Advertisement

Data-Driven Character Animation Synthesis

  • Taku Komura
  • Ikhsanul Habibie
  • Jonathan Schwarz
  • Daniel Holden
Reference work entry

Abstract

In this article, we describe about data-driven character motion synthesis for use mainly on a full-body skeleton structure. Due to the simplicity of capturing motion nowadays, the main issue for animating characters is how to reduce the cost of applying such motion to the characters and how to recycle the motion for interactive motion synthesis. An additional topic of interest is how to convert the style of the movements while preserving the context of the motion. In this article, we primarily cover machine learning techniques that can be useful for such purposes.

Keywords

Human motion Character animation Data-driven animation Machine learning 

References

  1. Al-Asqhar RA, Komura T, Choi MG (2013) Relationship descriptors for interactive motion adaptation. In: Proceedings of the 12th ACM SIGGRAPH/Eurographics symposium on computer animation, ACM, New York, pp 45–53Google Scholar
  2. Alexa M, Müller W (2000) Representing animations by principal components. Comput Graphics Forum 19:411–418. Wiley Online LibraryCrossRefGoogle Scholar
  3. Arikan O, Forsyth DA (2002) Interactive motion generation from examples. ACM Trans Graph 21:483–490. ACMCrossRefzbMATHGoogle Scholar
  4. Barber D (2012) Bayesian reasoning and machine learning. Cambridge University Press, CambridgezbMATHGoogle Scholar
  5. Bruderlin A, Williams L (1995) Motion signal processing. In: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, ACM, New York, pp 97–104Google Scholar
  6. Chai J, Hodgins JK (2005) Performance animation from low-dimensional control signals. ACM Trans Graph 24:686–696. ACMCrossRefGoogle Scholar
  7. Clavet S (2016) Motion matching and the road to next-gen animation. Game Developers Conference (GDC). San Francisco, California, pp 14–18Google Scholar
  8. Fragkiadaki K, Levine S, Felsen P, Malik J (2015) Recurrent network models for human dynamics. In: Proceedings of the IEEE international conference on computer vision, Santiago, 7–13 Dec 2015, pp 4346–4354Google Scholar
  9. Gatys LA, Ecker AS, Bethge M (2015) A neural algorithm of artistic style. arXiv preprint arXiv:1508.06576Google Scholar
  10. Gleicher M (1997) Motion editing with spacetime constraints. In: Proceedings of the 1997 symposium on interactive 3D graphics, ACM, New York, pp 139–ffGoogle Scholar
  11. Gleicher M (1998) Retargetting motion to new characters. In: Proceedings of the 25th annual conference on Computer graphics and interactive techniques, ACM, New York, pp 33–42Google Scholar
  12. Gleicher M, Shin HJ, Kovar L, Jepsen A (2008) Snap-together motion: assembling run-time animations. In: ACM SIGGRAPH 2008 classes, ACM, New York, p 52Google Scholar
  13. Grochow K, Martin SL, Hertzmann A, Popović’ Z (2004) Style-based inverse kinematics. In ACM transactions on graphics (TOG) ACM, 23(3), pp 522–531Google Scholar
  14. Heck R, Gleicher M (2007) Parametric motion graphs. In: Proceedings of the 2007 symposium on interactive 3D graphics and games, ACM, New York, pp 129–136Google Scholar
  15. Ho ES, Komura T, Tai CL (2010) Spatial relationship preserving character motion adaptation. ACM Trans Graph 29(4):33CrossRefGoogle Scholar
  16. Holden D, Saito J, Komura, T (2015a) Learning an inverse rig mapping for character animation. In: Proceedings of the 14th ACM SIGGRAPH/Eurographics symposium on computer animation, ACM, pp 165–173Google Scholar
  17. Holden D, Saito J, Komura T, Joyce T (2015b) Learning motion manifolds with convolutional autoencoders. In: SIGGRAPH Asia 2015 Technical Briefs, ACM, p. 18Google Scholar
