Skip to main content

Superconducting RF: Enabling Technology for Modern Light Sources

  • Reference work entry
  • 4189 Accesses

Abstract

Superconducting radio-frequency (SRF) technology holds the promise of low-beam-impedance, high-gradient, CW operation and thus is ideally suited for use in high-power synchrotron light sources. Over 30 years of research and development has helped to bring the technology to maturity and to the point that its near turn-key operation is now feasible in such facilities. Many SRF systems are in routine operation in both storage-ring and LINAC-based light sources and they are the key to the realization of a number of novel light-source concepts such as ERLs, compact sources, x-ray-oscillator FELs or short-pulse operation in storage rings. An overview of the principles and advantages of SRF as well as the technology’s state-of-the-art and future challenges is given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Brightness here is loosely defined to be the bunch charge divided by the volume the beam occupies in the six-dimensional phase space spanned by the transverse size and divergence, the energy spread, and the bunch length.

  2. 2.

    Active length is defined as the distance over which the actual acceleration of the beam takes place.

  3. 3.

    The latter statement is simply a consequence of the fact that a DC field is conservative.

  4. 4.

    The subscript of a mode is a measure of the number of nodes the field components have in the azimuthal, radial, and longitudinal direction, respectively.

  5. 5.

    This is simply a consequence of \(\nabla \times \mathbf{ H} =\mathbf{ j}\) (assuming there is little electric field parallel to the nearly perfectly conducting wall).

  6. 6.

    Careful: In this text, we use the LINAC definition for the shunt impedance. Other texts use the circuit definition given by \(R_{\mathrm{a}}^{\mathrm{c}} = R_{\mathrm{a}}/2\).

  7. 7.

    While there is no 1:1 correlation of the HOM shunt impedances and that of the accelerating mode, generally designs that maximize the latter will also produce large HOM shunt impedances.

  8. 8.

    To avoid these losses in DC-current-carrying wires, one intentionally introduces defects in the superconductor that pin the flux vortices and prevent their motion.

  9. 9.

    If the material has many defects, nucleation of flux vortices can happen on very short time scales and flux penetration may already occur at H c1.

  10. 10.

    The source of the electron can be quite arbitrary: Field emitted electrons, impact of cosmic rays, beam halo …

  11. 11.

    From the point of view of power dissipation.

  12. 12.

    The resistance at 4.2 K is often measured by quenching the Nb with a DC magnetic field H > H c2 or by measuring the resistivity above T c versus T and extrapolating to 4.2 K.

  13. 13.

    The surface area of the cavity scales as ω −2, while the number of cavities per length of LINAC scales as ω.

  14. 14.

    Exceptions exist: for example, ERL booster cavities may be limited by the beam loading to two cells (Geng et al. 2007; Knobloch 2010). In high-current storage, rings single-cell cavities are used. At the other extreme, the low-current S-DALINAC is based on 20-cell, 3-GHz cavities.

  15. 15.

    Beyond the HOM power, one also has to consider beam loading. Input couplers typically can manage up to 500 kW of power. If N cell (and hence V acc) were increased, the power demand may exceed the coupler’s capabilities.

  16. 16.

    Beam loading refers to the RF power transferred to the beam = \(I_{\mathrm{b}}V _{\mathrm{acc}}\cos \phi\), ϕ being the acceleration phase.

  17. 17.

    An exception are lower-order-mode dampers as will be discussed later.

  18. 18.

    Compare this to R aQ 0 values close to 300 \(\mbox{ $\Omega $}\) for normal-conducting cavities.

  19. 19.

    Recently the project was halted due to budgetary constraints.

  20. 20.

    Compare this with storage rings where only the power lost to synchrotron radiation must be resupplied.

  21. 21.

    If the cavities are to be operated CW then some modifications must be made to the cooling of the HOM coupler to prevent quenches (Anders et al. 2010).

  22. 22.

    This pulsed operation is the result of historical reasons because the SRF-module design was originally developed for the International Linear Collider which, on account of its high energy, must be pulsed to limit the cryogenic load.

  23. 23.

    For this cavity, shape H c1 is equivalent to \(E_{\mathrm{acc}} = 5\,\mbox{ MV/m}\).

