Skip to main content

Hydroxyapatite: From Nanocrystals to Hybrid Nanocomposites for Regenerative Medicine

  • Reference work entry
  • First Online:

Abstract

Scientific research on bone and osteochondral tissue regeneration is increasingly becoming the most promising response to a number of disabling pathologies with huge impact on the progressively growing and aging world population. The biomimicry of scaffolds with the target tissue is now universally considered to be a key requirement to properly instruct cells toward the restoration of specific physiological functioning. In this respect, this chapter presents an overview of recent findings on hydroxyapatite, biomimetic materials, and devices addressed to bone and osteochondral tissue regeneration. Particular focus is given to the novel biomimetic hydroxyapatite phases, including the newly discovered superparamagnetic hydroxyapatite nanoparticles and to the biomineralization process to develop bioinspired hybrid inorganic–polymeric porous scaffolds even endowed with magnetic features. Finally, the technology to transform ligneous sources into hierarchically organized biomorphic hydroxyapatite-based porous scaffolds that may provide novel and more effective solutions to assist the regeneration of long segmental bones was described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40(5):363–408.

    Article  Google Scholar 

  2. Sprio S, Ruffini A, Valentini F, D’Alessandro T, Sandri M, Panseri S, Tampieri A (2010) Biomimesis and biomorphic transformations: new concepts applied to bone regeneration. J Biotechnol 156(4):347–355

    Article  Google Scholar 

  3. Roveri N, Palazzo B, Iafisco M (2008) The role of biomimetism in developing nanostructured inorganic matrices for drug delivery. Expert Opin Drug Deliv 5(8):861–877

    Article  Google Scholar 

  4. Dorozhkin SV (2010) Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater 6(3):715–734

    Article  Google Scholar 

  5. Rey C, Combes C, Drouet C, Lebugle A, Sfihi H, Barroug A (2007) Nanocrystalline apatites in biological systems: characterisation, structure and properties. Materialwiss Werkstofftech 38(12):996–1002

    Article  Google Scholar 

  6. Legros R, Balmain N, Bonel G (1987) Age-related changes in mineral of rat and bovine cortical bone. Calcif Tissue Int 41(3):137–144

    Article  Google Scholar 

  7. Rey C (1990) Calcium phosphate biomaterials and bone mineral. Differences in composition, structures and properties. Biomaterials 11:13–15

    Article  Google Scholar 

  8. Rey C, Combes C, Drouet C, Sfihi H, Barroug A (2007) Physico-chemical properties of nanocrystalline apatites: implications for biominerals and biomaterials. Mater Sci Eng C Biomim Supramol Syst 27(2):198–205

    Article  Google Scholar 

  9. Drouet C, Bosc F, Banu M, Largeot C, Combes C, Dechambre G, Estournes C, Raimbeaux G, Rey C (2009) Nanocrystalline apatites: from powders to biomaterials. Powder Technol 190(1–2):118–122

    Article  Google Scholar 

  10. Sakhno Y, Bertinetti L, Iafisco M, Tampieri A, Roveri N, Martra G (2010) Surface hydration and cationic sites of nanohydroxyapatites with amorphous or crystalline surfaces: a comparative study. J Phys Chem C 114(39):16640–16648

    Article  Google Scholar 

  11. Cazalbou S, Combes C, Eichert D, Rey C, Glimcher MJ (2004) Poorly crystalline apatites: evolution and maturation in vitro and in vivo. J Bone Miner Metab 22(4):310–317

    Article  Google Scholar 

  12. Uskoković V, Uskoković DP (2011) Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. J Biomed Mater Res B Appl Biomater 96B(1):152–191

    Article  Google Scholar 

  13. Johnsson MS-A, Nancollas GH (1992) The role of brushite and octacalcium phosphate in apatite formation. Crit Rev Oral Biol Med 3(1):61–82

    Google Scholar 

  14. Pan HB, Darvell BW (2008) Calcium phosphate solubility: the need for re-evaluation. Cryst Growth Des 9(2):639–645

    Article  Google Scholar 

  15. Delgado-López JM, Iafisco M, Rodríguez I, Tampieri A, Prat M, Gómez-Morales J (2012) Crystallization of bioinspired citrate-functionalized nanoapatite with tailored carbonate content. Acta Biomater 8(9):3491–3499

    Article  Google Scholar 

  16. Lazić S (1995) Microcrystalline hydroxyapatite formation from alkaline solutions. J Cryst Growth 147(1–2):147–154

    Google Scholar 

  17. Hu Y-Y, Rawal A, Schmidt-Rohr K (2010) Strongly bound citrate stabilizes the apatite nanocrystals in bone. In: Proceedings of the National Academy of Sciences http://www.pnas.org/content/107/52/22425.full

