Skip to main content

Upper Extremity Models for Clinical Movement Analysis

  • Reference work entry
  • First Online:
Handbook of Human Motion

Abstract

The quantitative analysis of upper-extremity motion is a challenging task. A single, universally accepted methodology does not exist, but it is possible to define a standardized way to report a measurement protocol and to formulate recommendations on the most important aspect. The aim of this chapter is to provide such guidelines, addressing common issues such as joint modeling, scapula tracking, soft-tissue artifact compensation, and summary of results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anglin C, Wyss UP (2000) Review of arm motion analyses. Proc Inst Mech Eng H 214(5):541–555. Review

    Article  Google Scholar 

  • Barnett ND, Duncan RD, Johnson GR (1999) The measurement of three dimensional scapulohumeral kinematics–a study of reliability. Clin Biomech (Bristol, Avon) 14(4):287–290. PubMed PMID: 10619117

    Google Scholar 

  • Brochard S, Lempereur M, Rémy-Néris O (2011) Double calibration: an accurate, reliable and easy-to-use method for 3D scapular motion analysis. J Biomech 44(4):751–754

    Article  Google Scholar 

  • Campbell AC, Lloyd DG, Alderson JA, Elliott BC (2009) MRI development and validation of two new predictive methods of glenohumeral joint centre location identification and comparison with established techniques. J Biomech 42(10):1527–1532

    Article  Google Scholar 

  • Cappozzo A, Cappello A, Della Croce U, Pensalfini F (1997) Surface-marker cluster design criteria for 3-D bone movement reconstruction. IEEE Trans Biomed Eng 44(12):1165–1174. PubMed PMID: 9401217

    Google Scholar 

  • Cappozzo A, Della Croce U, Leardini A, Chiari L (2005) Human movement analysis using stereophotogrammetry. Part 1: theoretical background. Gait Posture 21(2):186–196

    Google Scholar 

  • Constant CR, Gerber C, Emery RJ, Sojbjerg JO, Gohlke F, Boileau P (2008) A review of the Constant score: modifications and guidelines for its use. J Shoulder Elbow Surg 17:355–361

    Article  Google Scholar 

  • Cutti AG, Veeger HE (2009) Shoulder biomechanics: today’s consensus and tomorrow’s perspectives. Med Biol Eng Comput 47(5):463–466. https://doi.org/10.1007/s11517-009-0487-3. PubMed PMID: 19396486

  • Cutti AG, Paolini G, Troncossi M, Cappello A, Davalli A (2005) Soft tissue artefact assessment in humeral axial rotation. Gait Posture 21(3):341–349

    Article  Google Scholar 

  • Cutti AG, Raggi M, Davalli A, Cappello A (2006a) Definition of two reference elbow models from cadaver data. Gait Posture 24S:S224–S225

    Article  Google Scholar 

  • Cutti AG, Garofalo P, Davalli A, Cappello A (2006b) How accurate is the estimation of elbow kinematics using ISB recommended joint coordinate systems? Gait Posture 24S:S36–S37

    Article  Google Scholar 

  • Cutti AG, Cappello A, Davalli A (2006c) In vivo validation of a new technique that compensates for soft tissue artefact in the upper-arm: preliminary results. Clin Biomech (Bristol, Avon) 21(Suppl 1):S13–S19

    Article  Google Scholar 

  • Cutti AG, Giovanardi A, Rocchi L, Davalli A, Sacchetti R (2008) Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors. Med Biol Eng Comput 46(2):169–178

    Article  Google Scholar 

  • Cutti AG, Parel I, Raggi M, Petracci E, Pellegrini A, Accardo AP, Sacchetti R, Porcellini G (2014) Prediction bands and intervals for the scapulo-humeral coordination based on the Bootstrap and two Gaussian methods. J Biomech. 47(5):1035–1044

    Article  Google Scholar 

  • Cutti AG, Parel I, Pellegrini A, Paladini P, Sacchetti R, Porcellini G, Merolla G (2016) The Constant score and the assessment of scapula dyskinesis: proposal and assessment of an integrated outcome measure. J Electromyogr Kinesiol 29:81–89

    Article  Google Scholar 

  • Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG (2007) OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng 54(11):1940–1950

    Article  Google Scholar 

  • Gamage SSHU, Lasenby J (2002) New least squares solutions for estimating the average centre of rotation and the axis of rotation. J Biomech 35(1):87–93

    Article  Google Scholar 

  • Garofalo P, Cutti AG, Filippi MV, Cavazza S, Ferrari A, Cappello A et al (2009) Inter-operator reliability and prediction bands of a novel protocol to measure the coordinated movements of shoulder-girdle and humerus in clinical settings. Med Biol Eng Comput 47(5):475–486