References

  • K. Akai et al., RF system for the KEK B-Factory. Nucl. Inst. Methods A 449, 45–65 (2003)

    Article  ADS  Google Scholar 

  • W. Anders, J. Knobloch, O. Kugeler, A. Neumann, Measurements at HoBiCaT: heating HOM loop couplers in CW mode, in Proceedings of the HOM 2010 Workshop, 2010, http://www.lns.cornell.edu/Events/HOM10/rsrc/LEPP/Events/HOM10/Agenda/MP7_Anders.pdf

  • C. Antoine et al., The role of atomic hydrogen in Q-degradation of niobium superconducting RF cavities: analytical point of view, in Proceedings of the SRF, 2003

    Google Scholar 

  • A. Arnold, J. Teichert, Overview on superconducting photoinjectors. Phys. Rev. Spec. Topics AB 14, 024801 (2011)

    ADS  Google Scholar 

  • A. Arnold et al., A high-brightness SRF photoelectron injector for FEL light sources. Nucl. Inst. Methods A 593(1–2), 57–62 (2008)

    Article  ADS  Google Scholar 

  • S. Aull, O. Kugeler, J. Knobloch, Trapped magnetic flux in superconducting niobium samples. Phys. Rev. Spec. Topics AB 15, 062001 (2012)

    ADS  Google Scholar 

  • B. Aune et al., Superconducting TESLA cavities. Phys. Rev. Spec. Topics AB 3, 092001 (2000)

    ADS  Google Scholar 

  • C.S. Athwal, K.H. Bayliss, R. Calder, R.V. Latham, Field-induced electron emission from artificially produced carbon sites on broad-area copper and niobium electrodes. IEEE Trans. Plasma Sci. PS-13(5), 226–229 (1985)

    Article  ADS  Google Scholar 

  • R. Barday, A. Burrill, A. Jankowiak, T. Kamps, J. Knobloch, O. Kugeler, A. Matveenko, A. Neumann, M. Schmeißer, J. Völker, Characterization of a superconducting Pb photocathode in a superconducting RF photoinjector. Phys. Rev. Spec. Topics AB 16, 123402 (2013)

    ADS  Google Scholar 

  • J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity. Phys. Rev. 108(5), 1175–1204 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • S. Bauer et al., Industrial production of turn key superconducting accelerator modules for high current storage rings, in Proceedings of the Particle Accelerator Conference, Chicago, 2001

    Book  Google Scholar 

  • S. Belomestnykh, H. Padamsee, Review of high power CW couplers for superconducting cavities, in Proceedings of the Workshop on High-Power Couplers for Superconducting Accelerators, Jefferson Laboratory, Newport News, 2002

    Google Scholar 

  • S. Belomestnykh et al., Operating experience with superconducting RF at CESR and overview of other SRF related activities at Cornell University, in Proceedings of the SRF Workshop, Santa Fe, 1999

    Google Scholar 

  • I. Ben-Zvi et al., Ampere average current photoinjector and energy recovery linac, in Proceedings of the 26th International FEL Conference, Trieste, 2004

    Google Scholar 

  • I. Ben-Zvi et al., Superconducting photoinjector, in Proceedings of the FEL Conference, Novosibirsk, 2007

    Google Scholar 

  • C. Boffo, P. Bauer, M. Foley, C. Antoine, C. Cooper, A. Brinkmann, Eddy current scanning of niobium for SRF cavities at Fermilab. IEEE Trans. Appl. Supercond. 17(2), 1326–1329 (2007)

    Article  ADS  Google Scholar 

  • P. Bosland et al., Completion of the SOLEIL cryomodule, in Proceedings of the SRF Workshop, Santa Fe, 1999

    Google Scholar 

  • P. Bosland et al., Third harmonic superconducting passive cavities in ELETTRA and SLS, in Proceedings of the Workshop on RF Superconductivity, Travemünde, 2003

    Google Scholar 

  • A. Brinkmann, W. Singer, Nondestructive testing of niobium sheets for SRF cavities using eddy-current and squid flaw detection, in Proceedings of the LINAC Conference, Victoria, 2008, o. 800

    Google Scholar 

  • W. Buckel, R. Kleiner, Superconductivity, 2nd edn. (Wiley-VCH, Weinheim, 2004)

    Book  Google Scholar 

  • R. Brinkmann, E.A. Schneidmiller, J. Sekutowicz, M.V. Yurkov, Prospects for CW and LP operation of the European XFEL in hard X-ray regime, DESY Technical Note 14-025, 2014, arXiv:1403.0465

