–427Google Scholar
  37. Moosabhoy MA, Gard SA (2006) Methodology for determining the sensitivity of swing leg toe clearance and leg length to swing leg joint angles during gait. Gait Posture 24(4):493–501CrossRefGoogle Scholar
  38. Murphy EF (1964) The swing phase of walking with above-knee prostheses. Bull Prosthet Res 10(1):5–39Google Scholar
  39. Murray MP, Mollinger LA, Sepic SB, Gardner GM, Linder MT (1983) Gait patterns in above-knee amputee patients: hydraulic swing control vs constant-friction knee components. Arch Phys Med Rehabil 64(8):339–345Google Scholar
  40. Murray MP, Sepic SB, Gardner GM, Mollinger LA (1980) Gait patterns of above-knee amputees using constant friction knee components. Bull Prosthet Res 17(2):35–45Google Scholar
  41. Oberg KET, Kamwendo K (1988) Chap 19: knee components for the above-knee amputation. In: Murdoch G, Donovan RG (eds) Amputation surgery & lower limb prosthetics. Blackwell Scientific Publications, OxfordGoogle Scholar
  42. Orendurff MS, Segal AD, Klute GK, McDowell ML, Pecoraro JA, Czerniecki JM (2006) Gait efficiency using the C-Leg. J Rehabil Res Dev 43(2):239–246CrossRefGoogle Scholar
  43. Peizer E, Gardner HF (1972) Selection and application of knee mechanisms. Bull Prosthet Res 10(18):90–158Google Scholar
  44. Perry J, Burnfield JM (2010) Gait analysis: normal and pathological function, 2nd edn. SLACK Inc, ThorofareGoogle Scholar
  45. Perry J, Burnfield JM, Newsam CJ, Conley P (2004) Energy expenditure and gait characteristics of a bilateral amputee walking with C-leg prostheses compared with stubby and conventional articulating prostheses. Arch Phys Med Rehabil 85(10):1711–1717CrossRefGoogle Scholar
  46. Radcliffe CW (1970a) Biomechanics of above-knee prostheses. In: Murdoch G (ed) Prosthetic and Orthotic Practice. Edward Arnold Ltd., London, pp 191–198Google Scholar
  47. Radcliffe CW (1970b) Functional considerations in the fitting of above-knee prostheses. In: Wilson AB (ed) Selected articles from artificial limbs. Robert E. Krieger Publishing Co. Inc., Huntington, pp 5–30Google Scholar
  48. Radcliffe CW (1977) The Knud Jansen Lecture: above-knee prosthetics. Prosthet Orthot Int 1(3):146–160Google Scholar
  49. Schmalz T, Bellmann M, Proebsting E, Blumentritt S (2014) Effects of adaptation to a functionally new prosthetic lower-limb component: results of biomechanical tests immediately after fitting and after 3 months of use. J Prosthet Orthot 26(3):134–143CrossRefGoogle Scholar
  50. Schmalz T, Blumentritt S, Jarasch R (2002) Energy expenditure and biomechanical characteristics of lower limb amputee gait: the influence of prosthetic alignment and different prosthetic components. Gait Posture 16(3):255–263CrossRefGoogle Scholar
  51. Schmalz T, Blumentritt S, Marx B (2007) Biomechanical analysis of stair ambulation in lower limb amputees. Gait Posture 25(2):267–278CrossRefGoogle Scholar
  52. Schuch CM (1992) Transfemoral amputation: Prosthetic management. In: Michael JBJ (ed) Atlas of limb prosthetics. Mosby-Year Book, Inc., St. Louis, pp 509–533Google Scholar
  53. Segal AD, Orendurff MS, Klute GK, McDowell ML, Pecoraro JA, Shofer J, Czerniecki JM (2006) Kinematic and kinetic comparisons of transfemoral amputee gait using C-Leg and Mauch SNS prosthetic knees. J Rehabil Res Dev 43(7):857.  https://doi.org/10.1682/jrrd.2005.09.0147CrossRefGoogle Scholar
  54. Sensinger JW, Intawachirarat N, Gard SA (2013) Contribution of prosthetic knee and ankle mechanisms to swing-phase foot clearance. IEEE Trans Neural Syst Rehabil Eng 21(1):74–80.  https://doi.org/10.1109/TNSRE.2012.2224885CrossRefGoogle Scholar
