Interpreting Ground Reaction Forces in Gait

  • Nachiappan Chockalingam
  • Aoife Healy
  • Robert Needham
Reference work entry


This chapter provides a description of ground reaction forces (GRFs) in gait, detailing the technology used to measure them and their use in gait analysis. Representative ground reaction force data is provided, and information on how data is analyzed and interpreted is discussed. In addition, examples of how GRF data has been used to gain an understanding of healthy and pathological gait (scoliosis, cerebral palsy, stroke, multiple sclerosis) are provided and discussed. This chapter highlights that the GRF is an essential part of any clinical gait analysis and contributes to both surgical and conservative clinical management involving gait.


Ground reaction force Center of pressure Shear force Gait analysis Human kinetics Walking 


  1. Alexander NB, Mollo JM, Giordani B, Ashton-Miller JA, Schultz AB, Grunawalt JA, Foster NL (1995) Maintenance of balance, gait patterns and obstacle clearance in Alzheimer’s disease. Neurology 45(5):908–914CrossRefGoogle Scholar
  2. Andriacchi TP, Andersson GB, Fermier RW, Stern D, Galante JO (1980) A study of lower-limb mechanics during stair-climbing. J Bone Joint Surg Am 62(5):749–757CrossRefGoogle Scholar
  3. Andriacchi TP, Hurwitz DE (1997) Gait biomechanics and the evolution of total joint replacement. Gait Posture 5(3):256–264CrossRefGoogle Scholar
  4. Benedetti MG, Catani F, Leardini A, Pignotti E, Giannini S (1998) Data management in gait analysis for clinical applications. Clin Biomech 13(3):204–215CrossRefGoogle Scholar
  5. Burwell RG, Dangerfield PH, Lowe TG, Margulies JY (2000) Etiology of adolescent idiopathic scoliosis, State of the art reviews. Hanley & Belfus Inc., PhiladelphiaGoogle Scholar
  6. Buczek FL, Cavanagh PR (1990) Stance phase knee and ankle kinematics and kinetics during level and downhill running. Med Sci Sports Exerc 22(5):669–677CrossRefGoogle Scholar
  7. Cavanagh PR, Lafortune MA (1980) Ground reaction forces in distance running. J Biomech 13(5):397–406CrossRefGoogle Scholar
  8. Chockalingam N, Giakas G, Iossifidou A (2002) Do strain gauge force platforms need in situ correction? Gait Posture 16(3):233–237CrossRefGoogle Scholar
  9. Chockalingam N, Dangerfield PH, Rahmatalla A, Ahmed E-N, Cochrane T (2004) Assessment of ground reaction force during scoliotic gait. Eur Spine J 13(8):750–754CrossRefGoogle Scholar
  10. Chockalingam N, BandCi S, Rahmatalla A, Dangerfield PH, Ahmed E-N (2008) Assessment of the centre of pressure pattern and moments about S2 in scoliotic subjects during normal walking. Scoliosis 3:10. Scholar
  11. Davis BL, de Vasconcellos AS, Lundin TM (1997) Uncertainty in 3-D joint moments associated with human gait. In: Proceedings of the XVI congress of the international society of biomechanics. University of Tokyo, Tokyo, p 136Google Scholar
  12. Defebvre L, Blatt JL, Blond S, Bourriez JL, Gieu JD, Destee A (1996) Effect of thalamic stimulation on gait in parkinson disease. Arch Neurol 53(9):898–903CrossRefGoogle Scholar
  13. Dixon PC, Bowtell MV, Stebbins J (2014a) The use of regression and normalisation for the comparison of spatio-temporal gait data in children. Gait Posture 40(4):521–525CrossRefGoogle Scholar
  14. Dixon PC, Stebbins J, Theologis T, Zavatsky AB (2014b) Ground reaction forces and lower-limb joint kinetics of turning gait in typically developing children. J Biomech 47(15):3726–3733CrossRefGoogle Scholar