    Google Scholar 

  • G. Ciovati, G. Myneni, F. Stevie, P. Maheshwari, D. Griffis, High field Q slope and the baking effect: review of recent experimental results and new data on Nb heat treatments. Phys. Rev. Spec. Topics AB 13, 022002 (2010)

    ADS  Google Scholar 

  • A. Citron, Compilation of experimental results and operating experience, in Proceedings of the SRF Workshop, Karlsruhe, 1980

    Google Scholar 

  • G. Davis, J. Delayen, M. Drury, E. Feldl, Development and testing of a prototype tuner for the CEBAF Upgrade cryomodule, in Proceedings of the Particle Accelerator Conference, Chicago, 2001

    Book  Google Scholar 

  • J.R. Delayen, Applications of spoke cavities, in Proceedings of the LINAC Conference, Tsukuba, 2010

    Google Scholar 

  • C.B. Duke, M.E. Alferieff, Field emission through atoms adsorbed on a metal surface. J. Chem. Phys. 46, 923–937 (1967)

    Article  ADS  Google Scholar 

  • B. Dwersteg, D. Kostin, M. Lalayan, C. Martens, W.-D. Möller, TESLA RF power coupler development at DESY, in Proceedings of the 10th Workshop on RF Superconductivity, Tsukuba, 2001

    Google Scholar 

  • H. Edwards, C. Behrens, E. Harms, 3.9 GHz cavity module for linear bunch compression at FLASH, in Proceedings of the LINAC Conference, Tel-Aviv, 2010

    Google Scholar 

  • G.R. Eichhorn et al., High-Q cavities for the Cornell ERL main LINAC, in Proceedings of the SRF Conference, Paris, 2013

    Google Scholar 

  • U. Ellenberger, L. Paly, H. Blumer, C. Zumbach, F. Loehl, M. Bopp, H. Fitze, Status of the manufacturing process for the SWISSFEL C-band accelerating structures, in Proceedings of the FEL Conference, New York, 2013, p. 245

    Google Scholar 

  • R.H. Fowler, L. Nordheim, Electron emission in intense electric fields. Proc. R. Soc. Lond. A119, 173–181 (1928)

    Article  ADS  MATH  Google Scholar 

  • R. Geng, Review of new shapes for higher gradients. Physica C 441(1–2), 145–150 (2006)

    Article  ADS  Google Scholar 

  • R.L. Geng, H. Padamsee, A. Seaman, V.D. Shemelin, World record accelerating gradient achieved in a superconducting niobium RF cavity, in Proceedings of the Particle Accelerator Conference, Knoxville, 2005

    Book  Google Scholar 

  • R.L. Geng et al., Fabrication and performance of superconducting RF cavities for the Cornell ERL injector, in Proceedings of the Particle Accelerator Conference, Albuquerque, 2007

    Book  Google Scholar 

  • A. Grassellino, A. Romanenko, O. Melnychuk, Y. Trenikhina, A. Crawford, A. Rowe, M. Wong, D. Sergatskov, T. Khabiboulline, F. Barkov, Nitrogen and argon doping of niobium for superconducting radio frequency cavities: a pathway to highly efficient accelerating structures. Supercond. Sci. Tech. 26, 102001 (2013)

    Article  ADS  Google Scholar 

  • W.S. Graves, W. Brown, F.X. Kaertner, D.E. Moncton, MIT inverse compton source concept. Nucl. Inst. Methods A 608(1), S103–S105 (2009)

    Article  Google Scholar 

  • A. Gurevich, G. Ciovati, Effect of vortex hotspots on the radio-frequency surface resistance of superconductors. Phys. Rev. B 87, 054502 (2013)

    Article  ADS  Google Scholar 

  • M. Hein, Potential of high-temperature superconductors for short-term microwave applications, in Proceedings of the SRF Workshop, Gif sur Yvette, 1995

    Google Scholar 

  • C.S. Hopper, J.R. Delayen, Superconducting spoke cavities for high-velocity applications. Phys. Rev. Spec. Topics AB 16, 202001 (2013)