  18. Vandecandelaere N, Rey C, Drouet C (2012) Biomimetic apatite-based biomaterials: on the critical impact of synthesis and post-synthesis parameters. J Mater Sci Mater Med 23(11):2593–2606

    Article  Google Scholar 

  19. Wang L, Nancollas GH (2008) Calcium orthophosphates: crystallization and dissolution. Chem Rev 108(11):4628–4669

    Article  Google Scholar 

  20. Koutsopoulos S (2002) Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res 62(4):600–612

    Article  Google Scholar 

  21. Boanini E, Gazzano M, Bigi A (2010) Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater 6(6):1882–1894

    Article  Google Scholar 

  22. Padilla S, Izquierdo-Barba I, Vallet-Regí M (2008) High specific surface area in nanometric carbonated hydroxyapatite. Chem Mater 20(19):5942–5944

    Article  Google Scholar 

  23. Zapanta-Legeros R (1965) Effect of carbonate on the lattice parameters of apatite. Nature 206(4982):403–404

    Article  Google Scholar 

  24. Iafisco M, Morales JG, Hernandez-Hernandez MA, Garcia-Ruiz JM, Roveri N (2010) Biomimetic carbonate-hydroxyapatite nanocrystals prepared by vapor diffusion. Adv Eng Mater 12(7):6

    Article  Google Scholar 

  25. Gomez-Morales J, Delgado-López JM, Iafisco M, Hernández-Hernández MA, Prat M (2011) Amino acidic control of calcium phosphate precipitation by using the vapor diffusion method in microdroplets. Cryst Growth Des 11(11):4802–4809

    Article  Google Scholar 

  26. Nassif N, Martineau F, Syzgantseva O, Gobeaux F, Willinger M, Coradin T, Cassaignon S, Azaïs T, Giraud-Guille MM (2010) In vivo inspired conditions to synthesize biomimetic hydroxyapatite. Chem Mater 22(12):3653–3663

    Article  Google Scholar 

  27. Bigi A, Cojazzi G, Panzavolta S, Ripamonti A, Roveri N, Romanello M, Noris Suarez K, Moro L (1997) Chemical and structural characterization of the mineral phase from cortical and trabecular bone. J Inorg Biochem 68(1):45–51

    Article  Google Scholar 

  28. Bigi A, Foresti E, Gregorini R, Ripamonti A, Roveri N, Shah J (1992) The role of magnesium on the structure of biological apatites. Calcif Tissue Int 50(5):439–444

    Article  Google Scholar 

  29. Bertinetti L, Tampieri A, Landi E, Martra G, Coluccia S (2006) Punctual investigation of surface sites of HA and magnesium-HA. J Eur Ceram Soc 26(6):987–991

    Article  Google Scholar 

  30. Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S (2008) Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour. J Mater Sci Mater Med 19(1):239–247

    Article  Google Scholar 

  31. Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas PD, Christiansen C (2001) Incorporation and distribution of strontium in bone. Bone 28(4):446–453

    Article  Google Scholar 

  32. Landi E, Tampieri A, Celotti G, Sprio S, Sandri M, Logroscino G (2007) Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acta Biomater 3(6):961–969

    Article  Google Scholar 

  33. Tadier S, Bareille R, Siadous R, Marsan O, Charvillat C, Cazalbou S, Amédée J, Rey C, Combes C (2012) Strontium-loaded mineral bone cements as sustained release systems: compositions, release properties, and effects on human osteoprogenitor cells. J Biomed Mater Res B Appl Biomater 100B(2):378–390

    Article  Google Scholar 

  34. Vallet-Regi M, Arcos D (2005) Silicon substituted hydroxyapatites. A method to upgrade calcium phosphate based implants. J Mater Chem 15(15):1509–1516

    Article  Google Scholar 

  35. Porter AE, Patel N, Skepper JN, Best SM, Bonfield W (2003) Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials 24(25):4609–4620

    Article  Google Scholar 

  36. Sprio S, Tampieri A, Landi E, Sandri M, Martorana S, Celotti G, Logroscino G (2008) Physico-chemical properties and solubility behaviour of multi-substituted hydroxyapatite powders containing silicon. Mater Sci Eng C 28(1):179–187

    Article  Google Scholar 

  37. Landi E, Uggeri J, Sprio S, Tampieri A, Guizzardi S (2010) Human osteoblast behavior on as-synthesized SiO4 and B-CO3 co-substituted apatite. J Biomed Mater Res A 94A(1):59–70

    Article  Google Scholar 

  38. Tampieri A, Celotti G, Sprio S, Delcogliano A, Franzese S (2001) Porosity-graded hydroxyapatite ceramics to replace natural bone. Biomaterials 22(11):1365–1370