  15. Dixon PC, Stebbins J, Theologis T, Zavatsky AB (2016) The use of turning tasks in clinical gait analysis for children with cerebral palsy. Clin Biomech 32:286–294CrossRefGoogle Scholar
  16. Gage JR, Koop SE (1995) Clinical gait analysis: application to management of cerebral palsy. In: Allard P, Stokes IAF, Blanchi JP (eds) Three dimensional analysis of human movement. Human Kinetics. Champaign, IL, pp 349–362Google Scholar
  17. Gainey JC, Kadaba MP, Wootten ME, Ramakrishnan HK, Siris ES, Lindsay R, Canfield R, Cochran GV (1989) Gait analysis of patients who have Paget disease. J Bone Joint Surg 71(4):568–579CrossRefGoogle Scholar
  18. Gehlsen G, Beekman K, Assmann N, Winant D, Seidle M, Carter A (1986) Gait characteristics in multiple sclerosis: progressive changes and effects on parameters. Arch Phys Med Rehabil 67(8):536–539Google Scholar
  19. Giakas G, Baltzopoulos V, Dangerfield PH, Dorgan JC, Dalmira S (1996) Comparison of gait patterns between healthy and scoliotic patients using time and frequency domain analysis of ground reaction forces. Spine 21(19):2235–2234CrossRefGoogle Scholar
  20. Herzog W, Nigg BM, Read LJ, Olsson E (1989) Asymmetries in ground reaction force patterns in normal human gait. Med Sci Sports Exerc 21:10–114Google Scholar
  21. Hesse SA, Jahnke MT, Bertelt CM, Schreiner C, Lücke D, Mauritz KH (1994) Gait outcome in ambulatory hemiparetic patients after a 4-week comprehensive rehabilitation program and prognostic factors. Stroke 25(10):1999–2004CrossRefGoogle Scholar
  22. Hill SW, Patla AE, Ishac MG, Adkin AL, Supan TJ, Barth DG (1997) Kinematic patterns of participants with a below knee prosthesis stepping over obstacles of various heights during locomotion. Gait Posture 6(3):186–192CrossRefGoogle Scholar
  23. Hsiao H, Awad LN, Palmer JA, Higginson JS, Binder-Macleod SA (2016) Contribution of paretic and nonparetic limb peak propulsive forces to changes in walking speed in individuals poststroke. Neurorehabil Neural Repair 30(8):743–52Google Scholar
  24. Hunt AE, Smith RM, Torode M, Keenan AM (2001) Inter-segment foot motion and ground reaction forces over the stance phase of walking. Clin Biomech 16(7):592–600CrossRefGoogle Scholar
  25. Ikeda ER, Schenkman ML, Riley PO, Hodge WA (1991) Influence of age on dynamics of rising from a chair. Phys Ther 71(6):473–481CrossRefGoogle Scholar
  26. Jacob HA (2001) Forces acting in the forefoot during normal gait – an estimate. Clin Biomech 16(9):783–792CrossRefGoogle Scholar
  27. Kelleher KJ, Spence WD, Solomonidis S, Apatsidis D (2010) The effect of textured insoles on gait patterns of people with multiple sclerosis. Gait Posture 32(1):67–71CrossRefGoogle Scholar
  28. Kempen JC, Doorenbosch CA, Knol DL, de Groot V, Beckerman H (2016) Newly identified gait patterns in patient with multiple sclerosis may be related to push-off quality. Phys Ther 96(11):1744–1752CrossRefGoogle Scholar
  29. Kesar TM, Binder-Macleod SA, Hicks GE, Reisman DS (2011a) Minimal detectable change for gait variables collected during treadmill walking in individuals post-stroke. Gait Posture 33(2):314–317CrossRefGoogle Scholar
  30. Kesar TM, Reisman DS, Perumal R, Jancosko AM, Higginson JS, Rudolph KS, Binder-Macleod SA (2011b) Combined effects of fast treadmill walking and functional electrical stimulation on post-stroke gait. Gait Posture 33(2):309–313CrossRefGoogle Scholar
  31. Kim CM, Eng JJ (2003) Symmetry in vertical ground reaction force is accompanied by symmetry in temporal but not distance variables of gait in persons with stroke. Gait Posture 18(1):23–28CrossRefGoogle Scholar
