Skip to main content

Quantum and Nonlinear Optics with Hard X-Rays

  • Reference work entry
Synchrotron Light Sources and Free-Electron Lasers

Abstract

With the increasing brilliance of modern synchrotron radiation sources and free-electron lasers, the observation of nonlinear and quantum optical phenomena at x-ray wavelengths has come into reach. Single-photon x-ray detectors with quantum efficiency near unity and photon-number resolving capabilities are commercially available. Consequently, fundamental concepts in quantum optics can now also be studied in the x-ray portion of the electromagnetic spectrum. A key role in theoretical and experimental studies in x-ray quantum optics is played by the nuclear resonances of Mössbauer isotopes, the excitation of which became more and more efficient with increasing spectral flux delivered by these sources. The narrow resonance bandwidth facilitates to probe fundamental aspects of the light-matter interaction. A very sensitive manipulation of this interaction is possible by embedding Mössbauer nuclei in x-ray cavities. This allows one to prepare collective radiative eigenstates which open new avenues to establish concepts of quantum control in the x-ray regime via generation of coherences between nuclear levels. Moreover, the large number of vacuum field modes in the x-ray regime enables one to produce and probe nonclassical states of x-ray radiation and has opened the field of nonlinear x-ray optics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APS:

Advanced Photon Source

CONUSS:

Coherent Nuclear Resonant Scattering from Single Crystals

EIT:

Electromagnetically Induced Transparency

ESRF:

European Synchrotron Radiation Facility

NRS:

Nuclear Resonant Scattering of Synchrotron Radiation

PDC:

Parametric Down Conversion

PETRA III:

Positron-Elektron-Tandem-Ring-Anlage

SFG:

Sum Frequency Generation

SGC:

Spontaneously Generated Coherences

SHG:

Second Harmonic Generation

Spring8:

Super Photon ring-8 GeV

References

  • B.W. Adams, Nonlinear Optics, Quantum Optics, and Ultrafast Phenomena with X-Rays (Kluwer Academic, Norwell, 2008)

    Google Scholar 

  • B.W. Adams et al., X-ray quantum optics. J. Mod. Opt. 60, 2 (2012)

    Article  ADS  Google Scholar 

  • A.M. Afanas’ev, Y. Kagan, Change of resonance nuclear parameters during scattering by regular systems. Sov. Phys. JETP 23, 178 (1966)

    ADS  Google Scholar 

  • G.S. Agarwal, Quantum Statistical Theories of Spontaneous Emission and Their Relation to Other Approaches. Springer Tracts in Modern Physics (Springer, Berlin, 1974)

    Google Scholar 

  • G.S. Agarwal, Anisotropic vacuum-induced interference in decay channels. Phys. Rev. Lett. 84, 5500–5503 (2000)

    Article  ADS  Google Scholar 

  • G.S. Agarwal, Quantum Optics (Cambridge University Press, New York, 2013)

    MATH  Google Scholar 

  • D. Bouwmeester, A. Ekert, A. Zeilinger, The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, and Quantum Computation (Springer, New York, 2000)

    Book  MATH  Google Scholar 

  • H. Danino, I. Freund, Parametric down conversion of X-rays into extreme ultraviolet. Phys. Rev. Lett. 46, 1127–1130 (1981)

    Article  ADS  Google Scholar 

  • R.H. Dicke, Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954)

    Article  ADS  MATH  Google Scholar 

  • G. Doumy et al., Nonlinear atomic response to intense ultrashort x rays. Phys. Rev. Lett. 106, 083002 (2011)

    Article  ADS  Google Scholar 

  • P.M. Eisenberger, S.L. McCall, Mixing of X-rays and optical photons. Phys. Rev. A 3, 1145 (1970)

    Article  ADS  Google Scholar 

  • P.M. Eisenberger, S.L. McCall, X-ray parametric conversion. Phys. Rev. Lett. 26, 684 (1971)

    Article  ADS  Google Scholar 

  • U. Fano, Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961)

    Article  ADS  MATH  Google Scholar 

  • Z. Ficek, S. Swain, Quantum Interference and Coherence: Theory and Experiments. Springer Series in Optical Sciences (Springer, Heidelberg, 2005)

    Google Scholar 

  • M. Fleischhauer, A. Imamoglu, J.P. Marangos, Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)

    Article  ADS  Google Scholar 

  • M. Fox, Quantum Optics (Oxford University Press, Oxford, 2006)

    MATH  Google Scholar 

  • I. Freund, B.F. Levine, Parametric conversion of X-rays. Phys. Rev. Lett. 23, 854–857 (1969)

    Article  ADS  Google Scholar 

  • I. Freund, B.F. Levine, Optically modulated X-ray diffraction. Phys. Rev. Lett. 25, 1241–1244 (1970)