    Google Scholar 

  • T.L. Hylton, A. Kapitulnik, M.R. Beasley, J.P. Carini, L. Drabeck, G. Grüner, Weakly coupled grain model of high-frequency losses in high-T c superconducting thin films. Appl. Phys. Lett. 53(14), 1343–1345 (1988)

    Article  ADS  Google Scholar 

  • M. Jimenez, R.J. Noer, G. Jouve, J. Jodet, B. Bonin, Electron field emission from large-area cathodes: evidence for the projection model. J. Phys. D 27, 1038–1045 (1994)

    Article  ADS  Google Scholar 

  • T. Junginger, W. Weingarten, C. Welsch, RF characterization of superconducting samples, in Proceedings of the SRF Conference, Berlin, 2009

    Google Scholar 

  • S. Kim et al., Study on fault scenarios of coaxial type HOM couplers in SRF cavities, in Proceedings of the LINAC Conference, Knoxville, 2006

    Google Scholar 

  • J. Kirchgessner, Review of the development of RF cavities for high currents, in Proceedings of the Particle Accelerator Conference, Dallas, 1995

    Book  Google Scholar 

  • R. Kleindienst, O. Kugeler, J. Knobloch, Development of an optimized quadrupole resonator at HZB, in Proceedings of the SRF Conference, Paris, 2013

    Google Scholar 

  • P. Kneisel, G. Ciovati, W. Singer, X. Singer, D. Reschke, A. Brinkmann, Performance of single crystal niobium cavities, in Proceedings of the EPAC Conference, Genoa, 2008

    Google Scholar 

  • J. Knobloch, Advanced thermometry studies of superconducting radio-frequency cavities, Ph.D. thesis, Cornell University, 1997

    Google Scholar 

  • J. Knobloch, Field emission and thermal breakdown in superconducting niobium cavities for accelerators. IEEE Trans. Appl. Supercond. 9(2), 1016–1022 (1999)

    Article  Google Scholar 

  • J. Knobloch, Quality degradation of niobium RF cavities due to hydrogen contamination—the Q virus, in Proceedings of the International Workshop on Hydrogen in Materials and Vacuum Systems, Newport News, 2002

    Google Scholar 

  • J. Knobloch, Superconducting RF R&D for Energy Recovery Linacs, in Proceedings of the LINAC Conference, Tsukuba, 2010

    Google Scholar 

  • F. Kochlin, B. Bonin, Parametrization of the niobium thermal conductivity in the superconducting state. Supercond. Sci. Technol. 9, 453–460 (1996)

    Article  ADS  Google Scholar 

  • O. Kugeler, A. Neumann, W. Anders, J. Knobloch, Measurement and compensation of microphonics in CW-operated TESLA-type cavities, in Proceedings of the ERL Workshop, 2007

    Google Scholar 

  • O. Kugeler, A. Neumann, W. Anders, J. Knobloch, Adapting TESLA technology for future CW light sources using HoBiCaT. Rev. Sci. Inst. 81, 074701 (2010)

    Article  ADS  Google Scholar 

  • C. Leemann, CEBAF design overview and project status, in Proceedings of the 3rd Workshop on RF Superconductivity, 1987

    Google Scholar 

  • R. Legg, M. Allen, M. Fisher, A. Hjortland, K, Kleman, T. Grimm, M. Pruitt, SRF photoinjector R&D at University of Wisconsin, in Proceedings of the ERL Workshop, 2009

    Google Scholar 

  • M. Liepe, Overall SRF system optimization for ERLs, in ERL Workshop, 2009, http://epaper.kek.jp/ERL2009/talks/plt24_talk.pdf

  • M. Liepe, S. Posen, Nb3Sn for SRF application, in Proceedings of the SRF Conference, Paris, 2013

    Google Scholar 

  • J. Mammosser et al., Large-volume resonant microwave discharge for plasma cleaning of a CEBAF 5-cell SRF cavity, in Proceedings of the IPAC Conference, New Orleans, 2012

    Google Scholar 

  • J. Mammosser et al., Fabrication and testing of deflecting cavities APS, in Proceedings of the SRF Conference, Paris, France 2013

    Google Scholar 

  • P.A. McIntosh et al., Preparations for assembly of the international ERL cryomodule at Daresbury Laboratory, in Proceedings of the Particle Accelerator Conference, Vancouver, 2009