    Article  Google Scholar 

  39. Tampieri A, D’Alessandro T, Sandri M, Sprio S, Landi E, Bertinetti L, Panseri S, Pepponi G, Goettlicher J, Bañobre-López M, Rivas J (2012) Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxyapatite. Acta Biomater 8(2):843–851

    Article  Google Scholar 

  40. Guo C, Kaufman LJ (2007) Flow and magnetic field induced collagen alignment. Biomaterials 28(6):1105–1114

    Article  Google Scholar 

  41. Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52(8):1263–1334

    Article  Google Scholar 

  42. Weiner S (2008) Biomineralization: a structural perspective. J Struct Biol 163(3):229–234

    Article  Google Scholar 

  43. Tampieri A, Sprio S, Sandri M, Valentini F (2011) Mimicking natural bio-mineralization processes: a new tool for osteochondral scaffold development. Trends Biotechnol 29(10):526–535

    Article  Google Scholar 

  44. Tampieri A, Celotti G, Landi E, Sandri M, Roveri N, Falini G (2003) Biologically inspired synthesis of bone-like composite: self-assembled collagen fibers/hydroxyapatite nanocrystals. J Biomed Mater Res Part A 67(2):618–625

    Article  Google Scholar 

  45. Sprio S, Sandri M, Panseri S, Cunha C, Tampieri A (2012) Hybrid scaffolds for tissue regeneration: chemotaxis and physical confinement as sources of biomimesis. J Nanomater 2012:1

    Article  Google Scholar 

  46. Tampieri A, Sandri M, Landi E, Pressato D, Francioli S, Quarto R, Martin I (2008) Design of graded biomimetic osteochondral composite scaffolds. Biomaterials 29(26):3539–3546

    Article  Google Scholar 

  47. Kon E, Delcogliano M, Filardo G, Fini M, Giavaresi G, Francioli S, Martin I, Pressato D, Arcangeli E, Quarto R, Sandri M, Marcacci M (2010) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res 28(1):116–124

    Google Scholar 

  48. Dini L, Abbro L (2005) Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron 36(3):195–217

    Article  Google Scholar 

  49. Bock N, Riminucci A, Dionigi C, Russo A, Tampieri A, Landi E, Goranov VA, Marcacci M, Dediu V (2010) A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Acta Biomater 6(3):786–796

    Article  Google Scholar 

  50. Tampieri A, Iafisco M, Sandri M, Panseri S, Cunha C, Sprio S, Savini E, Uhlarz M, Herrmannsdörfer T (2014) Magnetic bioinspired hybrid nanostructured collagen–hydroxyapatite scaffolds supporting cell proliferation and tuning regenerative process. ACS Appl Mater Interfaces 6(18):15697–15707

    Article  Google Scholar 

  51. Sprio S, Tampieri A, Celotti G, Landi E (2009) Development of hydroxyapatite/calcium silicate composites addressed to the design of load-bearing bone scaffolds. J Mech Behav Biomed Mater 2(2):147–155

    Article  Google Scholar 

  52. Rambo CR, Sieber H (2005) Novel synthetic route to biomorphic Al2O3 ceramics. Adv Mater 17(8):1088–1091

    Article  Google Scholar 

  53. Rambo CR, Cao J, Rusina O, Sieber H (2005) Manufacturing of biomorphic (Si, Ti, Zr)-carbide ceramics by sol–gel processing. Carbon 43(6):1174–1183

    Article  Google Scholar 

  54. de Arellano-López AR, Martínez-Fernández J, González P, Domínguez C, Fernández-Quero V, Singh M (2004) Biomorphic SiC: a new engineering ceramic material. Int J Appl Ceram Technol 1(1):56–67

    Article  Google Scholar 

  55. Tampieri A, Sprio S, Ruffini A, Celotti G, Lesci IG, Roveri N (2009) From wood to bone: multi-step process to convert wood hierarchical structures into biomimetic hydroxyapatite scaffolds for bone tissue engineering. J Mater Chem 19(28):4973–4980

    Article  Google Scholar 

  56. Ruffini A, Sprio S, Tampieri A (2013) Study of the hydrothermal transformation of wood-derived calcium carbonate into 3D hierarchically organized hydroxyapatite. Chem Eng J 217:150–158

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Tampieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Tampieri, A. et al. (2016). Hydroxyapatite: From Nanocrystals to Hybrid Nanocomposites for Regenerative Medicine. In: Antoniac, I. (eds) Handbook of Bioceramics and Biocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-12460-5_6

Download citation

Publish with us

Policies and ethics