    Article  ADS  Google Scholar 

  • R. Friedberg, S.R. Hartmann, J.T. Manassah, Frequency shifts in emission and absorption by resonant systems of two-level atoms. Phys. Rep. C 7, 101–179 (1973)

    Article  ADS  Google Scholar 

  • R. Friedberg, J.T. Manassah, The dynamical Cooperative Lamb Shift in a system of two-level atoms in a slab-geometry. Phys. Lett. A 373, 3423 (2009)

    Article  ADS  MATH  Google Scholar 

  • D. Fröhlich, A. Kulik, B. Uebbing, A. Mysyrowicz, V. Langer, H. Stolz, W. von der Osten, Coherent propagation and quantum beats of quadrupole polaritons in Cu2O. Phys. Rev. Lett. 67, 2343–2346 (1991)

    Article  ADS  Google Scholar 

  • C. Gardiner, P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics. Springer Series in Synergetics (Springer, Heidelberg, 2004)

    Google Scholar 

  • E. Gerdau, R. Rüffer, H. Winkler, W. Tolksdorf, C.P. Klages, J.P. Hannon, Nuclear Bragg diffraction of synchrotron radiation in yttrium iron garnet. Phys. Rev. Lett. 54, 835–838 (1985)

    Article  ADS  Google Scholar 

  • E. Gerdau, H. de Waard, Nuclear resonant scattering of synchrotron radiation. Hyperfine Interact. 123/124 (1999); 125 (2000)

    Google Scholar 

  • S. Gheysen, J. Odeurs, Nuclear level mixing-induced interference in FeCO3. J. Phys.: Condens. Matter 20, 485214 (2008)

    Google Scholar 

  • T.E. Glover et al., X-ray and optical wave mixing. Nature 488, 603 (2012)

    Article  ADS  Google Scholar 

  • J.P. Hannon, G.T. Trammell, Mössbauer diffraction. I. Quantum theory of gamma-ray and X-ray optics. Phys. Rev. 169, 315–329 (1968)

    Article  ADS  Google Scholar 

  • J.P. Hannon, G.T. Trammell, Coherent γ ray optics. Hyperfine Interact. 123/124, 127–274 (1999)

    Google Scholar 

  • J.B. Hastings, D.P. Siddons, U. van Bürck, R. Hollatz, U. Bergmann, Mössbauer spectroscopy using synchrotron radiation. Phys. Rev. Lett. 66, 770–773 (1991)

    Article  ADS  Google Scholar 

  • K.P. Heeg, J. Evers, X-ray quantum optics with Mössbauer nuclei embedded in thin-film cavities. Phys. Rev. A 88, 043828 (2013)

    Article  ADS  Google Scholar 

  • K.P. Heeg, H.C. Wille, K. Schlage, T. Guryeva, D. Schumacher, I. Uschmann, K.S. Schulze, B. Marx, T. Kämpfer, G.G. Paulus, R. Röhlsberger, J. Evers, Vacuum-assisted generation and control of atomic coherences at X-ray energies. Phys. Rev. Lett. 111, 073601 (2013)

    Article  ADS  Google Scholar 

  • M. Kiffner, J. Evers, C.H. Keitel, Quantum interference enforced by time-energy complementarity. Phys. Rev. Lett. 96, 100403 (2006)

    Article  ADS  Google Scholar 

  • M. Kiffner, M. Macovei, J. Evers, C.H. Keitel, Vacuum-induced processes in multi-level atoms. Prog. Opt. 55, 85–197 (2010). (Elsevier Science, Burlington)

    Google Scholar 

  • M.I. Kolobov (ed.), Quantum Imaging (Springer, New York, 2007)

    Google Scholar 

  • R. Loudon, The Quantum Theory of Light (Oxford University Press, Oxford, 1983)

    MATH  Google Scholar 

  • J.T. Manassah, The dynamical cooperative Lamb shift in a system of two-level atoms in a sphere in the scalar photon theory. Laser Phys. 20, 259–269 (2010)

    Article  ADS  Google Scholar 

  • B. Marx, K.S. Schulze, I. Uschmann, T. Kämpfer, R. Lötzsch, O. Wehrhan, W. Wagner, C. Detlefs, T. Roth, J. Härtwig, E. Förster, T. Stöhlker, G.G. Paulus, High-precision x-ray polarimetry. Phys. Rev. Lett. 110, 254801 (2013)

    Article  ADS  Google Scholar 

  • A. Nazarkin et al., Nonlinear optics in the angstrom regime: hard-x-ray frequency doubling in perfect crystals. Phys. Rev. A 67, 041804 (R) (2003)

    Google Scholar 

  • A. Pálffy, C.H. Keitel, J. Evers, Single-photon entanglement in the keV regime via coherent control of nuclear forward scattering. Phys. Rev. Lett. 103, 017401 (2009)

    Article  ADS  Google Scholar 

  • L.G. Parratt, Surface studies of solids by total reflection of X-rays. Phys. Rev. 95, 359–369 (1954)

