Skip to main content

Interpreting Spatiotemporal Parameters, Symmetry, and Variability in Clinical Gait Analysis

  • Reference work entry
  • First Online:
Handbook of Human Motion

Abstract

Spatiotemporal parameters (STP) are widely studied variables in clinical gait analysis. Yet they often remain underutilized despite the rich information they provide about organization and control of the patient’s progress. Building on them requires a broad knowledge of the “normal” gait, before to being able to understand the impact of pathological disorders. We hope to provide information to better grasp and understand the STP while highlighting important points.

Through this chapter, we will introduce basics of the gait cycle, before considering the components for which the STP may be informative: rhythm, pace, phases, postural control, asymmetry, and variability. We will define main parameters for each component and discuss their use regarding state of the art. Then factors influencing STP will be addressed to understand how these parameters change during life, when a child learns to walk or when the advance in age-affected gait in the elderly, as well as the influence of diseases. Indeed, various pathologies affect the walk, and the most relevant STP are not always the same. We will consider Friedreich ataxia, which is a neurodegenerative disease, in which combination of cerebellar, pyramidal syndromes, and axonal neuropathy cause a rapid degeneration of the walking ability and therefore lead to various observable gait patterns. We will also illustrate how PST can be useful to document the most appropriate time for a patient to change from one assistive device to another.

The final portion will aim to give paths for clinical interpretation while thinking about the concepts of limitation and adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Atkinson G, Nevill AM (1998) Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med 26:217–238

    Article  Google Scholar 

  • Balasubramanian CK, Clark DJ, Gouelle A (2015) Validity of the gait variability index in older adults: effect of aging and mobility impairments. Gait Posture 41(4):941–946

    Article  Google Scholar 

  • Brach JS, Berlin JE, VanSwearingen JM, Newman AB, Studenski SA (2005) Too much or too little step width variability is associated with a fall history in older persons who walk at or near normal gait speed. J Neuro Eng Rehab 2:21

    Article  Google Scholar 

  • Bril B, Brénière Y (1992) Postural requirements and progression velocity in young walkers. J Mot Behav 24:105–116

    Article  Google Scholar 

  • Dusing SC, Thorpe DE (2007) A normative sample of temporal and spatial gait parameters in children using the GAITRite electronic walkway. Gait Posture 25:135–139

    Article  Google Scholar 

  • Eisenhardt JR, Cook D, Pregler I, Foehl HC (1996) Changes in temporal gait characteristics and pressure distribution for bare feet versus various heel heights. Gait Posture 4(4):280–286

    Article  Google Scholar 

  • Gouelle A (2014) Use of functional ambulation performance score as measurement of gait ability: review. JRRD 51(5):665–674

    Article  Google Scholar 

  • Gouelle A, Mégrot F, Presedo A, Penneçot GF, Yelnik A (2011) Validity of functional ambulation performance score for the evaluation of spatiotemporal parameters of children’s gait. J Mot Behav 43(2):95–100

    Article  Google Scholar 

  • Gouelle A, Mégrot F, Presedo A, Husson I, Yelnik A, Penneçot GF (2013) The gait variability index: a new way to quantify fluctuation magnitude of spatiotemporal parameters during gait. Gait Posture 38(3):461–465

    Article  Google Scholar 

  • Gouelle A, Leroux J, Bredin J, Mégrot F (2016) Changes in gait variability from first steps to adulthood: normative data for the gait variability index. J Mot Behav 48(3):249–255

    Article  Google Scholar 

  • Gretz HR, Doering LL, Quinn J, Raftopoulos M, Nelson AJ, Zwick DE (1998) Functional ambulation performance testing of adults with down syndrome. Neurorehabilitation 11(3):211–225

    Article  Google Scholar 

  • Hausdorff JM (2005) Gait variability: methods, modeling and meaning. J Neuro Eng Rehab 2:19

    Article  Google Scholar 

  • Hausdorff JM, Zemany L, Peng C-K, Goldberger AL (1999) Maturation of gait dynamics: stride-to-stride variability and its temporal organization in children. J Appl Physiol 86:1040–1047

    Article  Google Scholar 

  • Hof AL (1996) Scaling gait data to body size. Gait Posture 4:222–223

    Article  Google Scholar 

  • Hollman JH, McDade EM, Petersen RC (2011) Normative spatiotemporal gait parameters in older adults. Gait Posture 34(1):111–118

    Article  Google Scholar 

  • Kirtley C (2006) Clinical gait analysis: theory and practice. Churchill-Livingstone, New York

    Google Scholar 

  • Lauzière S, Betschart M, Aissaoui R, Nadeau S (2014) Understanding spatial and temporal gait asymmetries in individuals post stroke. Int J Phys Med Rehabil 2:3

    Google Scholar 

  • Lord S, Galna B, Verghese J, Coleman S, Burn D, Rochester L (2013) Independent domains of gait in older adults and associated motor and nonmotor attributes: validation of a factor analysis approach. J Gerontol A Biol Sci Med Sci 68(7):820–827

    Article  Google Scholar 

  • Lord S, Galna B, Coleman S, Yarnall S, Burn D, Verghese J (2014) Cognition and gait show a selective pattern of association dominated by phenotype in incident Parkinson’s disease. Front Aging Neurosci 6:249

    Article  Google Scholar 

  • Maki BE (1997) Gait changes in older adults: predictors of falls or indicators of fear. J Am Geriatr Soc 45:313–320

    Article  Google Scholar 

  • Novacheck TF (1998) The biomechanics of running. Gait Posture 7:77–95

    Article  Google Scholar 

  • Paterson KL, Lythgo ND, Hill KD (2009) Gait variability in younger and older adult women is altered by overground walking protocol. Age Ageing 38(6):745–748

    Article  Google Scholar 

  • Patterson KK, Gage WH, Brooks D, Black SE, McIlroy WE (2010) Evaluation of gait symmetry after stroke: a comparison of current methods and recommendations for standardization. Gait Posture 31:241–246

    Article  Google Scholar 

  • Perry J, Burnfield J (2010) Gait analysis: normal and pathological function, 2nd edn. Slack Incorporated, Thorofare

    Google Scholar 

  • Sekiya N, Nagasaki H, Ito H, Furuna T (1996) The invariant relationship between step length and step rate during free walking. J Hum Mov Stud 30:241–257

    Google Scholar 

  • Sutherland D (1997) The development of mature gait. Gait Posture 6:163–170

    Article  Google Scholar 

  • Vaughan CL (2003) Theories of bipedal walking: an odyssey. J Biomech 36(4):513–523.

    Google Scholar 

  • Verghese J, Wang C, Lipton RB, Holtzer R, Xue X (2007) Quantitative gait dysfunction and risk of cognitive decline and dementia. J Neurol Neurosurg Psychiatry 78(9):929–935

    Article  Google Scholar 

  • Verlinden VJA, van der Geest JN, Hoogendam Y, Hofman A, Breteler MMB, Ikram MA (2013) Gait patterns in a community-dwelling population aged 50 years and older. Gait Posture 37(4):500–505

    Article  Google Scholar 

  • Whittle MW (2007) Gait analysis: an introduction. Butterworth-Heinemann, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Gouelle .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gouelle, A., Mégrot, F. (2018). Interpreting Spatiotemporal Parameters, Symmetry, and Variability in Clinical Gait Analysis. In: Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-14418-4_35

Download citation

Publish with us

Policies and ethics