    Google Scholar 

  • A. Mosnier, S. Chel, X. Hanus, G. Flynn, Design of a heavily damped superconducting cavity for SOLEIL, in Proceedings of the Particle Accelerator Conference, Vancouver, 1997

    Google Scholar 

  • A. Nassiri et al., Status of the short-pulse X-ray project at the advanced photon source, in Proceedings of the IPAC Conference, New Orleans, 2012

    Google Scholar 

  • A. Nassiri et al., A summary of the advanced photon source (APS) short pulse x-ray (SPX) R&D accomplishments, in Proceedings of the SRF Conference, Paris, 2013

    Google Scholar 

  • A. Neumann et al., Towards a 100 mA superconducting RF photoinjector for BERLinPro, in Proceedings of the SRF Conference, Paris, 2013

    Google Scholar 

  • H. Padamsee, Advances in production of high purity Nb for RF superconductivity. IEEE Trans. Mag. 23(2), 1607–1616 (1987)

    Article  ADS  Google Scholar 

  • H. Padamsee, RF Superconductivity: Science, Technology, and Applications (Wiley-VCH, Weinheim, 2009)

    Book  Google Scholar 

  • H. Padamsee, J. Knobloch, The nature of field emission from microparticles and the ensuing voltage breakdown. AIP Conf. Proc. 474, 212 (1999)

    Article  ADS  Google Scholar 

  • H. Padamsee, J. Kirchgessner, D. Moffat, R. Noer, New results of RF and DC field emission, in Proceedings of the 4th Workshop on RF Superconductivity, Tsukuba, 1989

    Google Scholar 

  • H. Padamsee et al., Design challenges for high current storage rings, in Proceedings of the 5th Workshop on RF Superconductivity, DESY, Hamburg, 1991

    Google Scholar 

  • H. Padamsee, J. Knobloch, T. Hays, RF Superconductivity for Accelerators, 2nd edn. (Wiley-VCH, Weinheim, 2008)

    Google Scholar 

  • W. Panofski, The evolution of particle accelerators and colliders, SLAC Beam Line 27N1, 36–44 SLAC-REPRINT-1997-101, 1999

    Google Scholar 

  • M. Pedrozzi, W. Gloor, P. Marchand, A. Anghel, Commissioning of the SLS third harmonic superconducting RF system. PSI Scientific and Technical Report, vol. VI, 2002

    Google Scholar 

  • M. Peiniger, M. Hein, N. Klein, G. Müller, H. Piel, P. Thüns, Work on Nb3Sn cavities at Wuppertal, in Proceedings of the SRF Workshop, Argonne National Laboratory, Lemont, 1987

    Google Scholar 

  • L. Phillips, G.K. Davis, J.R. Delayen, J.P. Ozelis, T. Plawski, H. Wang, G. Wu, A sapphire loaded TE011 cavity for surface impedance measurements—design, construction, and commissioning status, in Proceedings of the SRF Workshop, Ithaca, 2005

    Google Scholar 

  • E. Pozdeyev, Regenerative multipass beam breakup in two dimensions. Phys. Rev. Spec. Topics AB 8, 054401 (2005)

    ADS  Google Scholar 

  • C. Reece, E.F. Daly, J. Henry, W.R. Hicks, J. Preble, H. Wang, G. Wu, Optimization of the SRF cavity design for the CEBAF 12 GeV Upgrade, in Proceedings of the SRF Workshop, Beijing, 2007

    Google Scholar 

  • D. Reschke, Challenges in SRF module production for the European XFEL, in Proceedings of the SRF Conference, Chicago, 2011

    Google Scholar 

  • D. Reschke, A. Brinkmann, K. Floettmann, D. Klinke, J. Ziegler, Dry-Ice cleaning: The most effective cleaning process for SRF cavities? in Proceedings of the SRF Workshop, Beijing, 2007

    Google Scholar 

  • R. Rimmer, E.F. Daly, W.R. Hicks, J. Henry, J. Preble, M. Stirbet, H. Wang, K.M. Wilson, G. Wu, The JLAB ampere-class cryomodule, in Proceedings of the 12th Workshop on RF Superconductivity, Ithaca, 2005

    Google Scholar 

  • J. Sekutowicz, HOM couplers at DESY, in Proceedings of the 3rd Workshop on RF Superconductivity, Argonne National Laboratory, Lemont, 1987