    Article  ADS  Google Scholar 

  • R. Röhlsberger, Nuclear Condensed Matter Physics with Synchrotron Radiation. Springer Tracts in Modern Physics, vol. 208 (Springer, Heidelberg, 2005)

    Google Scholar 

  • R. Röhlsberger, K. Schlage, B. Sahoo, S. Couet, R. Rüffer, Collective Lamb shift in single-photon superradiance. Science 328, 1248–1251 (2010)

    Article  ADS  Google Scholar 

  • R. Röhlsberger, H.C. Wille, K. Schlage, B. Sahoo, Electromagnetically induced transparency with resonant nuclei in a cavity. Nature 482, 199–203 (2012)

    Article  ADS  Google Scholar 

  • R. Röhlsberger, Cooperative emission from nuclei: the collective Lamb shift and electromagnetically induced transparency. Fortschr. Phys. 61, 360–376 (2013)

    Article  Google Scholar 

  • E. Schrödinger, Discussion of probability relations between separated systems. Proc. Camb. Philos. Soc. 31, 555–563 (1935); 32, 446–451 (1936)

    Google Scholar 

  • M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Book  MATH  Google Scholar 

  • M.O. Scully, Collective Lamb Shift in single photon Dicke superradiance. Phys. Rev. Lett. 102, 143601 (2009)

    Article  ADS  Google Scholar 

  • S. Shwartz, S.E. Harris, Polarization entangled photons at X-ray energies. Phys. Rev. Lett. 106, 080501 (2011)

    Article  ADS  Google Scholar 

  • S. Shwartz et al., X-ray parametric down-conversion in the Langevin regime. Phys. Rev. Lett. 109, 013602 (2012)

    Article  ADS  Google Scholar 

  • S. Shwartz et al., X-ray second harmonic generation. Phys. Rev. Lett. 112, 163901 (2014)

    Article  ADS  Google Scholar 

  • W. Sturhahn, CONUSS and PHOENIX: evaluation of nuclear resonant scattering data. Hyperfine Interact. 125, 149–172 (2000)

    Article  Google Scholar 

  • A.A. Svidzinsky, J.T. Chang, Cooperative spontaneous emission as a many-body eigenvalue problem. Phys. Rev. A 77, 043833 (2008)

    Article  ADS  Google Scholar 

  • A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House, Norwood, 2005)

    MATH  Google Scholar 

  • K. Tamasaku, K. Ishikawa, Interference between Compton scattering and X-ray parametric down-conversion. Phys. Rev. Lett. 98, 244801 (2007)

    Article  ADS  Google Scholar 

  • K. Tamasaku, K. Sawada, K. Ishikawa, Determining x-ray nonlinear susceptibility of diamond by the optical Fano effect. Phys. Rev. Lett. 103, 254801 (2009)

    Article  ADS  Google Scholar 

  • K. Tamasaku, K. Sawada, E. Nishibori, T. Ishikawa, Visualizing the local optical response to extreme- ultra- violet radiation with a resolution of \(\lambda\)/380. Nat. Phys. 7, 705–708 (2011)

    Article  Google Scholar 

  • K. Tamasaku et al., X-ray two-photon absorption competing against single and sequential multiphoton processes. Nat. Photon. 8, 313–316 (2014)

    Article  ADS  Google Scholar 

  • S. Tanaka, S. Mukamel, Coherent X-ray Raman spectroscopy: a nonlinear local probe for electronic excitations. Phys. Rev. Lett. 89, 043001 (2002)

    Article  ADS  Google Scholar 

  • F. Vagizov, V. Antonov, Y.V. Radeonychev, R.N. Shakhmuratov, O. Kocharovskaya, Coherent control of the waveforms of recoilless γ-ray photons. Nature 508, 80–83 (2014)

    Article  ADS  Google Scholar 

  • U. van Bürck, Coherent pulse propagation through resonant media. Hyperfine Interact. 123/124, 483–509 (1999)

    Google Scholar 

  • C. Weninger et al., Stimulated electronic X-ray Raman scattering. Phys. Rev. Lett. 111, 233902 (2013)

    Article  ADS  Google Scholar 

  • Y. Yudovich, S. Shwartz, X-ray-pulse characterization by spectral shearing interferometry using three-wave mixing. Phys. Rev. A 90, 033805 (2014)

    Article  ADS  Google Scholar 

  • P. Zhou, S. Swain, Cavity engineering of quantum interference. Opt. Commun. 179, 267–274 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Röhlsberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Röhlsberger, R., Evers, J., Shwartz, S. (2016). Quantum and Nonlinear Optics with Hard X-Rays. In: Jaeschke, E., Khan, S., Schneider, J., Hastings, J. (eds) Synchrotron Light Sources and Free-Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-319-14394-1_32

Download citation

Publish with us

Policies and ethics