  18. Holden D, Saito J, Komura T (2016) A deep learning framework for character motion synthesis and editing. ACM Trans Graph 35(4):1CrossRefGoogle Scholar
  19. Hsu E, Pulli K, Popovic J (2005) Style translation for human motion. ACM Trans Graph 24(3):1082–1089CrossRefGoogle Scholar
  20. Ikemoto L, Arikan O, Forsyth D (2009) Generalizing motion edits with Gaussian processes. ACM Trans Graph 28(1):1CrossRefGoogle Scholar
  21. Kim T, Shakhnarovich G, Urtasun R (2010) Sparse coding for learning interpretable spatiotemporal primitives. In: Advances in Neural Information Processing Systems. Neural Information Processing Systems Foundation, Vancouver, pp 1117–1125Google Scholar
  22. Kovar L, Gleicher M (2004) Automated extraction and parameterization of motions in large data sets. ACM Trans Graph 23(3):559–568CrossRefGoogle Scholar
  23. Kovar L, Gleicher M, Pighin F (2002) Motion graphs. ACM Trans Graph 21:473–482. ACMCrossRefGoogle Scholar
  24. Kulpa R, Multon F, Arnaldi B (2005) Morphology-independent representation of motions for interactive human-like animation. Comput Graphics Forum 24:343–351. Wiley Online LibraryCrossRefGoogle Scholar
  25. Kwon T, Shin SY (2005) Motion modeling for on-line locomotion synthesis. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on computer animation, ACM, New York, pp 29–38Google Scholar
  26. Lau M, Kuffner JJ (2005) Behavior planning for character animation. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on computer animation, New York, ACM, pp 271–280Google Scholar
  27. Lau M, Kuffner JJ (2006) Precomputed search trees: planning for interactive goal-driven animation. ACM SIGGRAPH / Eurographics symposium on computer animation, Eurographics Association, Vienna, pp 299–308Google Scholar
  28. Lawrence ND (2004) Gaussian process latent variable models for visualisation of high dimensional data. Adv Neural Inf Proces Syst 16(3):329–336Google Scholar
  29. Lawrence N (2005) Probabilistic non-linear principal component analysis with Gaussian process latent variable models. J Mach Learn Res 6(2):1783–1816MathSciNetzbMATHGoogle Scholar
  30. Lee J, Chai J, Reitsma PS, Hodgins JK, Pollard NS (2002a) Interactive control of avatars animated with human motion data. ACM Trans Graph 21:491–500. ACMGoogle Scholar
  31. Lee J, Chai J, Reitsma PSA, Hodgins JK, Pollard NS (2002b) Interactive control of avatars animated with human motion data. In: Proceedings of the 29th annual conference on computer graphics and interactive techniques, SIGGRAPH ‘02, ACM, New York, pp 491–500Google Scholar
  32. Lee Y, Wampler K, Bernstein G, Popović J, Popović Z (2010) Motion fields for interactive character locomotion. ACM Trans Graph 29:138. ACMGoogle Scholar
  33. Levine S, Wang JM, Haraux A, Popović Z, Koltun V (2012) Continuous character control with low-dimensional embeddings. ACM Trans Graph 31(4):28CrossRefGoogle Scholar
  34. Lewis JP, Cordner M, Fong N (2000) Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In: SIGGRAPH ‘00: Proceedings of the 27th annual conference on computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., New York, pp 165–172.  https://doi.org/10.1145/344779.344862
  35. Min J, Chai J (2012) Motion graphs++: a compact generative model for semantic motion analysis and synthesis. ACM Trans Graph 31(6):153CrossRefGoogle Scholar
  36. Min J, Liu H, Chai J (2010) Synthesis and editing of personalized stylistic human motion. In: Proceedings of the 2010 ACM SIGGRAPH symposium on interactive 3D graphics and games, ACM, New York, pp 39–46Google Scholar
  37. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G et al (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529–533CrossRefGoogle Scholar