  55. Seymour R, Engbretson B, Kott K, Ordway N, Brooks G, Crannell J et al (2007) Comparison between the C-leg microprocessor-controlled prosthetic knee and non-microprocessor control prosthetic knees: a preliminary study of energy expenditure, obstacle course performance, and quality of life survey. Prosthet Orthot Int 31(1):51–61CrossRefGoogle Scholar
  56. Shurr DG, Michael JW (2002) Prosthetics & orthotics, 2nd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  57. Sutherland JL, Sutherland DH, Kaufman KR, Teel M (1997) Gait comparison of two prosthetic knee units. J Prosthet Orthot 9(4):168–173CrossRefGoogle Scholar
  58. Taylor MB, Clark E, Offord EA, Baxter C (1996) A comparison of energy expenditure by a high level trans-femoral amputee using the Intelligent Prosthesis and conventionally damped prosthetic limbs. Prosthet Orthot Int 20(2):116–121Google Scholar
  59. Theeven P, Hemmen B, Rings F, Meys G, Brink P, Smeets R, Seelen H (2011) Functional added value of microprocessor-controlled knee joints in daily life performance of Medicare Functional Classification Level-2 amputees. J Rehabil Med 43(10):906–915.  https://doi.org/10.2340/16501977-0861CrossRefGoogle Scholar
  60. Traugh GH, Corcoran PJ, Reyes RL (1975) Energy expenditure of ambulation in patients with above-knee amputations. Arch Phys Med Rehabil 56(2):67–71Google Scholar
  61. Waters RL, Mulroy S (1999) The energy expenditure of normal and pathologic gait. Gait Posture 9(3):207–231CrossRefGoogle Scholar
  62. Waters RL, Perry J, Antonelli D, Hislop H (1976) Energy cost of walking of amputees: the influence of level of amputation. J Bone Joint Surg Am 58(1):42–46CrossRefGoogle Scholar
  63. Waters RL, Yakura JS (1989) The energy expenditure of normal and pathologic gait. Crit Rev Phys Rehabil Med 1(3):183–209Google Scholar
  64. Williams RM, Turner AP, Orendurff M, Segal AD, Klute GK, Pecoraro J, Czerniecki J (2006) Does having a computerized prosthetic knee influence cognitive performance during amputee walking? Arch Phys Med Rehabil 87(7):989–994CrossRefGoogle Scholar
  65. Willingham LL, Buell NC, Allyn KJ, Hafner BJ, Smith DG (2004) Measurement of knee center alignment trends in a national sample of established users of the Otto Bock C-Leg microprocessor-controlled knee unit. J Prosthet Orthot 16(3):72–75CrossRefGoogle Scholar
  66. Winter DA (1992) Foot trajectory in human gait: a precise and multifactorial motor control task. Phys Ther 72(1):45–53 discussion 54-46CrossRefGoogle Scholar
  67. Yang L, Solomonidis SE, Spence WD, Paul JP (1991) The influence of limb alignment on the gait of above-knee amputees. J Biomech 24(11):981–997CrossRefGoogle Scholar
  68. Zuniga EN, Leavitt LA, Calvert JC, Canzoneri J, Peterson CR (1972) Gait patterns in above-knee amputees. Arch Phys Med Rehabil 53(8):373–382Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physical Medicine and Rehabilitation, Feinberg School of MedicineNorthwestern University Prosthetics-Orthotics Center (NUPOC)ChicagoUSA
  2. 2.Department of Physical Medicine and Rehabilitation, Feinberg School of MedicineNorthwestern UniversityChicagoUSA
  3. 3.Jesse Brown VA Medical Center, Department of Veterans AffairsChicagoUSA

Section editors and affiliations

  • Sebastian I. Wolf
    • 1
  1. 1.Movement Analysis LaboratoryClinic for Orthopedics and Trauma Surgery; Center for Orthopedics, Trauma Surgery and Spinal Cord Injury;Heidelberg University HospitalHeidelbergGermany

Personalised recommendations