    Article  Google Scholar 

  • Goto A, Moritomo H, Murase T, Oka K, Sugamoto K, Arimura T, Nakajima Y, Yamazaki T, Sato Y, Tamura S, Yoshikawa H, Ochi T (2004) In vivo elbow biomechanical analysis during flexion: three-dimensional motion analysis using magnetic resonance imaging. J Shoulder Elbow Surg 13(4):441–7. PubMed PMID: 15220886

    Google Scholar 

  • Halvorsen K, Lesser M, Lundberg A (1999) A new method for estimating the axis of rotation and the center of rotation. J Biomech 32:1221–1227

    Article  Google Scholar 

  • Hamming D, Braman JP, Phadke V, LaPrade RF, Ludewig PM (2012) The accuracy of measuring glenohumeral motion with a surface humeral cuff. J Biomech 45(7):1161–1168

    Article  Google Scholar 

  • Jaspers E, Feys H, Bruyninckx H, Klingels K, Molenaers G, Desloovere K (2011a) The Arm Profile Score: a new summary index to assess upper limb movement pathology. Gait Posture 34(2):227–233

    Article  Google Scholar 

  • Johnson GR, Anderson JM (1990) Measurement of three-dimensional shoulder movement by an electromagnetic sensor. Clin Biomech 5(3):131–136

    Article  Google Scholar 

  • Johnson GR, Stuart PR, Mitchell S (1993) A method for the measurement of three-dimensional scapular movement. Clin Biomech (Bristol, Avon) 8(5):269–273. https://doi.org/10.1016/0268-0033(93)90037-I. PubMed PMID: 23915988

  • Karduna AR, McClure PW, Michener LA (2000) Scapular kinematics: effects of altering the Euler angle sequence of rotations. J Biomech 33(9):1063–1068

    Article  Google Scholar 

  • Karduna AR, McClure PW, Michener LA, Sennett B (2001) Dynamic measurement of three-dimensional scapular kinematics: a validation study. J Biomech Eng 123(2):184–190

    Article  Google Scholar 

  • Kibler WB, Ludewig PM, McClure PW, Michener LA, Bak K, Sciascia AD (2013) Clinical implications of scapular dyskinesis in shoulder injury: the 2013 consensus statement from the ‘Scapular Summit’. Br J Sports Med 47(14):877–885

    Article  Google Scholar 

  • Kontaxis A, Cutti AG, Johnson GR, Veeger HEJ (2009) A framework for the definition of standardized protocols for measuring upper-extremity kinematics. Clin Biomech 24:246–253

    Article  Google Scholar 

  • Kontaxis A, Kraszewski A, Gibbsons M, Graziano J, Fealy S, Hillstrom H (2014). Effect of fatigue on high school basebal pitchers, Proceedings of the International Shoulder Group, Waterloo

    Google Scholar 

  • Lempereur M, Leboeuf F, Brochard S, Rousset J, Burdin V, Rémy-Néris O (2010) In vivo estimation of the glenohumeral joint centre by functional methods: accuracy and repeatability assessment. J Biomech 43(2):370–374

    Article  Google Scholar 

  • Lempereur M, Brochard S, Rémy-Néris O (2013) Repeatability assessment of functional methods to estimate the glenohumeral joint centre. Comput Methods Biomech Biomed Engin 16(1):6–11

    Article  Google Scholar 

  • Lempereur M, Brochard S, Leboeuf F, Rémy-Néris O (2014) Validity and reliability of 3D marker based scapular motion analysis: a systematic review. J Biomech 47(10):2219–2230

    Article  Google Scholar 

  • Ludewig PM, Behrens SA, Meyer SM, Spoden SM, Wilson LA (2004) Three dimensional clavicular motion during arm elevation: reliability and descriptive data. J Orthop Sports Phys Ther 34(3):140–149

    Article  Google Scholar 

  • Magermans DJ, Chadwick EK, Veeger HE, van der Helm FC (2005) Requirements for upper extremity motions during activities of daily living. Clin Biomech 20(6):591–599

    Article  Google Scholar 

  • Marchese SS, Johnson GR (2000) Measuring the kinematics of the clavicle. 6th international symposium of the 3D analysis of human motion, Cape Town, pp 37–40

    Google Scholar 

  • McGinley JL, Baker R, Wolfe R, Morris ME (2009) The reliability of three-dimensional kinematic gait measurements: a systematic review. Gait Posture 29(3):360–369

    Article  Google Scholar 

  • Nikooyan AA, van der Helm FCT, Westerhoff P, Graichen F, Bergmann G, Veeger HEJ (2011) Comparison of two methods for in vivo estimation of the Glenohumeral Joint Rotation Center (GH-JRC) of the patients with shoulder hemiarthroplasty. PLoS One 6(3):e18488

    Article  Google Scholar 

  • Parel I, Cutti AG, Fiumana G, Porcellini G, Verni G, Accardo AP (2012) Ambulator measurement of the scapulohumeral rhythm: intra- and inter-operator agreement of a protocol based on inertial and magnetic sensors. Gait Posture 35(4):636–640