  32. Koopman B, Grootenboer HJ, de Jongh HJ (1995) An inverse dynamics model for the analysis reconstruction and prediction of bipedal walking. J Biomech 28(11):1369–1376CrossRefGoogle Scholar
  33. Koozekanani SH, Balmaseda MT Jr, Fatehi MT, Lowney ED (1987) Ground reaction forces during ambulation in parkinsonism: pilot study. Arch Phys Med Rehabil 68(1):28–30Google Scholar
  34. Lulić TJ, Susić A, Kodvanj J (2008) Effects of arm swing on mechanical parameters of human gait. Coll Antropol 32(3):869–873Google Scholar
  35. MacKinnon CD, Winter DA (1993) Control of whole body balance in the frontal plane during human walking. J Biomech 26:633–644CrossRefGoogle Scholar
  36. Manal K, McClay I, Richards J, Galinat B, Stanhope S (2002) Knee moment profiles during walking: errors due to soft tissue movement of the shank and the influence of the reference coordinate system. Gait Posture 15(1):10–17CrossRefGoogle Scholar
  37. McCaw ST, Devita P (1995) Errors in alignment of center of pressure and foot coordinates affect predicted lower extremity torques. J Biomech 28:985–988CrossRefGoogle Scholar
  38. Moisio KC, Sumner DR, Shott S, Hurwitz DE (2003) Normalization of joint moments during gait: a comparison of two techniques. J Biomech 36(4):599–603CrossRefGoogle Scholar
  39. Mommersteeg TJ, Huiskes R, Blankevoort L, Kooloos JG, Kauer JM (1997) An inverse dynamics modelling approach to determine the restraining function of human knee ligament bundles. J Biomech 30(2):139–146CrossRefGoogle Scholar
  40. Nester CJ, van der Linden ML, Bowker P (2003) Effect of foot orthoses on the kinematics and kinetics of normal walking gait. Gait Posture 2:180–187CrossRefGoogle Scholar
  41. Nilsson J, Thorstensson A (1989) Ground reaction forces at different speeds of human walking and running. Acta Physiol Scand 136(2):217–227CrossRefGoogle Scholar
  42. Park YS, Lim YT, Koh K, Kim JM, Kwon HJ, Yang JS, Shim JK (2016) Association of spinal deformity and pelvic tilt with gait asymmetry in adolescent idiopathic scoliosis patients: investigation of ground reaction force. Clin Biomech 36:52–57CrossRefGoogle Scholar
  43. Patla AE, Frank JS, Winter DA (1992) Balance control in the elderly: Implications for clinical assessment and rehabilitation. Can J Public Health 83(Suppl 2):S29–S33Google Scholar
  44. Patla AE, Frank JS, Winter DA, Rietdyk S, Prentice S, Prasad S (1993) Age-related changes in balance control system: initiation of stepping. Clin Biomech 8(4):179–184CrossRefGoogle Scholar
  45. Perry J, Burnfield J (2010) Gait analysis: normal and pathological function, 2nd edn. SLACK Inc., ThorofareGoogle Scholar
  46. Razak AHA, Zayegh A, Begg RK, Wahab Y (2012) Foot plantar pressure measurement system: a review. Sensors 12:9884–9912CrossRefGoogle Scholar
  47. Risher DW, Schutte LM, Runge CF (1997) The use of inverse dynamics solutions in direct dynamics simulations. J Biomech Eng 119(4):417–422CrossRefGoogle Scholar
  48. Rodgers MM, Mulcare JA, King DL, Mathews T, Gupta SC, Glaser RM (1999) Gait characteristics of individuals with multiple sclerosis before and after a 6-month aerobic training program. J Rehabil Res Dev 36(2):183–188Google Scholar
  49. Sanderson DJ, Martin PE (1996) Joint kinetics in unilateral below-knee amputee patients during running. Arch Phys Med Rehabil 77(12):1279–1285CrossRefGoogle Scholar
  50. Schache AG, Baker R (2007) On expression of joint moments during gait. Gait Posture 25(3):440–452CrossRefGoogle Scholar