  38. Mukai T (2011) Motion rings for interactive gait synthesis. In: Symposium on interactive 3D graphics and games, ACM, New York, pp 125–132Google Scholar
  39. Mukai T, Kuriyama S (2005) Geostatistical motion interpolation. ACM Trans Graph 24(3):1062–1070.  https://doi.org/10.1145/1073204.1073313CrossRefGoogle Scholar
  40. Park SI, Shin HJ, Shin SY (2002) On-line locomotion generation based on motion blending. In: SCA ‘02: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on computer animation, ACM Press, New York, pp 105–111.  https://doi.org/10.1145/545261.545279
  41. Peng XB, Berseth G, van de Panne M (2016) Terrain-adaptive locomotion skills using deep reinforcement learning. ACM Trans Graph 35(4):81Google Scholar
  42. Pullen K, Bregler C (2002) Motion capture assisted animation: texturing and synthesis. ACM Trans Graph 21:501–508. ACMCrossRefGoogle Scholar
  43. Rose C, Cohen MF, Bodenheimer B (1998) Verbs and adverbs: multidimensional motion interpolation. IEEE Comput Graph Appl 18(5):32–40.  https://doi.org/10.1109/38.708559CrossRefGoogle Scholar
  44. Rose III CF, Sloan PPJ, Cohen MF (2001) Artist-directed inverse-kinematics using radial basis function interpolation. Comput Graphics Forum 20:239–250. Wiley Online LibraryCrossRefGoogle Scholar
  45. Shapiro A, Cao Y, Faloutsos P (2006) Style components. In: Proceedings of graphics interface 2006, Canadian Information Processing Society, Toronto, pp 33–39Google Scholar
  46. Shin HJ, Oh HS (2006) Fat graphs: constructing an interactive character with continuous controls. In: SCA ‘06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on computer animation. Eurographics Association, Aire-la-Ville, pp 291–298Google Scholar
  47. Sloan PPJ, Rose III CF, Cohen MF (2001) Shape by example. In: Proceedings of the 2001 symposium on interactive 3D graphics, ACM, New York, pp 135–143Google Scholar
  48. Tautges J, Zinke A, Krüger B, Baumann J, Weber A, Helten T, Müller M, Seidel HP, Eberhardt B (2011) Motion reconstruction using sparse accelerometer data. ACM Trans Graph 30(3):18CrossRefGoogle Scholar
  49. Unuma M, Anjyo K, Takeuchi R (1995) Fourier principles for emotion-based human figure animation. In: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, ACM, Los Angeles, pp 91–96Google Scholar
  50. Urtasun R, Glardon P, Boulic R, Thalmann D, Fua P (2004) Style-based motion synthesis. Comput Graphics Forum 23:799–812. Wiley Online LibraryCrossRefGoogle Scholar
  51. Wang J, Hertzmann A, Blei DM (2005) Gaussian process dynamical models. Adv Neural Inf Proces Syst 18:1441–1448Google Scholar
  52. Witkin A, Popovic Z (1995) Motion warping. In: Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, ACM, Los Angeles, pp 105–108Google Scholar
  53. Xia S, Wang C, Chai J, Hodgins J (2015) Realtime style transfer for unlabeled heterogeneous human motion. ACM Trans Graph 34(4):119CrossRefGoogle Scholar
  54. Xiao J, Feng Y, Ji M, Yang X, Zhang JJ, Zhuang Y (2015) Sparse motion bases selection for human motion denoising. Signal Process 110:108–122CrossRefGoogle Scholar
  55. Yumer ME, Mitra NJ (2016) Spectral style transfer for human motion between independent actions. ACM Trans Graph 35(4):137:1–137:8.  https://doi.org/10.1145/2897824.2925955CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Taku Komura
    • 1
  • Ikhsanul Habibie
    • 1
  • Jonathan Schwarz
    • 1
  • Daniel Holden
    • 1
  1. 1.School of InformaticsUniversity of EdinburghEdinburghUK

Section editors and affiliations

  • Zhigang Deng
    • 1
  1. 1.Department of Computer Science,University of HoustonHoustonUSA

Personalised recommendations