    Article  Google Scholar 

  • Parel I, Cutti AG, Kraszewski A, Verni G, Hillstrom H, Kontaxis A (2014) Intra-protocol repeatability and inter-protocol agreement for the analysis of scapulo-humeral coordination. Med Biol Eng Comput 52(3):271–282

    Article  Google Scholar 

  • Parel I, Jaspers E, DE Baets L, Amoresano A, Cutti AG (2016) Motion analysis of the shoulder in adults: kinematics and electromyography for the clinical practice. Eur J Phys Rehabil Med 52(4):575–582. PubMed PMID: 27434612

    Google Scholar 

  • Piazza SJ, Cavanagh PR (2000) Measurement of the screw-home motion of the knee is sensitive to errors in axis alignment. J Biomech 33(8):1029–1034

    Article  Google Scholar 

  • Prinold JAI, Shaheen AF, Bull AMJ (2011) Skin-fixed scapula trackers: a comparison of two dynamic. J Biomech 44:2004–2007

    Article  Google Scholar 

  • Pronk GM, van der Helm FC (1991) The palpator: an instrument for measuring the positions of bones in three dimensions. J Med Eng Technol 15(1):15–20

    Article  Google Scholar 

  • Rettig O, Fradet L, Kasten P, Raiss P, Wolf SI (2009) A new kinematic model of the upper extremity based on functional joint parameter determination for shoulder and elbow. Gait Posture 30(4):469–476

    Article  Google Scholar 

  • Seth A, Matias R, Veloso AP, Delp SL (2016) A biomechanical model of the scapulothoracic joint to accurately capture scapular kinematics during shoulder movements. PLoS One 11(1):e0141028

    Article  Google Scholar 

  • Shaheen AF, Alexander CM, Bull AM (2011) Effects of attachment position and shoulder orientation during calibration on the accuracy of the acromial tracker. J Biomech 44(7):1410–1413

    Article  Google Scholar 

  • Stokdijk M, Meskers CG, Veeger HE, de Boer YA, Rozing PM (1999) Determination of the optimal elbow axis for evaluation of placement of prostheses. Clin Biomech 14(3):177–184

    Article  Google Scholar 

  • Stokdijk M, Biegstraaten M, Ormel W, de Boer YA, Veeger HE, Rozing PM (2000) Determining the optimal flexion-extension axis of the elbow in vivo - a study of interobserver and intraobserver reliability. J Biomech 33(9):1139–1145. PubMed PMID: 10854888

    Google Scholar 

  • Teece RM, Lunden JB, Lloyd AS, Kaiser AP, Cieminski CJ, Ludewig PM (2008) Three-dimensional acromioclavicular joint motions during elevation of the arm. J Orthop Sports Phys Ther 38(4):181–190

    Article  Google Scholar 

  • van Andel CJ, Wolterbeek N, Doorenbosch CA, Veeger DH, Harlaar J (2008) Complete 3D kinematics of upper extremity functional tasks. Gait Posture 27(1):120–127

    Article  Google Scholar 

  • van Andel C, van Hutten K, Eversdijk M, Veeger D, Harlaar J (2009) Recording scapular motion using an acromion marker cluster. Gait Posture 29(1):123–128

    Article  Google Scholar 

  • Van der Helm FC, Pronk GM (1995) Three-dimensional recording and description of motions of the shoulder mechanism. J Biomech Eng 117(1):27–40

    Article  Google Scholar 

  • Van der Helm FC, Veeger HE, Pronk GM, Van der Woude LH, Rozendal RH (1992) Geometry parameters for musculoskeletal modelling of the shoulder system. J Biomech 25(2):129–144

    Article  Google Scholar 

  • van Sint Jan S (2007) Color atlas of skeletal landmark definitions: guidelines for reproducible manual and virtual palpation. Churchill Livingstone, Belgium

    Google Scholar 

  • Veeger HE, Yu B, An KN, Rozendal RH (1997) Parameters for modeling the upper extremity. J Biomech 30(6):647–652

    Article  Google Scholar 

  • Woltring HJ (1990) Data processing and error analysis. In: Cappozzo A, Berme N (eds) Biomechanics of human movement. Bertec Corporation, Worthington, pp 203–237

    Google Scholar 

  • Wu G, van der Helm FC, Veeger HE, Makhsous M, Van Roy P, Anglin C, Nagels J, Karduna AR, McQuade K, Wang X, Werner FW, Buchholz B (2005) ISB recommendation on definitions of joint CSs of various joints for the reporting of human joint motion – part II: shoulder, elbow, wrist and hand. J Biomech 38(5):981–992

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Giovanni Cutti .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cutti, A.G., Parel, I., Kotanxis, A. (2018). Upper Extremity Models for Clinical Movement Analysis. In: Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-14418-4_30

Download citation

Publish with us

Policies and ethics