    Google Scholar 

  • J. Sekutowicz, Tutorial: superconducting High-ß cavities, in Proceedings of the SRF Workshop, 2007, http://accelconf.web.cern.ch/AccelConf/srf2007/TUTORIAL/PDF/Tutorial_2a.pdf

  • N. Solyak, H. Edwards, M. Foley, I. Gonin, T. Khabiboulline, D. Mitchel, A. Rowe, High field test results of superconducting 3.9-GHz accelerating cavities at FNAL, in Proceedings of the LINAC Conference, Knoxville, 2006

    Google Scholar 

  • T. Tajima et al., Studies on thin film MgB2 for applications to RF structures for particle accelerators. AIP Conf. Proc. 1435, 297 (2012)

    Article  ADS  Google Scholar 

  • M. Tinkham, Introduction to Superconductivity, 2nd edn. (Dover Books on Physics, Mineola, 2004)

    Google Scholar 

  • A.-M. Valente-Feliciano, H.L. Phillips, C.E. Reece, J. Spradling, X. Zhao, B. Xiao, Development of Nb and alternative material thin films tailored for SRF applications, in Proceedings of the IPAC Conference, New Orleans, 2012

    Google Scholar 

  • N. Valles et al., The main linac cavity for Cornell’s energy recovery linac: cavity design through horizontal cryomodule prototype test. Nucl. Inst. Methods A 734 (2014)

    Google Scholar 

  • C. Vallet, M. Bolor, B. Bonin, J.P. Charrier, B. Daillant, J. Gratadour, F. Koechlin, H. Safa, Flux trapping in superconducting cavities, in Proceedings of the 3rd European Particle Accelerator Conference, Berlin, 1992

    Google Scholar 

  • A. Velez, J. Knobloch, A. Neumann, BESSY-VSR 1.5 GHz cavity design and considerations on waveguide damping, in Proceedings of LINAC Conference, Geneva, (2014), pp. 221–223

    Google Scholar 

  • J. Vogt, O. Kugeler, J. Knobloch, Impact of cooldown conditions at T c on the SRF cavity quality factor. Phys. Rev. Spec. Topics AB 16, 102002 (2013)

    ADS  Google Scholar 

  • J.-M. Vogt, O. Kugeler, J. Knobloch, High-Q operation of superconducting RF cavities: potential impact of thermocurrents on the RF surface resistance. Phys. Rev. Spec. Top. AB 18, 042001 (2015)

    ADS  Google Scholar 

  • G. Waldschmidt et al., Superconducting cavity design for short-pulse X rays at the advanced photon source, in Proceedings of the Particle Accelerator Conference, New York, 2011

    Google Scholar 

  • W. Weingarten, Superconducting cavities, in CERN Accelerator School, RF Engineering for Particle Accelerators, Oxford, ed. by S. Tuner, UK 1991

    Google Scholar 

  • H. Wiedemann, Particle Accelerator Physics, 3rd edn. (Springer, Berlin/New York, 2007)

    Google Scholar 

  • G. Wüstefeld, A. Jankowiak, J. Knobloch, M. Ries, Simultaneous long and short electron bunches in the BESSY II storage ring, in Proceedings of the IPAC Conference, San Sebastian, 2011

    Google Scholar 

  • N.S. Xu, The physical origin of prebreakdown electron pin-holes, in High Voltage Vacuum Insulation, ed. by R.V. Latham (Academic, London/New York, 1995)

    Google Scholar 

  • R. Zennaro et al., Conceptual design of the C-band module for the SwissFEL, in Proceedings of the LINAC Conference, Tsukuba, 2010

    Google Scholar 

  • A. Zholents, P. Heimann, M. Zolotorev, J. Byrd, Generation of subpicosecond x-ray pulses using RF orbit deflection. Nucl. Inst. Methods A 425, 385–389 (1999)

    Article  ADS  Google Scholar 

  • B. Zotter, K. Bane, Transverse resonances of periodically widened cylindrical tubes with circular cross section, Stanford Linear Accelerator Center, PEP-Note 308, 1979

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Knobloch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Knobloch, J. (2016). Superconducting RF: Enabling Technology for Modern Light Sources. In: Jaeschke, E., Khan, S., Schneider, J., Hastings, J. (eds) Synchrotron Light Sources and Free-Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-319-14394-1_13

Download citation

Publish with us

Policies and ethics