  51. Schizas CG, Kramers-de Quervain IA, Stussi E, Grob D (1998) Gait asymmetries in patients with idiopathic scoliosis using vertical force measurement only. Eur Spine J 7:95–98CrossRefGoogle Scholar
  52. Schwartz MH, Rozumalski A, Trost JP (2008) The effect of walking speed on the gait of typically developing children. J Biomech 41(8):1639–1650CrossRefGoogle Scholar
  53. Sharma S, McMorland AJ, Stinear JW (2015) Stance limb ground reaction forces in high functioning stroke and healthy subjects during gait initiation. Clin Biomech 30(7):689–695CrossRefGoogle Scholar
  54. Stansfield BW, Hillman SJ, Hazlewood ME, Lawson AM, Mann AM, Loudon IR, Robb JE (2003) Normalisation of gait data in children. Gait Posture 17(1):81–87CrossRefGoogle Scholar
  55. Szczerbik E, Krawczyk M, Syczewska M (2014) Ground reaction force analysed with correlation coefficient matrix in group of stroke patients. Acta Bioeng Biomech 16(2):3–9Google Scholar
  56. Stokes IAF (1997) Analysis of symmetry of vertebral body loading consequent of lateral spinal curvature. Spine 22:2495–2503CrossRefGoogle Scholar
  57. Stokes IAF, Gardner-Morse M (1991) Analysis of the interaction between vertebral lateral deviation and axial rotation in scoliosis. J Biomech 24:753–759CrossRefGoogle Scholar
  58. Turns LJ, Neptune RR, Kautz SA (2007) Relationships between muscle activity and anteroposterior ground reaction forces in hemiparetic walking. Arch Phys Med Rehabil 88(9):1127–1135CrossRefGoogle Scholar
  59. Vaughan CL, Davis BL, O’Connor J (1992) Gait analysis laboratory. Human Kinetics, ChampaignGoogle Scholar
  60. White R, Agouris I, Selbie RD, Kirkpatrick M (1999) The variability of force platform data in normal and cerebral palsy gait. Clin Biomech 14(3):185–192CrossRefGoogle Scholar
  61. White R, Agouris I, Fletcher E (2005) Harmonic analysis of force platform data in normal and cerebral palsy gait. Clin Biomech 20(5):508–516CrossRefGoogle Scholar
  62. Whiting WC, Zernicke RF (1998) Biomechanics of musculoskeletal injury. Human Kinet:41–85Google Scholar
  63. Williams KR, Cavanagh PR, Ziff JL (1987) Biomechanical studies of elite female distance runners. Int J Sports Med 8(S2):107–118CrossRefGoogle Scholar
  64. Williams SE, Gibbs S, Meadows CB, Abboud RJ (2011) Classification of the reduced vertical component of the ground reaction force in late stance in cerebral palsy gait. Gait Posture 34(3):370–373CrossRefGoogle Scholar
  65. Winter DA (1990) Biomechanics and motor control of human movement. Wiley, New YorkGoogle Scholar
  66. Winter DA, Patla AE, Frank JS, Walt SE (1990) Biomechanical walking pattern changes in the fit and healthy elderly. Phys Ther 70:340–347CrossRefGoogle Scholar
  67. Wu G, Cavanagh PR (1995) ISB recommendation for standardization in the reporting of kinematic data. J Biomech 28(10):1257–1261CrossRefGoogle Scholar
  68. Wundeman SR, Huisinga JM, Filipi M, Stergiou N (2011) Multiple sclerosis affects the frequency content in vertical ground reaction forces during walking. Clin Biomech 26(2):207–212CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Nachiappan Chockalingam
    • 1
  • Aoife Healy
    • 1
  • Robert Needham
    • 1
  1. 1.Life Sciences and EducationStaffordshire UniversityStoke On TrentUK

Section editors and affiliations

  • Sebastian I. Wolf
    • 1
  1. 1.Movement Analysis LaboratoryClinic for Orthopedics and Trauma Surgery; Center for Orthopedics, Trauma Surgery and Spinal Cord Injury;Heidelberg University HospitalHeidelbergGermany

Personalised recommendations